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Abstract We develop an approach to coupling between viscous flows of the two phases in
porous media, based on the Maxwell–Stefan formalism. Two versions of the formalism are
presented: the general form, and the form based on the interaction of the flowing phases with
the interface between them. The last approach is supported by the description of the flow on
the mesoscopic level, as coupled boundary problems for the Brinkmann or Stokes equations.
It becomes possible, in some simplifying geometric assumptions, to derive exact expressions
for the phenomenological coefficients in the Maxwell–Stefan transport equations. Sample
computations show, among other, that apparent relative permeabilities are dependent on the
viscosity ratio; that the overall mobility of the phases decreases compared to the standard
Buckley–Leverett formalism; and that the effect is determined by the parameter determining
the “degree of mixing” between the flowing phases. Comparison to the available experimental
data on the steady-state two-phase relative permeabilities is presented.

Keywords Two-phase flow · Viscous coupling · Maxwell–Stefan model ·
Transport coefficients · Relative permeabilities
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A Cross-sectional area
D Vector of pressure gradients
IP Fraction of the active jets
F Fractional flow function
G Force
k Permeability
K Mesoscopic permeability
l Proportionality coefficients
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L Length
M Dimensionless mobility
P Pressure
r Distance to the jet center
rj Inner radius in the jet model
R Outer radius in the jet model
s Saturation
u Interstitial velocity
U Superficial velocity
V Velocity of the moving interface
W Mesoscopic velocity
x Coordinate in the flow direction
y, z Coordinates orthogonal to the flow direction
W Mesoscopic flow velocity
Z Operator in the equation governing the mesoscopic flow velocity
α Friction coefficient
β Multiplier transforming superficial to interstitial velocity
γ Ratio of the effective Brinkman to the real phase viscosity
� Boundary of a region
φ Porosity
κ Inverse matrix of resistance coefficients
λ Onsager phenomenological coefficient
	 Matrix of phenomenological Onsager coefficients
μ Viscosity or viscosity ratio
τ Tortuosity
ξ Ratio of the characteristic jet size to the characteristic pore scale of the

porous medium
ω Auxiliary function in the expression for mesoscopic velocity

Subscripts

d Driving (pressure force)
e Effective (viscosity in the Brinkman equation)
j Jet
o “Orange”
r Relative
s Solid (porous medium matrix)
P Pressure
V Interface
wi, or Irreducible or residual
w “White”

1 Introduction

The theory of two-phase immiscible or partly miscible flows in porous media is used in a
variety of applications, first of all, in waterflooding or another immiscible fluid displacement
during the development of petroleum reservoirs (Barenblatt et al. 1990; Bedrikovetsky 1993).
Other important applications include spreading of immiscible contaminants, like LNAPL and
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DNAPL in the ground (Yadav and Hassanizadeh 2011); unsaturated ground flow (Bear and
Cheng 2010); and carbon dioxide injection for sequestration in aquifers (Pau et al. 2010).

The standard description of two-phase incompressible flows in porous media (often called
the Buckley–Leverett scheme) is based on two assumptions: (1) that each liquid phase flows
in its own part of the porous space; and (2) the boundary between these parts is determined
by the value of water saturation (in more general versions of the theory, by the geometry of
the clusters occupied by the phases). For example, it is widely accepted in the percolation
approaches to displacement (Seljakov and Kadet 1997; Bedrikovetsky 1993; Hunt and Ewing
2009) that the wetting phase occupies thinner capillaries. Then, a boundary between parts
of the porous space occupied by the wetting and the non-wetting fluid is determined by the
value of saturation and by the pore size distribution.

Several approaches have been proposed to enhance the simplified physical picture
of the traditional Buckley–Leverett model. Works of (Marle 1982; Panfilov and Pan-
filova 2005; Dinariev and Mikhailov 2008) consider (each in its own way) the con-
tact surface with portions of the adjacent bulk phases as a special phase, whose motion
is described either in terms of general linear non-equilibrium thermodynamics, or of
the capillary “Washburn” force (after the Washburn model of displacement in a cap-
illary, Washburn 1921). In other works, it is proposed to introduce an additional free
parameter, e.g., specific interfacial area, responsible for the hysteresis under different
flow conditions (Hassanizadeh and Gray 1990, 1993; Joekar-Niasar and Hassanizadeh
2011). An alternative approach consisting in treating the capillary pressure as an inde-
pendent dynamic variable was developed in works of (Hilfer 2006; Hilfer and Doster
2010). In papers of (Bedrikovetsky 2003; Plohr et al. 2001), hysteresis was explained
as a result of entrapment of the ganglia when the saturation changes non-monotonously.
A model proposed by (Barenblatt 1971) and further developed in a number of publications
(see overview in Barenblatt et al. 2003; Amaziane et al. 2012) accounts for the difference
between the equilibrium and the non-equilibrium saturation, and includes, as an additional
evolution equation, a relaxation equation with empirical relaxation time, a parameter to
be found from microlevel considerations. Extensions of the classical Bukingham–Darcy–
Richards approach have also been discussed in the area of unsaturated ground flow (Cueto-
Felgueroso and Juanes 2009; DiCarlo 2010).

In the papers of Shvidler (1961), Kurbanov (1968), Raats and Klute (1968), Kalaydjian
(1990), Kalaydjian et al. (1989), Rose (1991) (see also references therein), concepts of the
linear non-equilibrium thermodynamics were applied on the macroscopic level, resulting in
the phenomenological coupling cross terms in the Darcy expressions for the water and oil
fluxes. This approach is probably the most general under steady-state flow conditions, where
phase saturations do not vary with time. While many models listed above are strongly non-
equivalent for unsteady flows, for the steady states they are reduced either to the standard
Buckley–Leverett model, or to the non-equilibrium thermodynamic model with coupling.
Coupling may either appear directly, or via common moving interface (see the discussion
below).

The phase Darcy laws with coupling have the form of

Uw = −λww∇ Pw − λwo∇ Po

Uo = −λow∇ Pw − λoo∇ Po (1)

Here, Ui are phenomenological (superficial) phase velocities; Pi are phase pressures; λi j are
phenomenological Onsager coefficients forming 2×2 matrix 	(i, j = o, w) .
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There is a discussion in the literature about the actual form of the coefficients forming
matrix 	. They are necessary to know for practical applications of the theory. However, even
the Onsager property of symmetry of matrix 	 (equality of non-diagonal coefficients) may
be doubted, since any derivation of Eq. (1) would involve additional averaging of the highly
nonlinear processes happening during two-phase flows in multiple pores. Usual concepts of
entropy and approaching equilibrium should be reinterpreted on this scale (Shapiro 1996).
Another question is whether the diagonal coefficients in the matrix 	 may be expressed by
usual Buckley–Leverett expressions ki/μi , as in Ayub and Bentsen (1999), Dullien and Dong
(1996). In other words, it may be questioned whether the cross coefficients λwo and λow may
be factorized in the same way as the transport coefficients in the classical Backley–Leverett
theory, so that the relative permeabilities ki are determined by the geometry of the flowing
phases (ideally, by saturation), while the transport properties of these phases are expressed
by individual phase viscosities. We will show that a different choice may be more reasonable,
and that apparent relative permeabilities ki may depend on phase viscosity ratio.

Experimental determination of coefficients 	i j may also be complicated. The reason is
in a difficulty to organize the different and independent pressure gradients in both phases,
since phase pressures are connected via capillary pressure (Ayub and Bentsen 1999; Dullien
and Dong 1996). Hence, more detailed a priori information about these coefficients is needed
prior to their experimental determination.

In this work, we develop an approach to the two-phase immiscible flows based on the
Maxwell–Stefan formalism. The Maxwell–Stefan (MS) theory is based on the axiom that
the flows of the fluids in the different media are described by the balance of the driving
and friction forces (Wesselingh and Krishna 1990, 2000). The driving forces are usually
determined by the gradients of the proper potential functions driving the flow, like pressures,
temperature, or chemical potentials. The friction forces are proportional to the differences
in the individual velocities and are introduced for each pair of components or phases, as
well as between them and the containing medium. It may be shown that the MS theory is a
particular representation of the formalism of the non-equilibrium thermodynamics. However,
its great advantage is that it considers flow phenomena in the way allowing direct physical
interpretation. This makes it possible, for many cases, to make plausible assumptions about
the structure of the phenomenological coefficients in a particular MS model.

We discuss the two MS approaches to the two-phase flow in porous media. The general
approach (Sect. 2.1) expresses the friction force between the phases in terms of the common
friction coefficient. This approach makes it possible to investigate symmetry of the phe-
nomenological coefficients. A more detailed physical picture of the flow may be obtained
if, similarly to previous works (Hassanizadeh and Gray 1993; Panfilov and Panfilova 2005;
Dinariev and Mikhailov 2008), we will not consider directly the friction between the flowing
phases, but will introduce a moving interface between them, as described in Sect. 2.2. Under
conditions of the steady-state flow, such an interface moves along itself and parallel to the
flow, so that its position does not vary. It acts on the phases as the moving boundary in the
Newton viscosity experiment. The Maxwell–Stefan interaction coefficients between each
phase and the interface are specific for individual phases, unlike the common friction coef-
ficient between phases. This approach makes it possible to split the transport and coupling
coefficients into the functions of the flow geometries and phase viscosities.

Further, in Sect. 3, we present mesoscopic description of the two-phase flow in a porous
medium. This description involves the interaction between the pore clusters occupied by the
phases. The flows inside the clusters are described by the second-order equations, like Stokes
or Brinkmann ones. The boundary conditions are formulated on the moving boundaries
between the phases. It is shown that the Maxwell–Stefan equations with moving interface
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may be obtained by averaging this mesoscopic flow equations. Further, we propose a rela-
tively simple geometric flow model that makes it possible to evaluate the phenomenological
friction coefficients (Sect. 4). The model is based on the representation of the branches of
the clusters formed by the phases as interacting “jets.” Exact expressions for the MS coeffi-
cients are obtained for the cylindrical flow geometry (the detailed derivation is presented in
Appendix).

Thus, the developed approach results in a closed formalism where the transport coefficients
in a theoretically grounded scheme may be computed analytically, within a number of para-
meters having a clear physical meaning. They may further be transformed into coefficients
λi from Eq. (1). To the best of our knowledge, the previous works where such coefficients
were produced were based on the Poiseuille flow in a cylindrical geometry (like film flow
in a capillary), which is a rather restrictive assumption (Rose 1990). An alternative might
be given by the percolation theory (Hunt and Ewing 2009; Bedrikovetsky 1993; Seljakov
and Kadet 1997), which is also based on rather restrictive assumptions about the structure
of the porous medium and the character of the flow and, to the best of our knowledge, has
not been involved the effect of viscous coupling. In the framework of the developed model,
it becomes possible to evaluate apparent relative permeabilities produced in the steady-state
experiments. They may be studied analytically and compared to the available experimental
data. In this respect, our model is as useful as the previously proposed empirical models for
relative permeabilities (see an overview in Siddiqui et al. 1999). However, it is more theo-
retically grounded and, hence, more universal. Additionally, it involves the effect of viscous
coupling, which, to the best of our knowledge, has not been accounted for in the empirical
models.

Sample calculations presented in Sect. 5 confirm these statements. Their goal was to study
the behavior of the relative permeabilities and fractional flow functions for the stationary co-
current flows of the two phases. One of the observed effects is significant dependence of
the apparent relative permeabilities on the phase viscosity ratio, unlike in the traditional
Buckley–Leverett scheme. The behavior of the fractional flow function is determined by a
dimensional parameter expressing the characteristic size ratio of a cluster branch and of a
single pore. Finally, qualitative and quantitative comparison of the developed approach to
the available steady-state relative permeability data is discussed.

1.1 Assumptions

In this paper, the derivations are carried out in the simplest possible assumptions, in order to
demonstrate the physical origin and implications of the formalism. Some generalizations are
straightforward, some other will require separate studies.

We consider a steady one-dimensional flow of the two immiscible liquids (phases). The
phases will be denoted by subscripts w (white) and o (orange) in order to stress relevance to the
petroleum applications, but, simultaneously, to mark a wider applicability of the formalism.
Another interpretation is w for Wetting and o for nOn-wetting, although this property is
not directly assumed. The medium is supposed to be macroporous, so that the pore sizes
much exceed molecular sizes, and the Stokes flow equation may be applied in each region
containing single phase.

A porous medium, where the flow occurs, is a cylinder of the cross section A and of the
extent L in the flow direction. On the macroscale, the phase flows are co-directed, leaving
out countercurrent flows or more complex cases (with nonzero angles between the flows).
The flow direction is parallel to x-coordinate, while orthogonal coordinates are y, z. The
porous medium is assumed to be homogeneous on the macroscale, so that porosity φ and
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single-phase permeability k are constants. We will also consider the flow on the mesoscale
(considerably larger than the pore sizes, but much smaller than the sample size). On this
scale, the porous medium is assumed to be statistically homogeneous, as discussed in more
detail in Sect. 3.

2 The Maxwell–Stefan Flow Description

2.1 The General Form

As stated in the Introduction, the general MS approach for inertia-less flows is based on the
balance of the driving and friction forces. We apply symbol G for the forces, since letter F
is reserved for fractional flow.

For the two-phase flow in the cylindrical porous volume described above, the driving
forces Gid (i = o, w) are the pressure forces acting on the phases in the cylinder

Gwd = (Pw)φ Asw, God = Poφ Aso

Here, Pi = Pi,1 − Pi,2 ≈ − ∂ Pi
∂x L are the pressure differences (where subscripts 1 and

2 are used for entrance and exit pressures of a selected volume); si are phase saturations.
Designation s is traditionally used for sw , while so = 1 − s. The value φ Asi represents the
actual cross-sectional area open to flowing liquid (i = o, w).

In the Buckley–Leverett paradigm, the friction forces Gws, Gos between the flowing
phases and the solid are proportional to superficial phase velocities and to the total porous
volume accessible for the phases

Gws = −φ ALsw

μw

kw

Uw, Gos = −φ ALso
μo

ko
Uo (2)

Proportionality of the forces Gis to the phase porous volumes φ ALsi is introduced in order
to make the definition of individual phase permeabilities ki as close to the standard Buckley–
Leverett definition as possible.

According to the standards of the MS approach, the friction force Gwo between the flowing
phases may be defined to be proportional to the difference in the interstitial velocities

Gwo = φ ALswsoαwo

(
Uo

βo
− Uw

βw

)
(3)

Here, βi are multipliers transforming superficial flow rates Ui from interstitial (hydrody-
namic) velocities ui :

uo,w = Uo,w

/
βo,w

It is usually assumed that βi = φsi . However, this is not the general case. The values of Ui/φsi

represent average components of the phase velocities in x-direction. Meanwhile, friction may
be proportional to the difference in the absolute local values of the phase velocities. This may
be accounted by introducing the tortuosity coefficients τi :

βi = φsi

τi
(4)

The force balances for the inertia-less flow have the form of

Gwd + Gws + Gwo = 0

God + Gos − Gwo = 0
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Combining the expressions above and reduction to the unit volume gives:

− ∂ Pw

∂x
− μw

kw

Uw + soαwo

(
Uo

βo
− Uw

βw

)
= 0;

−∂ Po

∂x
− μo

ko
Uo − swαwo

(
Uo

βo
− Uw

βw

)
= 0 (5)

This system of equations has the form of D = κU where D is the vector of pressure gradients
and U is the vector of phase velocities. The proportionality matrix κ is inverse to matrix 	

from eq. (1):

κ =
⎡
⎣−

(
μw

kw
+ soαwo

βw

)
soαwo

βo

swαwo
βw

−
(

μo
ko

+ swαwo
βo

)
⎤
⎦

This matrix is symmetric if sw/βw = so/βo, that is, if tortuosities of the two phases are
equal. The same should be valid for matrix 	 of the reciprocal coefficients. Thus, for this
case, symmetry of the reciprocal matrix is a non-trivial property, which may not be obeyed,
at least, for some flow models. This matrix has the form of

	 = 1

βoβw + αwo

(
βwsw

ko
μo

+ βoso
kw

μw

)
[

βoβw
kw

μw
+ swβwαwo

kw

μw

ko
μo

αwoβwso
kw

μw

ko
μo

αwoβosw
kw

μw

ko
μo

βoβw
ko
μo

+ soβoαwo
kw

μw

ko
μo

]
(6)

If the coupling coefficient αwo becomes zero, matrix 	 is expectedly reduced to the common
diagonal Buckley–Leverett matrix. Otherwise, the presence of coupling has the two conse-
quences. First, there are non-diagonal coefficients in 	 indicating the dependence of the flow
rate of one phase on velocity of another phase. Second, apparent individual phase perme-
abilities depend on the viscosities of both phases. For example, the apparent permeability for
water will be different depending whether the second flowing phase will be oil or gas, unlike
in the traditional Buckley–Leverett scheme.

2.2 The MS Equations With Moving Interface

The Maxwell–Stefan equations have initially been developed for component diffusion in
single-phase mixtures. The components in these mixtures are mixed up to molecular scale,
and the friction forces reflect interactions at this scale.

On the contrary, the flowing phases in a macroporous medium usually form the interacting
networks of pores or capillaries. There is an entangled interface that moves between the phases
and together with them. Each phase “feels” the presence of another liquid not directly, but
via this interface. With regard to the individual phases, this surface works as a “dragging”
surface in the classical Newton imaginary experiment on the determination of viscosity.

For a stationary flow, position of the interface should remain invariable. Hence, its velocity
should be tangent to the interface itself, so that it moves “along itself.” The x-component of
this velocity will be denoted by V . Then, τ V is the average absolute value of the velocity,
where τ is the tortuosity of the surface.

A moving surface affects viscous liquid in such a way that liquid sticks to the surface
and its local velocity becomes equal to the velocity of the surface. Velocities in other points
in the liquid are correspondingly adjusted. On average, this adjustment may be described
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by introducing a friction force proportional to the difference between the surface velocity
τ V and liquid velocities Ui/βi , or, equivalently (with a different coefficient) between V and
Ui/τβi . A more detailed substantiation of this assumption will be given later.

A modified set of the MS equations, assuming interactions between phases and their
moving interface, may be represented in the form of

− ∂ Pw

∂x
− μw

kw

Uw + μw

kwV

(
V − Uw

τβw

)
= 0 (7)

−∂ Po

∂x
− μo

ko
Uo + μo

koV

(
V − Uo

τβo

)
= 0 (8)

The fact that the apparent friction should be dependent on the extent and configuration of the
phase interface is reflected in the new set of phase permeabilities kwV , koV . Unlike coefficient
αwo, which is determined by the properties of both phases, these permeabilities are single-
phase properties. This is the advantage of the new approach; for example, while the friction
coefficient αwo depends on the properties (let us say, viscosities) of both phases, and this
dependence is unknown, coefficients kiV may ideally be regarded as viscosity-independent.

Comparison to the general MS, Eq. (5) results in

sw

μw

kwV

(
V − Uw

τβw

)
= −so

μo

koV

(
V − Uo

τβo

)
= swsoαwo

(
Uo

βo
− Uw

βw

)
(9)

The first two equations in (9) represent the force balance for the surface. It is interpreted
as the balance of the friction forces acting on the interface from the moving phases. Other
possible forces (pressure force or friction of the interface with solid surface) are assumed to
be negligible for this interface.

A consequence of (9) is the following equation for the surface velocity V :

V = sw
μw

kwV

Uw

τβw
+ so

μo
koV

Uo
τβo

sw
μw

kwV
+ so

μo
koV

(10)

Back-substitution of Eq. (10) into Eq. (9) results in the following expression for the friction
coefficient αwo in terms of kV i

αwo = 1

τ

1

sw
koV
μo

+ so
kwV
μw

(11)

The computations will be simplified if we will assume that individual phase tortuosities τi are
equal to each other and the tortuosity τ of the separating surface. In this case, matrices κ, 	

of the reciprocal coefficients become symmetric (cf. Eqs. 4, 6). Equation (10) is simplified
to

V = 1

φ

μw

kwV
Uw + μo

koV
Uo

sw
μw

kwV
+ so

μo
koV

(12)

Other relations above remain valid.

3 Mesoscopic Description of the Flow

The phenomenological formalism presented above produces a set of equations describing
the flow, but cannot be used for the determination of the coefficients in these equations.
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Meanwhile, these coefficients may be rather complex functions of saturation responsible for
important peculiarities of the physical behavior of the system. The goal of the following two
sections was to develop a model making it possible to compute coefficients kwV , kwV , at
least, in some simplifying assumptions.

3.1 Assumptions

The two-phase flow in porous media is possible within a range of saturations, which bound-
aries are traditionally denoted by swi and 1 − sor . Within this range, both phases may flow.
For s < swi , the white phase cannot flow, while the orange phase becomes immobile if
s > 1 − sor .

Mobility of the phases is usually related to their connectivity (Barenblatt et al. 1990).
While a mobile phase, or, at least, a part of it is connected throughout the whole porous
medium, an immobile phase is split into isolated “spots” that are kept from flowing by the
capillary forces that are prevailing on the small scales. In terms of the percolation theory
(Hunt and Ewing 2009; Seljakov and Kadet 1997), the phases forming infinite clusters may
flow, while finite clusters remain trapped.

On the macroscopic level, for which the previous MS equations have been derived, each
elementary representative volume (r.e.v.) contains both water and oil, which are supposed
to be well mixed. In order to avoid discussing a problem that the phase pressure gradients
may not always be parallel, we neglect the capillary pressure difference: Pw = Po = P .
This assumption is not important for steady-state co-current flows, since under steady-state
conditions, capillary pressure becomes the function of the saturation and its gradient is equal
to zero, apart, probably, from the end effect zone. The capillary pressure becomes important
for the countercurrent flows (Kalaydjian et al. 1989; Bourblaux and Kalaydjian 1990; East-
wood and Spanos 1991). For unsteady flows, capillary pressure may play an important role,
especially, on the laboratory scale or in inhomogeneous porous media (Bedrikovetsky 1993).
The picture may be different for the models with dynamic capillary pressures (Hassanizadeh
and Gray 1990, 1993; Joekar-Niasar and Hassanizadeh 2011; Hilfer 2006; Hilfer and Doster
2010); however, this difference is not important for steady-state flows.

Under the assumption about zero or constancy of the capillary pressure, the pressure
gradient Px = ∂ P/∂x becomes common for both phases. Then, for an isotropic medium, the
velocities are directed along it. Since x is the flow direction, the x-components of velocities
Uo, Uw are the same as the absolute values of these velocities.

Our goal was to describe flow on the mesoscopic scale. It is determined as such a scale
where each r.e.v. belongs totally to a single o- or w-cluster, although it may still contain
multiple pores. In cases where phases are so well mixed, that they flow together in each pore,
r.e.v. may be a part of a pore.

Velocities Ui (i = o, w) are defined as averages of the mesoscopic velocities Wi over a
sufficiently large cross section y, z. The averages are defined as in Eq. (21) below. For the
present approach, this is more convenient than averaging over representative volumes. For a
large cross section, the y- and z-components of velocities Wi become zero under averaging,
due to assumed statistical homogeneity of the medium. Thus,

Ui = φsi
〈
Wi,x

〉 ; 〈
Wi,y

〉 = 〈
Wi,z

〉 = 0 (13)

In the following, we omit subscript x , denoting Wi = Wi,x (i = o, w). This value is assumed
to obey an operator equation in the form of

Px = −μi Zi (Wi ) (i = o, w) (14)
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Let us discuss the possible forms of operator Zi .
The classical Buckley–Leverett theory is based on an inherent assumption that each phase

moves “in its own porous medium,” which geometry is only dependent on the phase satura-
tions, and that there is no interaction between the w- and the o-phases. This is true if flow at
the cluster scale obeys the ordinary Darcy law

Px = − μi

Ki
Wi , Zi (W ) = W

/
Ki (i = o, w) (15)

Since the flow equation is linear, its averaging over a single cluster, taking the interphase
boundary as impermeable, results in a linear equation of the Darcy type

Px = − μi

ki (s)
Ui

In this case, the phase flows are not affected by each other, and matrix K in Eq. (1) becomes
diagonal.

The Darcy law (15) is not the real “microscopic” law, but is already a result of averaging
by a smaller r.e.v. It may be obtained by averaging steady-state linearized Stokes flow equa-
tions over a volume or a section, which should be sufficiently large (contain many pores or
capillaries) (Dullien 1992; Shapiro and Stenby 2000). In order for this law to be valid at the
mesoscopic scale, a branch of a region occupied by one phase should still contain significant
number of capillaries. This looks unlikely for many flows in porous media where the two
phases are strongly “mixed,” like, for example, for the film flow structure (in terminology of
Panfilov and Panfilova 2005). If the meniscus flow structure is realized, the phase clusters
are usually highly branched and are also well mixed. In such cases, application of the Darcy
approximation to describe flow inside separate phase regions becomes inadequate. It becomes
also important to account for interaction between w- and o-clusters. This interaction may be
reflected in the flow continuity condition on the boundary �V between the clusters. For the
steady-state flow, this continuity condition is reduced to the continuity of the velocity over
the boundary, equal to the tangential velocity of the boundary itself. This boundary condition
is not applicable to the Darcy operator (15), but it is necessary for the second-order operators
Zi of the Stokes or Brinkman type

Px = μiWi , Zi = − (i = o, w) (Stokes), or (16)

Px = − μi

Ki
Wi + μeiWi , Zi = 1

Ki
I − γi (i = o, w) (Brinkman) (17)

Here, γi are the ratios between effective Brinkman viscosity μei and true viscosity μi .
Permeabilities Ki differ from the ”true” permeability k even for one phase, since they involve
mesoscale tortuosity τ (recalling that Wi is the x-component of the velocity). Designation
Px is interpreted as ∂ P/∂x .

The Stokes Eq. (16) is valid for the same r.e.v. as in the traditional hydrodynamics. It may
be applied if both phases are present within most of the single pores (like in the situation of
corner flows). Such flows should be considered if the internal surface of the porous medium
is homogeneous and is strongly preferentially wet by one of the phases. In many cases, the
porous rock is composed on different minerals, and the internal porous surface is heteroge-
neous on the microscale, making the porous medium fractional- or mixed-wet (Skauge and
Ottesen 2002). In such porous media, different pores are occupied by the different fluids, and
the branches of the clusters occupied by the different phases may be several capillaries thick.
The r.e.v. in mixed-wet media may contain several pores, but not that many as needed for
the validity of the Darcy law. Then, the Brinkman approximation (17), which is intermediate
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between the Darcy and the Stokes equations, becomes reasonable (see detailed substantiation
in Valdes-Parada et al. 2007).

The flow continuity boundary condition for the second-order operators in Eqs. (16), (17)
may formally be formulated as

Wi = V at �V (18)

Velocity V remains unknown until the flow equations are solved for both clusters, and then,
it is calculated on the basis of the solution (cf. Eq. 9).

Another condition on the immobile boundary �0 (the solid surface) might be necessary,
as especially relevant for the Stokes flow model

Wi = 0 at �0 (19)

In the following, we will apply a simplifying assumption that the system possesses a trans-
lational invariance in x-direction, or that it is somehow averaged in this direction, so that
pressure gradient Px is independent of x . Then, it becomes possible to look for a solution for
velocities Wi , V that is independent of x . Correspondingly, operators Zi in Eqs. (16), (17)
become two-dimensional

 = 2 = ∂2

∂y2 + ∂2

∂z2

3.2 Averaging

In this section, we demonstrate that averaging of the mesoscopic equations results in the MS
equations with mobile surface described in Sect. 2.2.

Consider the general Eq. (14) with a general second-order linear differential operator Zi

of the type of (16) or (17), and boundary conditions (18), (19). In view of the linearity of the
problem, its solution may be represented as a sum of the terms reflecting the influence of the
pressure gradient and of the boundary condition

Wi = − 1

μi
Pxωi P + V ωiV (20)

Here, functions ωi P , ωiV describe the reactions of the system, separately, to a unit pressure
gradient and unit drag velocity

Zi (ωi P ) = 1;
ωi P = 0 at �V ∪ �0

Zi (ωiV ) = 0;
ωiV = 1 at �V ; ωiV = 0 at �0

Functions ωi P , ωiV are invariantly determined by the geometry of the region where the
solution is considered, that is, of the w- or o-region. It should be noticed that these functions
have different dimensions than Wi and than each other.

In order to demonstrate (20), consider solution W ′ of the boundary problem (14) to (19) for
V = 0, that is, solution of Eq. (14) with zero boundary conditions. Obviously, this solution
is proportional to Px/μi , that is, may be represented in the form W ′ = Pxωi P/μi . Now, let
Wi be a solution of the full problem (14) to (19) and consider function W ′′ = Wi − W ′ =
Wi + 1

μi
Pxωi P . Substitution of this form into linear Eq. (14) results in equation Zi (W ′′) = 0

with full boundary conditions (18), (19). In view of linearity, W ′′ is proportional to V , that
is, equal to V ωiV .
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For averaging of Eq. (20), consider a sufficiently large cross section A. Part Ai = φsi A
of the cross section belongs to phase i (with some arbitrariness in designations, we denote
both the cross section and its area by the same letter).

The macroscopic flow rate of phase i = o, w is defined as

Ui = φsi

Ai

∫
Ai

Wi dA = 1

A

∫
Ai

Wi dA (21)

Applying this integration to Eq. (20), we obtain

Ui = − li
μi

Px + φsi liVV ;

li = 1

A

∫
Ai

ωi P dA; liV = 1

Ai

∫
Ai

ωiV dA (22)

Coefficients li , liV depend only on the geometry of the w- and o-regions (and have different
dimensions). In the Buckley–Leverett scheme, this geometry is uniquely characterized by the
saturation. More complex assumptions (e.g., involving hysteresis) may also be considered.

Equation (22) may further be transformed to the form of MS Eqs. (7), (8):

Px = −μi

ki
Ui + μi liV φsi

ki (1 − liV )

(
V − Ui

φsi

)
(23)

Here, values ki = li/(1 − liV ) may be interpreted as phase permeabilities. Comparison to
Eqs. (7), (8) shows also that

kiV = ki (1 − liV )

liV φsi
(24)

The last formula is meaningful if 0 < liV < 1, otherwise the friction coefficients become
negative. We cannot provide a general proof of this inequality, but will show later that it is valid
for the considered model examples. Under this condition, validity of the MS equations with
a flowing interface in the framework of the mesoscopic description has been demonstrated.

We will also apply an equivalent but different form of Eq. (23)

Ui = −(1 − liV )
ki

μi
Px + liV φsi V (25)

4 Computation of the Phenomenological Coefficients

If the Buckley–Leverett permeabilities ki are assumed to be known (for example, given
by the Corey expressions), the problem of determining transport coefficients is reduced
to coefficients liV . This section describes the computation of liV under some geometrical
assumptions, which will be called “the jet model.”

4.1 Geometrical Representation

Consider in more detail the distribution of the two flowing phases in the cross-section orthog-
onal to the flow. As saturation varies, this distribution may undergo qualitative changes, dif-
ferent from the changes that will be observed in three dimensions. Combination of the two-
and three-dimensional pictures forms the qualitative basis for the jet model.

Distribution of the two phases in the cross section consists of the w- and the o-“spots.”
There is a significant qualitative distinction of the phase distribution in two dimensions,
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Fig. 1 Distribution of w- and o-clusters in the cross section: a for s < s∗; b for s > s∗; c the jet model (for
s < s∗)

compared to the three-dimensional case. In three dimensions, both phases form continuous
clusters if swi < s < sor , and one of the phases becomes discontinuous outside these limits.
Meanwhile, in two dimensions, only one phase may be connected in all the directions, while
another phase is necessarily discontinuous. It may happens that both phases are discontinu-
ous (for example, they form interchanging “strips”). If the phase distribution is statistically
homogeneous and isotropic, as assumed here, then at any given saturation, only one of the
phases will be continuous, while another phase will form isolated spots.

Apparently, the higher saturation, the more probable is that the w-phase will be connected.
Then, there is a threshold saturation s∗ below which the orange phase and above which
the white phase are connected in the cross section. In percolation theory, this saturation
corresponds to the percolation probability of 0.5 (Hunt and Ewing 2009); however, this
will not be used in the following. For definiteness, we will concentrate on the case s < s∗
(connected o-phase). Computations under s > s∗ are similar.

Although most of the orange phase is connected under s < s∗, there may still be discon-
nected orange “spots.” These “spots” become negligible and disappear at some distance from
the threshold saturation. For simplicity, we will neglect them. Thus, in each two-dimensional
cross section, at s < s∗, there are isolated clusters of the white phase surrounded by con-
tinuous orange phase (Fig. 1a). At s > s∗, there are, inversely, clusters of the orange phase
surrounded by continuous white phase (Fig. 1b).

The described picture is a cut of the three-dimensional phase distribution. In three dimen-
sions, a phase may flow if it forms an infinite cluster, while finite clusters remain immo-
bile due to capillary effects. Both phases form connected infinite clusters for saturations
swi < s < 1 − sor , while only orange phase flows at s < swi . As assumed above, at the
saturation interval swi < s < s∗. the orange phase fully belongs to an infinite cluster, while
the white phase may form both one infinite and multiple finite clusters. Hence, in the cross
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section. some white “spots” belong to the moving infinite cluster, and some to immobile
finite clusters.

We introduce fraction IP of the spots belonging to the immobile phase. This value is a
function of s, tending to unity when s approaches swi , and becoming (almost) zero at s∗.

Although all the spots may be of irregular shapes, we approximate them by a series of
equal cylindrical “jets,” with the outer jet radius R and inner radius r j (Fig. 1c). The value
of R may be treated as effective “hydraulic radius,” expressing the characteristic dispersion
size of the system.

Such a representation is a rough approximation of the real (branched and tortous) picture
of the clusters. For example, the described configuration either cannot provide full coverage
of the plane, or some jets must intersect (or both). It is difficult to evaluate the accuracy of the
jet approximation. However, this error does not seem to influence the physics of the system
or to change the values of the phenomenological coefficients by an order of magnitude.
An advantage of this approach is that it makes it possible to derive analytical expressions
for the phenomenological coefficients, within few constants allowing for direct physical
interpretation. This may be useful for engineering computations. More complex geometries
may only be studied numerically.

The main simplifications of the jet model, compared to real phase geometry, are that the
tortuosity of the jets is taken into account in a very simplified way, via the only parameter
τ ; and that the complex shapes, size distributions, and multiconnectivity of the o- and w-
clusters are not accounted for. Distribution of the jets by sizes might be introduced as the
next approximation to reality. It will not be considered here.

If s < s∗, the outer space of a jet is filled by o-phase, and the inner by w-phase, so that

r2
j /R2 = s (26)

If s > s∗, the configuration is inverse.
Relation (26) does not determine the actual size of a jet, only the relative sizes of its

inner and outer parts. Hence, the dispersion radius R may be considered as a free parameter
determining the flow regime. Another free parameter is IP determining the fraction of jets in
inner part of which the flow occurs. The last parameter is important for relative permeabilities
ki ; for example, the residual saturation points correspond to IP = 0. However, it may be
shown that contribution of IP into coefficients liV does not affect their behavior qualitatively.

4.2 Flow in the Inner and Outer Parts of a Jet

The problem of flow in a jet possesses radial symmetry. Axis x is directed along the jet, while
radial coordinate r measures the distance to its center line. We assume that the flow in the
inner and in the outer parts of a jet is described by the Brinkman Eq. (17). Considerations
based on the Stokes equation are fully similar (Rose 1990). In radial coordinates, we obtain
the second-order ordinary equation with regard to Wi

Px = − μi

Ki
Wi + μei

r

d

dr

(
r

dWi

dr

)
, (i = o, w) (27)

We will distinguish between inner jets (0 < r < r j ) and outer jets (r j < r < R). They are
filled by the different phases, and the phase distribution changes when saturation s crosses
the value of s∗. If s < s∗, the inner part of the jet is occupied by w-phase, while the outer
part contains o-phase. The interface �V is at r = r j . Correspondingly, the two boundary
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conditions for the considered problem are

Ww|r j = Wo|r j = V

For the w-phase, the problem is solved for r j ≤ r ≤ R. The second boundary condition at
outer boundary of the jet r = R is impermeability condition

∂Wo

∂r

∣∣∣
R

= 0

The problem for Ww is solved inside the tube of radius r j (−r j ≤ r ≤ r j ), with a boundary
condition

Ww|r j = Ww|−r j = V (28)

The solutions of the stated problems and the subsequent averaging of the velocities according
to Eq. (21) are discussed in Appendix. The result is described by Eqs. (23) and (25). The
expressions for coefficients at s < s∗ have the form of

loV =
√

kroγo1

ξ

√
s

(1 − s)3 ;

 = K0

(
ξ√

kroγo

√
s(1 − s)

)
I1

(
ξ√

kroγo

√
1 − s

)

+ K1

(
ξ√

kroγo

√
1 − s

)
I0

(
ξ√

kroγo

√
s(1 − s)

)

1 = I1

(
ξ√

kroγo

√
1 − s

)
K1

(
ξ√

kroγo

√
s(1 − s)

)

−K1

(
ξ√

kroγo

√
1 − s

)
I1

(
ξ√

kroγo

√
s(1 − s)

)

lwV = 2
√

krwγw

ξs
I1

(
ξ√

krwγw

s

) /
I0

(
ξ√

krwγw

s

)
(29)

At s > s∗

loV = 2
√

kroγo

(1 − s)ξ
I1

(
ξ√

kroγo
(1 − s)

) /
I0

(
ξ√

kroγo
(1 − s)

)

lwV = 2
√

krwγw1

ξ

√
1 − s

s3 ;

 = K0

(
ξ√

krwγw

√
s(1 − s)

)
I1

(
ξ√

krwγw

√
s

)

+ K1

(
ξ√

krwγw

√
s

)
I0

(
ξ√

krwγw

√
s(1 − s)

)

1 = I1

(
ξ√

krwγw

√
s

)
K1

(
ξ√

krwγw

√
s(1 − s)

)

−K1

(
ξ√

krwγw

√
s

)
I1

(
ξ√

krwγw

√
s(1 − s)

)
(30)

Here, ξ = R/
√

k/φ is a characteristic scale of the cluster heterogeneity, expressed in char-
acteristic pore sizes

√
k/φ . Similar expressions for permeabilities ki may, in principle, also

be obtained, but they will not be considered in the present paper.
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Fig. 2 Coefficients liV (i = w, o). Dashed lines: loV ; continuous lines: lwV . Blue lines: ξ = 3; black lines:
ξ = 30.

Table 1 Characteristic values
for numerical computations

Name Value

Irreducible saturation, swi 0.2

Residual saturation sor 0.2

Relative permeability at irreducible
saturation krowi

0.8

Relative permeability at residual saturation
krwor

0.7

Corey exponent for w-phase αw 3

Corey exponent for o-phase αo 2

Viscosity ratio μ (o/w) 3

Ratios of Brinkman to liquid viscosities
(both o- and w-phases) γw, γo

1

Threshold saturation s∗ 0.5

Ratio of cluster branch to pore size ξ 3

Number of intermediate points for
computation

500

Plots of the coefficients liV versus saturation are shown in Fig. 2. The data for computation
are collected in Table 1. It may be seen that the coefficients are non-monotonous, and that
they become zero at the corresponding residual saturations. The values of coefficients are
between zero and unity, as required by Eq. (24). As expected, they decrease with increase
in the ratio ξ of the characteristic number of pores in a cluster branch. The thicker are the
branches, the less pronounced is the mutual influence of the water and oil clusters.

Another characteristic peculiarity of the plots is discontinuity around the critical satu-
ration s∗. Formally, this discontinuity arises from the different expressions (29), (30) for
the coefficients liV , under saturations above or below the threshold saturation s∗. Close to
this saturation, the system exhibits a critical transition in a cross section, as infinite cluster
becomes thinner, finite clusters grow to infinity, and the assumptions of the jet model become
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invalid (Hunt and Ewing 2009). A different model for coefficients liV should be developed
close to the percolation transition (for example, a “mixture” of the inner w- and inner o-jets).

The expressions above are provided without account for passive jets (Ip = 0). It may be
shown (see Appendix) that in their presence, all the coefficients above should be multiplied
by 1 − Ip . This multiplier changes the values, but does not change the expressions for liV .

Individual phase permeabilities ki may also be computed within the jet model and depend
strongly on IP . In this work, for simplicity, we will use the standard Corey (power-type)
expressions for ki , assuming that dependence on Ip is somehow reflected in these expressions.

5 Computational Examples

5.1 Relative Permeabilities and Fractional Flow Function

There has been a discussion in the literature how reciprocal coefficients may be determined
experimentally (Ayub and Bentsen 1999; Dullien and Dong 1996 and references therein).
A common approach is related to the analysis of the combination of the co-current and
countercurrent flows. This may be a difficult experimental task, since the phase pressures
are connected via the capillary pressure, while phases flow along the pressure gradients.
A more usual experimental procedure (although not as wide spread as the standard JBN
test, Johnson et al. 1959) makes it possible to determine apparent relative permeabilities by
the analysis of the co-current steady-state flow. Indeed, under steady-state flow conditions,
saturation is constant and may be determined by mass balance. Constancy of the saturation
means constancy of the capillary pressure and, hence, equality of the pressure gradients
in both phases. The fractional flow may be measured directly, while the measurement of
the pressure difference makes it possible to determine the overall phase mobility. Then, the
individual relative permeabilities may be calculated by the use of the fractional flow and
overall mobility, similarly to the JBN method.

In this paper, we will concentrate on the analysis of the contribution of the viscous coupling
to the apparent relative permeabilities, fractional flow function, and overall mobility of the
phases. The expressions for these dependences are given below.

The apparent relative permeabilities kri (i = o, w) may be found from basic equations
(1), in which coefficients Ki j are given by Eq. (6). If the capillary pressure may be neglected
(Po = Pw = P), these equations are reduced to

Uw = − βoβw
kw

μw
+ βwαwo

kw

μw

ko
μo

βoβw + αwo

(
βwsw

ko
μo

+ βoso
kw

μw

) ∂ P

∂x
;

Uo = − βoβw
ko
μo

+ βoαwo
kw

μw

ko
μo

βoβw + αwo

(
βwsw

ko
μo

+ βoso
kw

μw

) ∂ P

∂x

Hence, the relative permeabilities are equal to

krw = 1

k

βoβwkw + βwαwokw
ko
μo

βoβw + αwo

(
βwsw

ko
μo

+ βoso
kw

μw

) ;

kro = 1

k

βoβwko + βoαwoko
kw

μw

βoβw + αwo

(
βwsw

ko
μo

+ βoso
kw

μw

)
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The fractional flow function becomes correspondingly

F =
kw

μw
+ αwo

βo

kw

μw

ko
μo

kw

μw
+ ko

μo
+ αwo

(
1

βw
+ 1

βo

)
kw

μw

ko
μo

(31)

In these expressions, individual phase permeabilities kwko are such as in the Maxwell–Stefan
Eq. (5). They may be defined as phase permeabilities for the case where the phase interaction
does not exist. This justifies the application of the Corey dependences for their calculation

kw = kkrw0(s); ko = kkro0(s);
krw0(s) = krwor

(
s − swi

1 − swi − sor

)αw

; kro0(s) = krowi

(
1 − sor − s

1 − swi − sor

)αo

(32)

The “standard” fractional flow function, in the absence of flow coupling, is defined as

F0 = kw/μw

kw/μw + ko/μo
= krw0

krw0 + kro0/μ
(μ = μo/μw) (33)

The difference between the two functions is proportional to the coupling coefficient αwo

F − F0 = kw

μw

ko

μo
αwo

1
βo

ko
μo

− 1
βw

kw

μw[
kw

μw
+ ko

μo
+ kw

μw

ko
μo

αwo

(
1
βo

+ 1
βw

)] [
kw

μw
+ ko

μo

]

We will consider the case of flow with a moving surface, where all the tortuosities are equal.
The coefficient αwo is then found from Eq. (11), where values of kiV are further substituted
by expressions (24). After long but obvious transformations, it may be obtained that

krw =
krw0

(
s2
w

kro0(1−loV )
loV

+ s2
oμ

krw0(1−lwV )
lwV

)
+ swkrw0kro0

s2
w

kro0
loV

+ s2
oμ krw0

lwV

(34)

kro =
kro0

(
s2
w

kro0(1−loV )
loV

+ s2
oμ

krw0(1−lwV )
lwV

)
+ soμkro0krw0

s2
w

kro0
loV

+ s2
oμ krw0

lwV

(35)

F =
krw0 + sw

krw0kro0

s2
w

kro0(1−loV )

loV
+ s2

o μ
krw0(1−lwV )

lwV

krw0 + kro0
μ

+ krw0kro0

s2
w

kro0(1−loV )

loV
+ s2

o μ
krw0(1−lwV )

lwV

(36)

Equations (34), (35), and (36) will be applied for sample computations presented in the
next chapter. The coefficients liV in them are given by Eqs. (29) and (30), while the phase
permeabilities by Eq. (32). Both relative permeabilities and fractional flow function are
independent of tortuosities, provided that it is the same for both phases. More precisely, this
dependence is “hidden” in the value of absolute permeability (which disappears from the
final answer) and in the shapes of the diagonal relative permeabilities (which in this work
are approximated by the Corey expressions).

5.2 Sample Calculations

A series of sample computations has been carried out, with the parameters listed in Table 1.
Ratios γw,o of effective Brinkman to real liquid viscosities were selected to be unity, following
Valdes-Parada et al. (2007). Other parameters are typical for reservoir simulations.
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Fig. 3 Fractional flow curves without phase interactions (the dashed line) and with phase interactions (basic
case-solid line)

Comparison of the fractional flow curves: one calculated with these parameters, and one
without viscous coupling, is presented in Fig. 3. An obvious effect of coupling is that the
fractional flow curve becomes straighter. The difference between phase mobilities decreases,
and the flow picture becomes closer to single phase (although residual saturations are still
there). If this fractional flow curve might be applied to non-stationary flows in the standard
Buckley–Leverett scheme, as in Rose (1988), one would conclude that in the presence of
coupling the displacement of one phase by another would become more piston-like.

The fractional flow curves in Fig. 3 look continuous, in spite of the discontinuities of the
involved coefficients liV at the threshold saturation s∗. In fact, the discontinuity of F at this
saturation does not exceed 0.001. This jump increases if the threshold saturation moves away
from the value of 0.5. A near-extreme case, with the value of s∗ equal to 0.65, is depicted
in Fig. 4. The jump in the value of the fractional flow function is 0.01. Such a discontinuity
cannot significantly influence important flow characteristics.

Variation in the fractional flow function with the ratio ξ of the cluster branch thickness to
pore size is shown in Fig. 5. For ξ = 10, curve F is very close to the fractional flow curve
without coupling. The two curves become practically indistinguishable for ξ ≥ 15. If the
size of the jet is over 10 times larger than the size of a single pore, then, on average, only one
of the 50 pores contains a flowing surface (50 comes from the ratio of the cylinder surface
to volume). The interaction of the flowing phases with solid becomes much larger than the
interaction between the flowing phases. The last interaction may be neglected, and the model
is reduced to the classical Buckley–Leverett theory.

On the contrary, for the values of ξ below two, the flowing phases become very well mixed,
and the interactions between them become dominating. Correspondingly, the fractional flow
curve changes its shape, as shown for the extreme example of ξ = 1.2. If applied to a
displacement problem, such a curve would produce two displacement fronts. Qualitatively,
such a picture was observed in the capillary network simulations (Panfilov and Panfilova
2005). For the present example, the two displacement fronts would move almost with the
same rate, as seen from the inclination of the tangents (Bedrikovetsky 1993). The displace-
ment would be nearly piston-like. This is an expected effect, since strong coupling facilitates
the disappearance of the difference between velocities of the flowing phases.
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Fig. 4 Behavior of the fractional flow curve in a neighborhood of the discontinuity

Fig. 5 Fractional flow curve at the different cluster branch-to-pore ratios ξ . Dashed line: ξ = 10. Dotted line:
ξ = 3 (basic case). Solid line: ξ = 1.2

The phase relative permeabilities with and without coupling are compared in Fig. 6. It may
be seen that they vary even more dramatically than the fractional flow curves. The largest
changes are observed around the endpoint saturations: it may be shown that, compared to the
case of no coupling, the endpoint relative permeabilities are multiplied by 1− lwV or 1− loV ,
correspondingly. The overall mobility of the two phases also decreases. The dimensionless
mobility M , defined as krw + kro/μ, is shown in Fig. 7. The mobility decreases more at
lower factors ξ . Interaction between the branches of water and oil clusters tends to delay
the total flow, and this delay is higher for stronger interaction. The decrease in mobility is
more pronounced close to the endpoint saturations, where one of the phases becomes almost
immobile and slows down another phase.
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Fig. 6 Relative permeability curves without phase interactions (dashed lines) and for the basic case (solid
lines). Black: relative permeabilities for oil, blue: relative permeabilities for water

Fig. 7 Dimensionless total phase mobility M as dependent on the cluster size. Dashed line: the case without
phase interactions. Dotted line: the case with cluster branch-to-pore ratio ξ = 6. Solid line: the basic case
(ξ = 3)

Figure 8 presents the behavior of the apparent relative permeabilities. While the endpoint
permeabilities always decrease, the intermediate values of permeabilities are strongly depen-
dent on the viscosity ratio. The apparent relative permeabilities may change from concave to
convex and may even become non-monotonous under high viscosity ratios, as for the shown
example of the oil relative permeability at μ = 10.

Such behavior, although complex, seems to be well interpretable within the described
physics of the flow. The endpoint relative permeabilities decrease, because a flowing phase
is slowed down by the second immobile phase, apart from friction with the immobile
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Fig. 8 Relative permeabilities for the different viscosity ratios μ. Dashed lines: relative permeabilities without
phase interactions. Dotted lines: μ = 1. Dot-dashed lines: μ = 3 (basic case). Solid lines: μ = 10. Black: oil
relative permeabilities. Blue: water relative permeabilities

porous medium. For intermediate values of saturations, the “fast” w-phase may drag the
o-phase, which otherwise would be slowed down by its high viscosity. This explains the
non-monotonous behavior of the relative permeability.

5.3 Comparison to Experimental Data

The apparent relative permeabilities are often determined experimentally. The traditional
Buckley–Leverett theory presumes that these relative permeabilities are independent of the
viscosities of the fluids. At least, if the temperature changes within reasonable limits, it is
only oil or water viscosity that should be affected, but not the relative permeability curves
(Bedrikovetsky 1993).

On the contrary, the developed theory predicts that the apparent relative permeabilities
should be dependent on fluid viscosity ratio (oil to water) (Fig. 8). The oil relative permeability
should increase with the viscosity ratio, while the water relative permeability decreases
with it. This prediction is conditioned, however, by the limitations of the model. It is true
within the model assumptions, the most important of which are the steady-state flow, and the
fact that, while the viscosities vary, other parameters do not change, and, in particular, the
fluid distribution on the microscale roughly expressed by parameter ξ . The last condition is
especially difficult to maintain or to verify in experiments. The first condition requires usage
of the data from steady-state experiments only, which strongly restricts the data available for
verification of the model.

Probably, the first experimental evidence on dependence of the relative permeabilities on
viscosities was reported by Odeh (1959). The experimental data from this work indicate that
relative permeability for oil increases with viscosity ratio, in a qualitative agreement with
the prediction of the developed model. The relative permeability for water remains (almost)
invariable (in our computations, it varies to a lesser extent than the relative permeability
for oil). A model, by which Odeh explained his experimental results, was strongly criti-
cized (Baker 1960). However, the work by Yuster (1951) corrects the errors of the Odeh
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model approach, with qualitatively similar dependencies of the relative permeabilities on the
viscosity ratio (see also Rose 1991, and references therein).

Other sources predict very different behavior of the relative permeabilities depending on
the viscosity ratio (see cf. ex. Downie and Crane 1961; Siddiqui et al. 1999; Wang et al.
2006). The main reason for such difference is, in our opinion, that change in the viscosity
ratios is achieved by the selection of different fluids, while other properties like wettability
and capillary pressure are not taken care of. Change in the capillary number may result
in qualitatively different distribution of the phases in the pore space and, as a result, to the
different flow behavior (Avraam and Payatakes 1995). Hysteresis of the relative permeabilities
may also contribute to the results (Eleri et al. 1995). It is difficult to separate the different
mechanisms, and analysis of their interaction requires much more sophisticated approaches
and more detailed considerations than the one presented here. In terms of the proposed model,
the endpoint relative permeabilities, the Corey exponents and the value of ξ may vary from
one to another experiment.

In the Fulcher et al. (1985) experiment, the care was taken, at least, about the surface tension
between the phases. Fulcher et al. demonstrated that the relative permeabilities should not be
considered as functions of the capillary number as a whole, but of its different constituents
separately. In the particular set of the experiments to be discussed here, the viscosity ratio
varied, while surface tension remained invariable. This is not sufficient: the authors remarked
that the wettability could not be controlled. The viscosity of brine or its substitutes varied
in wide limits, but was always high compared to viscosity of the oil. The viscosity ratios, as
recalculated from the paper, were equal to 0.17, 0.018, and 0.0024, correspondingly. The data
show that the oil relative permeabilities increase, and the brine relative permeabilities decrease
with the viscosity ratio. This is in full qualitative agreement with predictions of our model.

For quantitative comparison with the experiments of Fulcher et al., their data for drainage
were used, so that sor = 0 and krwor = 1. In agreement with the experimental data, the value
of swi was taken to be 0.32.

Based on several trials, the adjustable parameters in the model were divided into the two
groups. The values of ξ , s∗, and the Corey exponent for oil αo, Eq. (32), were taken to be the
same for all the three viscosity ratios investigated. The values of krowi and αw were taken
to be individual for the different viscosity ratios. Unfortunately, application of the same set
of parameters for all the data points has turned out to be impossible. Analysis of Eq. (35)
indicates that at small viscosity ratios (as in the experiment), the relative permeability for oil
is almost equal to kr0(1 − loV ). It is impossible to produce experimentally observed large
variation in kro without variation in the parameters in the Corey expression (32). This probably
indicates that in experiments of Fulcher et al., the geometry of phase distribution varied with
the change in the wetting phase, although the surface tension was the same. It should also be
remarked that in our model, the value of krowi in Eq. (32) does not have a meaning of actual
residual permeability, but is only an effective parameter. The actual relative permeability is
equal to krowi (1 − loV ). That is why the values of krowi were sometimes allowed to be larger
than unity in our simulations.

The result of model adjustment to experimental data is shown in Fig. 9. The reproduction
of the data is rather satisfactory, both qualitatively and quantitatively. The average deviation of
the predicted relative permeabilities from the experimental values is 0.023. Such an accurate
description of the experimental data could not be achieved with the traditional Corey model.

The value of ξ was found to be 3.16. This low value indicates a small size of a jet and high
interaction of the water and oil. Attempts to fit ξ to individual curves resulted in the values
in the range from 2.1 to 4.1, which are also law. This illustrates a stability of the conclusion
about strong water–oil interaction.
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Fig. 9 Testing the theory with experimental data of Fuhler et al. (1985). Relative permeabilities for a water, b
oil for different viscosity ratios μ. Stars/dotted lines: μ = 0.17. Circles/dashed lines: μ = 0.018. Crosses/solid
lines: μ = 0.0025

The value of threshold saturation s∗ was found to be 0.77 and varied from 0.71 to 0.78
in the individual fits. The jumps of the relative permeabilities at s∗ are rather pronounced,
which shows that the model is imperfect at this region. Probably, continuous transition from
w-jets to o-jets should be introduced in the future instead of the abrupt transition used in the
present version of the model.

A more straightforward test could be the comparison of the results of cocurrent and
countercurrent flow experiments (Bourblaux and Kalaydjian 1990; Eastwood and Spanos
1991). However, such flows require a separate analysis.

6 Conclusions

We have developed the Maxwell–Stefan approach to two-phase immiscible flows in
porous media. This approach makes it possible to account for viscous coupling between
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the flowing phases and introduce the transport coefficients possessing a clear physical
significance.

The approach has been developed in the two forms: the general form, and the form with
moving interface between flowing phases. The last form is advantageous, since it reduces the
interphase interactions to the interactions between a phase and an interface, which makes it
possible to express the phenomenological coefficients of the model in terms of the properties
of a single phase.

The coefficients in the model have further been determined from the analysis of the system
behavior on the mesoscale. The flow in the infinite oil and water clusters was described by
the Brinkman equation with a moving boundary, in the framework of a simplified geometri-
cal model. This has made it possible to find explicit expressions for the phenomenological
transport coefficients. The key parameter ξ in the expressions for them is the characteristic
ratio of the thickness of a cluster branch to the pore size. Thus, the model may distinguish
between the different degrees of “mixing” between the phases.

Sample computations show a non-trivial dependence of the fractional flow function and
apparent relative permeabilities on the parameter ξ and on the viscosity ratio. Coupling
between the flows transforms the fractional flow function toward the dependence correspond-
ing to (more) piston-like displacement (although it should be remarked that the developed
formalism is strictly valid only for the steady-state flows). Apparent relative permeabili-
ties are dependent on the viscosity ratio. For large viscosity ratios, they may exhibit non-
monotonous behavior. The endpoint relative permeabilities, as well as the overall phase mobil-
ity, decrease compared to the case of no coupling. This decrease is especially pronounced
close to the end points, where one of the phases becomes immobile and slows down another
phase.

Comparison with experimental data on steady-state determination of the apparent rela-
tive permeabilities indicates that the developed model is in qualitative agreement with their
dependence on viscosity ratio in cases where other conditions of the model are obeyed. It is
capable of reproducing the shapes of relative permeabilities. It has been possible to adjust
the parameters of the model to the experimental data of Fulcher et al. (1985) in such a way
that the measured relative permeabilities and their dependence on the viscosity ratio were
reproduced with a high degree of accuracy.
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Appendix: Solution of the Brinkmann Problems for the Jet Model

The solutions for the jet model should be obtained for four different cases (cf. Eqs. 29, 30).
There are solutions for the outer and for the inner jet. The solutions should be obtained for
s < s∗ and for s > s∗. If s < s∗, the outer jet is orange, and the inner jet is white. For the
case of s > s∗, the colors exchange.

We will consider in detail the solution for the outer jet problem and for s < s∗, so that the
phase is orange. Other solutions will be briefly described.

The governing Brinkmann equation is

Px = − μo

Ko
Wo + μeo

r

d

dr

(
r

dWo

dr

)
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With the boundary conditions at the inner and outer boundaries of the jet,

Wo(r j ) = V,
dWo

dr
(R) = 0 (37)

These boundary conditions correspond to the case where all the inner jets are active (IP = 0).
For the case where some jets are passive, the first boundary condition should be substituted
by Wo(r j ) = 0 for fraction IP of the jets. This is a particular case of the first condition (37),
with V = 0.

Let us first consider the case with no passive inner jets, IP = 0. The effect of passive jets
will be added later.

By substitutions

Wo = U − Ko

μo
Px ; r ′ = r

/√
Koγo,

the equation considered is reduced to the zero-order modified Bessel equation as:

1

r ′
d

dr ′

(
r ′ dU

dr ′

)
− U = 0

Solving it and making back-substitution, we express W0 in the general form of

Wo = − Ko

μo
Px + C1 I0

(
r
/√

Koγo

)
+ C2 K0

(
r
/√

Koγo

)

Here, I0, K0 are modified Bessel functions of the first and second kind, Ci are the constants
to be determined from the boundary conditions (37). Substitution of the values r j , R into
the solution and resolving with regard to these constants results in

C1 = K1
(
R
/√

Koγo
)



(
V + Ko

μo
Px

)
; C2 = I1

(
R
/√

Koγo
)



(
V + Ko

μo
Px

)
;

 = K0

(
r j

/√
Koγo

)
I1

(
R
/√

Koγo

)
+ K1

(
R
/√

Koγo

)
I0

(
r j

/√
Koγo

)

The first-order Bessel functions arise from the differentiation of the zero-order functions, as
required by the second boundary condition (37).

The average velocity Uo is found as (cf. Eq. 21):

Uo = φ

R2

∫ R

r j

Wo2rdr

Substitution of the solution W0 and rather elaborate, but straightforward integration with
application of the tabulated integrals of the type of

∫
x I0(x)dx,

∫
x K0(x)dx results in

Uo = − Koφ(1 − s)

μo
Px + LoV

(
φ(1 − s)V + Koφ(1 − s)

μo
Px

)

LoV = LoV

(
r j√
Koγo

,
R√

Koγo

)
= 2

√
Koγor j1

R2(1 − s)
;

 = K0

(
r j

/√
Koγo

)
I1

(
R
/√

Koγo

)
+ K1

(
R
/√

Koγo

)
I0

(
r j

/√
Koγo

)

1 = I1

(
R√

Koγo

)
K1

(
r j√
Koγo

)
− K1

(
R√

Koγo

)
I1

(
r j√
Koγo

)
(38)
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This expression is equivalent to the first expression (29), with account of Eq. (26). It may be
shown by manipulation with the Bessel functions that

∂

∂r j
= − 1√

Koγo
; 1 = −√

Koγo
∂

∂r j

Thus, the expression for coefficient LoV has the form of

LoV = LoV

(
r j√
Koγo

,
R√

Koγo

)
= − 2Koγor j

R2(1 − s)

∂

∂r j
= − 2Koγo

R2(1 − s)

∂ ln 

∂ ln r j

Equation (38) has the form similar to Eq. (25). Comparison shows that for the case of no
passive jets, LoV = loV . This proves the first of Eq. (29).

We have considered the case where all the inner jets are active (IP = 0). If, on the contrary,
all the inner jets would be passive (IP = 1), the solution would be given by Eq. (38) with
V = 0. The complete solution is the linear combination of the solutions with active and with
passive inner jets

Uo = (1 − IP )

[
− Koφ(1 − s)

μo
Px + LoV

(
φ(1 − s)V + Koφ(1 − s)

μo
Px

)]

+ IP

[
−(1 − LoV )

Koφ(1 − s)

μo
Px

]

Comparison with Eq. (25) results in

ko = 1 − LoV

1 − (1 − IP )LoV
Koφ(1 − s)

loV = (1 − IP )LoV

The first equation provides the connection between the meso- and macroscale permeabili-
ties for oil. It is not used for computations in the present work, but may be important for
experimental studies. The second equation is the result mentioned at the end of Sect. 4.2.

The flow in the active inner part of the jet at s < s∗ is described by the Brinkmann Eq.
(27) with boundary conditions (28). Averaging is performed as above. The passive jets form
the fraction of the volume where the flow velocity is zero. The resulting expression for the
flow velocity is

Uw = −(1 − IP )
Kwφs

μw

Px + (1 − IP )LwV

(
φsV + Kwφs

μw

Px

)
,

where LwV is given by the formula equivalent to the second Eq. (29)

LwV = 2r j
√

Kwγw

s R2 I1

(
r j√

Kwγw

) /
I0

(
r j√

Kwγw

)

Comparison with Eq. (25) recovers equations

kw = (1 − IP )(1 − LwV )

1 − (1 − IP )LwV
Kwφs;

lwV = (1 − IP )LwV

The case of s > s∗ is considered in a similar way.
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