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Abstract When it comes to geological storage of CO2, monitoring is crucial to detect leakage
in the caprock. In our study, we investigated the wave speeds of porous media filled with
CO2 and water in order to determine reservoir changes. We focused on deep storage sites
where CO2 is in a supercritical state. In case of a leak, CO2 rises and eventually starts to boil
as soon as it reaches temperatures or pressures below the critical point. At this point, there
are two distinct phases in the pore space. We derived the necessary equations to calculate
the wave speeds for unsaturated porous media and tested the equations for a representative
storage scenario. We found that there are three modes of pressure waves instead of two for
the saturated case. The new mode has a very small wave speed and is highly attenuated. This
mode will most likely be very hard to detect in practice and therefore it may be necessary to
use time-lapse seismic migration to detect leakage.

Keywords Biot theory · Geologic carbon sequestration · Monitoring · Unsaturated porous
media · Wave propagation

1 Introduction

Carbon capture and storage (CCS) or geologic carbon sequestration in general is an attempt
to reduce the amount of greenhouse gases emitted to the atmosphere. CO2 is separated from
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Fig. 1 Phase diagram for pure CO2 (data from Span and Wagner 1996) including subsurface conditions
(green curve) assuming a geothermal gradient of 30 K km−1, a pressure gradient of 10.5 MPa km−1 as well
as a surface temperature of 25 ◦C and a surface pressure of 0.1 MPa

the flue gas of fossil-fuel power plants or other industries and stored underground. There are
three likely underground storage options: injection into depleted oil or gas fields (including
enhanced oil recovery), injection into unmineable coal seams, and injection into deep saline
aquifers, that is, into highly permeable sandstones that are filled with brine.

Independent of the type of storage, monitoring is crucial. Assuming that after injection
of CO2 into the storage site, suddenly, a leak forms in the caprock (a low permeable seal of
the reservoir). How can we detect the leak? In this study, we investigate the wave speeds of
porous media filled with CO2 and water in order to determine changes in the wave speeds
and to evaluate whether it is possible to detect a leak with seismic waves.

We focus on deep storage sites where the CO2 is in a supercritical state, which means that
the temperature and pressure have to be above 31.1 ◦C and 7.38 MPa. Assuming a geothermal
gradient of 30 K km−1 and a pressure gradient of 10 MPa km−1, the minimum depth for a
storage site is 700 m (see Fig. 1). Statistical investigations by Kopp et al. (2009) show that
saline aquifers suitable for CO2-storage have a median depth of 1524 m, which is the depth
we will later use for our calculations.

In case of a leak, CO2 will rise and start to boil as soon as it reaches temperatures or
pressures below the critical point. Therefore, there will be gaseous CO2 in the pores above
this depth. The physical properties of gaseous CO2 and supercritical CO2 are very different
(especially in terms of density), and thus it is likely that seismic waves propagating through a
porous medium filled with gaseous CO2 and water have different speeds than through media
filled with supercritical CO2 and water or only with water.

Biot (1955, 1956a, b) developed a theory for wave propagation in porous and elastic media,
which enables the computation of compressional and shear wave speeds from the physical
properties of the fluid that fills the pores and the material that forms the skeleton. Biot’s theory
is limited to saturated porous media. This work is an extension of Biot’s theory to unsaturated
porous media. Previously, among others, Albers (2009) and Santos et al. (1990a, b) presented
approaches to extend Biot’s theory to porous media saturated by two fluids. Albers (2009)
used an approach based on a macroscopic linear model, which accommodates both the Biot
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model and the Simple Mixture Model of Wilmanski (1998). Santos et al. (1990a) present
a Lagrangian derivation using a thermodynamical approach and including the principle of
virtual complementary work and energy density functions. The derivation of our equations
is loosely based on Coussy (2004).

This paper both presents an approach to extend Biot’s theory and intends to answer the
question whether it is possible to directly detect leakage of a caprock of a CO2-storage site by
seismic waves. Therefore, we first derive the equations for wave propagation in unsaturated
porous media and afterwards use these equations to calculate wave speeds for a leak in the
caprock of a storage site at 1524 m depth.

2 Theory

In this section, we derive equations that allow us to calculate wave speeds in unsaturated
porous media, i.e., for multiple fluids in the pore space. The procedure is as follows: first,
we derive the storage equation for multiple fluids, describing the fluid mass balance; next,
we set up the balance of linear momentum and linearize the resulting equations; finally, we
determine the wave speeds. For a more detailed introduction into seismic wave propagation
and poromechanics, the reader is referred to Aki and Richards (2002) and Coussy (2004),
respectively.

2.1 Storage Equation for Multiple Fluids

Consider a porous solid with current pore volume dΩ p
t and total volume dΩt . The pores are

filled with α immiscible fluids fα whose density is denoted by ρ fα and whose saturation is
denoted by S fα . The mass balance of the fluids fα is then given by

d fα

dt

(
ρ fαϕS fαdΩt

) = 0, (1)

where d fα

dt is the substantial derivative and ϕ the Eulerian porosity. For a homogeneous

medium, ∇S fα = ∇ϕ = ∇ρ fα = 0. Therefore, using the product rule and d fα

dt dΩt =
∇ · v fαdΩt , where vβ = u̇β with β = fα, s denotes the velocity of fluid fα or the solid s, it
follows that

ρ fα
∂

∂t

(
ϕS fα

) + ϕS fα
∂ρ fα

∂t
+ ρ fαϕS fα∇ · v fα = 0. (2)

Next, we replace the change in density by the change in pressure using the definition for the
bulk modulus K fα of fluid fα , namely

K fα = ρ fα
∂p fα

∂ρ fα
, (3)

where p fα is the partial pressure of fluid fα . Upon insertion of Eq. 3 in Eq. 2, we obtain

S fα
∂ϕ

∂t
+ ϕ

∂S fα

∂t
+ ϕS fα

K fα

∂p fα

∂t
+ ϕS fα∇ · v fα = 0. (4)

In the case of two fluids in a porous medium, a pressure discontinuity, caused by interfacial
interactions, occurs. Neglecting hysteresis effects, this capillary pressure pc = p f1 − p f2 can
be described as a unique function under isothermal conditions (Lo et al. 2005). The change
in capillary pressure with time can be expressed as
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∂pc

∂t
= d pc

dS fα

∂S fα

∂t
= ∂p1

∂t
− ∂p2

∂t
. (5)

Therefore, the change in saturation of one fluid phase can be expressed as

∂S fα

∂t
= dS fα

d pc

(
∂p1

∂t
− ∂p2

∂t

)
. (6)

The capillary pressure curve
(

i.e., d pc
dS f1

(
S f1

))
can be described using the model of van

Genuchten (1980):

dS f1

d pc
= ρ2g

mnχ

[
(
1 − S f1

)− 1
m − 1

] 1
n −1 (

1 − S f1

)−
(

1
m +1

)

, (7)

where n and χ are fitting parameters and m = 1 − 1
n .

The incremental state equation (Coussy 2004) is given by

dϕ

dt
= (b − ϕ)∇ · vs + 1

N

d p f

dt
− 3αs (b − φ0)

dT

dt
, (8)

where N = Ks
b−ϕ , with the bulk modulus of the rock denoted by Ks. This equation relates

the change in porosity to the strain variation, the change in pressure, and the change in
temperature. We neglect the term for the volumetric thermal dilation (−3αs (b − φ0)

dT
dt )

because we assume the temperature to be constant and insert this equation, as well as Eq. 6
into Eq. 4. Writing this equation explicitly for two fluids α = 1, 2 using ∂S2

∂t = − ∂S1
∂t and

solving for
∂p f1
∂t and

∂p f2
∂t yields

∂p f1

∂t
= −M

{
K f1 N

(
K f2

dS f1

d pc
+ S f1 S f2

)
(b − ϕ)∇ · vs

+ K f1 S f1

[
S f2 Nϕ + K f2

(
S2

f2
+ Nϕ

dS f1

d pc

)]
∇ · v f1

+ K f1 K f2 S f2

(
Nϕ

dS f1

d pc
− S f1 S f2

)
∇ · v f2

}
(9)

∂p f2

∂t
= −M

{
K f2 N

(
K f1

dS f1

d pc
+ S f1 S f2

)
(b − ϕ)∇ · vs

+ K f1 K f2 S f1

(
Nϕ

dS f1

d pc
− S f1 S f2

)
∇ · v f1

+ K f2 S f2

[
S f1 Nϕ + K f1

(
S2

f1
+ Nϕ

dS f1

d pc

)]
∇ · v f2

}
, (10)

with

1

M
= S f1 S f2

(
S f1 K f1 + S f2 K f2 + Nϕ

)

+ (
K f2 S f1 Nϕ + K f1 K f2 + K f1 S f2 Nϕ

) dS f1

d pc
. (11)

This equation can be reduced to the equation for the saturated case by setting S f1 = 1 and
S f1 = 0:

d p f

dt
= − M

{
∇ · [

(b − ϕ) vs] + ∇
(
ϕv f

)}
, (12)
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with
1

M
= 1

N
+ ϕ

K f
. (13)

2.2 Balance of Momentum

The balance of linear momentum may be written as

∇ · [
(1 − ϕ) σ s] + (1 − ϕ) ρs

(
b − as) + f→s = 0, (14)

∇ ·
(
ϕS fασ

fα
)

+ ϕS fαρ fα

(
b − a fα

)
+ f→ fα = 0, (15)

for the solid part, s, and the fluids, fα , respectively, where σ s denotes the partial stress tensor
of the solid, σ fα the partial stress tensor of fluid fα , b the body force per unit mass, as and
a fα the solid and fluid acceleration, respectively, and f→s and f→ fα capture the interaction
with the solid and the fluids, respectively. These interactions have to be balanced, so the
momentum transfer is given by

f→s +
∑

α

f→ fα = 0. (16)

2.2.1 Fluids

The extended Darcy’s law is given by

ϕS fα

(
v fα − vs

)
= − λ fα ·

[
∇ p fα − ρ fα

(
b − a fα

)]
, (17)

with

λ fα = kr, fαk
μ fα

, (18)

where λ fα and μ fα are the mobility tensor and the viscosity of the fluid fα , respectively, and
k is the permeability tensor of the skeleton (compare to Neumann 1977). kr, fα = kr, fα

(
S fα

)

is the saturation-dependent relative permeability. The most commonly used hydraulic con-
ductivity models are those by Brooks and Corey (1964) and van Genuchten (1980). In this
work, the model by van Genuchten (1980) is used, where the relative permeability is given
by

kr, fα

(
S fα

) = √
S fα

[
1 −

(
1 − S fα

1
m

)m]2
, (19)

with the fitting parameters m and n, related by m = 1 − 1
n .

We insert Darcy’s law into the balance of linear momentum for the fluids (Eq. 15) to obtain

f→ fα = S fα

[
− ϕ2S fαλ

−1
fα

·
(

v fα − vs
)

+ p fα∇ϕ
]

+ ϕp fα∇S fα . (20)

Upon insertion of the last equation into Eq. 15, we obtain the balance of linear momentum
for the fluids fα:

− ϕS fα∇ p fα + ϕ2S2
fαλ

−1
fα

(
vs − v fα

)
+ ϕS fαρ fαb = ϕS fαρ fαa fα . (21)
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2.2.2 Solid

Writing out the momentum transfer (Eq. 16) and inserting Eqs. 14 and 20 yields

(1 − ϕ) ρsas = ∇ · [
(1 − ϕ) σ s] − p f ∇ϕ + ϕ2

∑

α

S2
fαλ

−1
fα

·
(

v fα − vs
)

−ϕ
∑

α

p fα∇S fα + (1 − ϕ) ρsb. (22)

According to Biot (1955), the total stress is given by

σ = σ ′s − bp f I, (23)

where σ denotes the total stress, σ ′s the effective stress, I the identity tensor, and b is Biot’s
coefficient, which depends on the compressibility of the solid matrix and is defined by

b = 1 − K s

Ks
. (24)

Here, K s denotes the bulk modulus of the matrix and Ks denotes the bulk modulus of the
grains. By using this expression and the definition of the partial stress

σ = (1 − ϕ) σ s + ϕσ f = (1 − ϕ) σ s − ϕp f I, (25)

we finally obtain the balance of linear momentum for the solid:

(1 − ϕ) ρsas = ∇σ ′s − ψ∇ p f − ϕ2
∑

α

S2
fαλ

−1
fα

·
(

vs − v fα
)

− ϕ
∑

α

p fα∇S fα + (1 − ϕ) ρsb.
(26)

For convenience, we have defined

ψ = ψ(ϕ) ≡ b − ϕ. (27)

2.3 Linearization of the Balance of Linear Momentum

To linearize the balance of momentum, we need to integrate the storage equation (Eqs. 9 and
10) to obtain an expression for the partial pressure p fα , α = 1, 2. We neglect the body forces
b and assume small fluid and solid motions. Thus, we obtain

p f1 = p f1,0 + M

{
−K f1 N

(
K f2

dS f1

d pc
+ S f1 S f2

)
ψ∇ · us

+ K f1 S f1

[
S f2 Nϕ + K f2

(
S2

f2
+ Nϕ

dS f1

d pc

)]
∇ · u f1

+ K f1 K f2 S f2

(
Nϕ

dS f1

d pc
− S f1 S f2

)
∇ · u f2

}
(28)

p f2 = p f2,0 + M

{
−K f1 N

(
K f1

dS f1

d pc
+ S f1 S f2

)
ψ∇ · us

+ K f1 K f2 S f1

(
Nϕ

dS f1

d pc
− S f1 S f2

)
∇ · u f1

+ K f2 S f2

[
S f1 Nϕ + K f1

(
S2

f1
+ Nϕ

dS f1

d pc

)]
∇ · u f2

}
. (29)

123



Wave Propagation in Porous Media 55

We substitute these equations into Eq. 21 to obtain the linearized balance of linear momentum
of the fluids

M N K f1 S f1

(
K f2

dS f1

d pc
+ S f1 S f2

)
ϕψ∇ (∇ · us)

+ M K f1 S2
f1

[
K f2 S2

f2
+ Nϕ

(
K f2

dS f1

d pc
+ S f2

)]
ϕ∇ (∇ · u f1

)

+ M K f1 K f2 S f1 S f2

(
Nϕ

dS f1

d pc
− S f1 S f2

)
ϕ∇ (∇ · u f2

)

+ϕ2S2
f1
λ−1

f1

∂us

∂t
− ϕ2S2

f1
λ−1

f1

∂u f1

∂t
− ϕS f1ρ f1

∂2u f1

∂t2 = 0 (30)

M N K f2 S f2

(
K f1

dS f1

d pc
+ S f1 S f2

)
ϕψ∇ (∇ · us)

+ M K f1 K f2 S f1 S f2

(
Nϕ

dS f1

d pc
− S f1 S f2

)
ϕ∇ (∇ · u f1

)

+M K f2 S2
f2

[
K f1 S2

f1
+ Nϕ

(
K f1

dS f1

d pc
+ S f1

)]
ϕ∇ (∇ · u f2

)

+ϕ2S2
f2
λ−1

f2

∂us

∂t
− ϕ2S2

f2
λ−1

f2

∂u f2

∂t
− ϕS f2ρ f2

∂2u f2

∂t2 = 0. (31)

We also substitute the linearized storage equation (Eqs. 28 and 29) into the equation that
describes the balance of linear momentum of the solid (Eq. 26). In addition, we use Hooke’s
law and the Lamé moduli λs and μs for isotropic media to replace the stress tensor σ ′s by
the displacement gradients ∇us according to

σ ′s = Es : εs = 2μsεs + λstr
(
εs) I (32)

∇σ ′s = (
λs + 2μs) ∇ (∇ · us) − μs∇ × (∇ × us) , (33)

where Es denotes the elastic tensor and εs the linear strain tensor (compare to Jeffreys and
Jeffreys 1950). Thus, we finally obtain the linearized balance of linear momentum equation
for the solid:

{
λs + 2μs + M N

[
K f1 K f2

dS f1

d pc
+ S f1 S f2

(
K f1 S f1 + K f2 S f2

)]
ψ2

}
∇ (∇ · us)

+ M N K f1 S f1

(
S f1 S f2 + K f2

dS f1

d pc

)
ϕψ∇ (∇ · u f1

)

+ M N K f2 S f2

(
S f1 S f2 + K f1

dS f1

d pc

)
ϕψ∇ (∇ · u f2

)

− ϕ2
(

S f1λ
−1
f1

+ S f2λ
−1
f2

)
· ∂us

∂t
+ ϕ2S f1λ

−1
f1

· ∂u f1

∂t
+ ϕ2S f2λ

−1
f2

· ∂u f2

∂t

− (1 − ϕ) ρs
∂2us

∂t2 − μs∇ × (∇ × us) = 0. (34)
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2.4 Propagation of Harmonic Waves

2.4.1 Longitudinal Waves

Let us consider the propagation of harmonic longitudinal waves in the ex direction:

us = us
0Re {exp [i (sx + ωt)]} ex , (35)

u fα = u fα
0 Re {exp [i (sx + ωt)]} ex , (36)

where s denotes the wave number and ω denotes the angular frequency.

2.4.1.1 Two Fluids Substituting this into Eqs. 30, 31, and 34 yields

(−s2S + iωK + ω2M
) ·

⎛

⎜
⎝

us
0

u f1
0

u f2
0

⎞

⎟
⎠ = 0, (37)

with the stiffness matrix S, the damping matrix K, and the mass matrix M defined as

S =
⎛

⎝
s11 s12 s13

s21 s22 s23

s31 s32 s33

⎞

⎠ , (38)

K = ϕ2

⎛

⎜⎜⎜⎜⎜
⎝

−
(

S2
f1

λ f1
+ S2

f2
λ f2

)
S2

f1
λ f1

S2
f2

λ f2

S2
f1

λ f1
− S2

f1
λ f1

0
S2

f2
λ f2

0 − S2
f2

λ f2

⎞

⎟⎟⎟⎟⎟
⎠
, (39)

M =
⎛

⎝
(1 − ϕ) ρs 0 0

0 ϕS f1ρ f1 0
0 0 ϕS f2ρ f2

⎞

⎠ . (40)

s11 = λs + 2μs + M N

[
K f1 K f2

dS f1

d pc
+ S f1 S f2

(
K f1 S f1 + K f2 S f2

)]
ψ2 (41)

s22 = M K f1 S2
f1

[
K f2 S2

f2
+ Nϕ

(
K f2

dS f1

d pc
+ S f2

)]
ϕ (42)

s33 = M K f2 S2
f2

[
K f1 S2

f1
+ Nϕ

(
K f1

d S f1

dpc
+ S f1

)]
ϕ (43)

s12 = s21 = M N K f1 S f1

(
K f2

dS f1

d pc
+ S f1 S f2

)
ϕψ (44)

s13 = s31 = M N K f2 S f2

(
K f1

dS f1

d pc
+ S f1 S f2

)
ϕψ (45)

s23 = s32 = M K f1 K f2 S f1 S f2

(
Nϕ

dS f1

d pc
− S f1 S f2

)
ϕ (46)

To obtain the dispersion relation for the harmonic longitudinal waves, we have to solve the
following equation for wave number s as a function of frequency ω:

det
(−s2S + iωK + ω2M

) = 0. (47)

123



Wave Propagation in Porous Media 57

The resulting s reveals both the speed for the longitudinal waves c = ω
Re(s) and the corre-

sponding attenuation coefficient α = Im (s).

4.2.1.2 One Fluid We can also obtain the well-known equation for fluid-saturated porous
media (e.g., Coussy 2004). For the saturated case, we only consider one fluid and the corre-
sponding saturation is S f = 1. Therefore, we find

(−s2S + iωK + ω2M
) ·

(
us

0

u f
0

)

= 0. (48)

In this case, the stiffness matrix S, damping matrix K, and mass matrix M are defined by

S =
(
λs + 2μs + ψ2 M ϕψM

ϕψM ϕ2 M

)
, (49)

K = ϕ2

λ f

(−1 1
1 −1

)
, (50)

M =
(
(1 − ϕ) ρs 0

0 ϕρ f

)
. (51)

2.4.2 Transverse Waves

Let us now consider the propagation of harmonic transverse waves traveling in the ey direction
and polarized in the ex direction:

us = us
0Re {exp [i (sy + ωt)]} ex (52)

u fα = u fα
0 Re {exp [i (sy + ωt)]} ex . (53)

4.2.2.1 Two Fluids Substituting this into Eqs. 30, 31, and 34 yields

(−s2T + iωK + ω2M
) ·

⎛

⎜
⎝

us
0

u f1
0

u f2
0

⎞

⎟
⎠ = 0 (54)

with the damping and mass matrices defined according to Eqs. 39 and 40 and the matrix T
defined by

T =
⎛

⎝
μs 0 0
0 0 0
0 0 0

⎞

⎠ . (55)

To obtain the dispersion relation for the harmonic transverse waves, we have to solve the
following equation for the wave number s as a function of the frequency ω:

det
(−s2T + iωK + ω2M

) = 0. (56)

The resulting s reveals both the speed for the transverse wave c = ω
Re(s) and the corresponding

attenuation coefficient α = Im (s).

2.4.2.2 One Fluid For the case of one fluid we have

(−s2T + iωK + ω2M
) ·

(
us

0

u f
0

)

= 0 (57)
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Table 1 Depth-independent
physical properties used for the
calculation of wave speeds

Parameter Symbol Value

General

Biot’s coefficient b 1

Porosity ϕ 0.2

Lamé’s first parameter λs 6.67 GPa

Shear modulus μs 6.67 GPa

Permeability k 1 D

Acceleration of gravity g 9.81 m s−2

Fitting parameter n 2.28

Fitting parameter χ 0.69 m−1

Rock

Bulk modulus Ks 1,000 MPa

Density ρs 2,600 kg m−3

Water

Bulk modulus KH2O 2170 MPa

Viscosity μH2O 1 × 10−3 Pa s

Density ρH2O 1025.5 kg m−3

CO2

Bulk modulus KCO2 0.4 MPa

Viscosity μCO2 2 × 10−5 Pa s

with the damping and mass matrices defined according to Eqs. 50 and 51 and with the matrix
T defined by

T =
(
μs 0
0 0

)
. (58)

3 Application

Having obtained the necessary equations for calculating wave speeds in unsaturated porous
media, we apply our theory for a representative storage site. Kopp et al. (2009) determined
characteristic parameters for typical reservoirs using statistical calculations based on a data-
base of more than 1,200 reservoirs. They found that an average reservoir has a depth of
1,524 m with a reservoir pressure of 15.47 MPa at a temperature of 55.13 ◦C. The density of
the water therein is 1025.5 kg m−3. With these values, we calculated the density and satura-
tion of CO2 as well as the saturation of water for various depths, starting at 1,524 m, using
a flash calculation (Gor and Prévost 2014; Prévost 1981). The capillary pressure curve of a
CO2/water system was measured by e.g., Plug and Bruining (2007) and Pini et al. (2012). We
calibrated the capillary pressure curve model by van Genuchten (1980), which was given in
Eq. 7, with the data presented by Pini et al. (2012) and obtained n = 2.28 and χ = 0.69 m−1.
These and all other values used are listed in Tables 1 and 2. We used our equations for wave
speeds and attenuation of longitudinal (Eq. 47) and transverse waves (Eq. 56) to determine
profiles as a function of depth h and frequency ω.
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Table 2 Depth-dependent properties used in the calculation

h (m) p (MPa) T (◦C) SCO2 (–) SH2O (–) ρCO2 (kg m−3)

1,524 15.47 55.13 0.75000 0.25000 653.99

1,500 15.24 54.42 0.75021 0.24979 653.43

1,400 14.23 51.45 0.75156 0.24844 649.31

1,300 13.22 48.49 0.75313 0.24687 644.49

1,200 12.21 45.53 0.75495 0.24505 638.83

1,100 11.20 42.57 0.75714 0.24286 631.94

1,000 10.19 39.61 0.75988 0.24012 623.18

900 9.18 36.65 0.76360 0.23640 611.13

800 8.17 33.69 0.76945 0.23055 591.98

722 7.38 31.38 0.77912 0.22088 560.27

708 7.24 30.96 0.78244 0.21756 549.47

700 7.16 30.73 0.78552 0.21448 539.48

696 7.12 30.61 0.78751 0.21249 533.07

695 7.11 30.58 0.86984 0.13016 294.33

650 6.66 29.25 0.89304 0.10696 235.70

600 6.15 27.77 0.90962 0.09038 195.70

500 5.15 24.81 0.93277 0.06723 142.29

400 4.14 21.84 0.95054 0.04946 103.00

300 3.13 18.88 0.96523 0.03477 71.51

200 2.12 15.92 0.97789 0.02211 45.04

100 1.11 12.96 0.98906 0.01094 22.12

Depth is denoted by h. Pressure p and temperature T are calculated using a pressure gradient of
10.09 MPa km−1 and a geothermal gradient of 29.61 ◦C km−1, as well as a surface temperature T0 of 10 ◦C.
Saturation of CO2 SCO2 and water SH2O and the density of CO2 ρCO2 are calculated based on the approach
of Gor and Prévost (2014)

4 Results

We found that there is a third mode pressure wave in porous media saturated by two immis-
cible, whereas there are only two modes of pressure waves in porous media saturated by only
one fluid. This was also observed in previous studies (e.g., Santos et al. 1990a, b; Lo et al.
2005; Albers 2009). We have a first mode pressure wave (P1), where the solid and fluids are
in phase; a second mode pressure wave (P2), where the solid and the fluids move out of phase;
and a third mode pressure wave (P3), where the fluids move in phase but not in phase with the
solid. The additional wave, compared to the case of one fluid is P2. For every additional fluid
there would be an additional pressure wave phase, because the dimension of the matrices is
(α + 1)× (α + 1) (see Eqs. 47 and 56) and the number of solutions is (α + 1).

To compare the differences between the saturated case, where all pores are filled with water,
and the unsaturated case, where there is CO2 and water in the pore space, we compared these
two cases at 600 m depth (see Fig. 2). This leads us to several interesting observations: P1 is
about 15% slower in the case where CO2 is present compared to the case where there is only
water in the pores, whereas P2 is about 95% slower in the case where CO2 is present. The
additional P3 wave is extraordinary slow and highly attenuated. The transverse S wave is not
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Fig. 2 Wave speeds (left) and attenuation (right) of the seismic waves at a depth of 600 m. The upper plots
are calculated using the equations for the saturated case and the lower plots are calculated using the equations
for the unsaturated case
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Fig. 3 First mode pressure wave speed (left) and corresponding attenuation (right) as a function of depth and
frequency

affected by the content of the pores, and in both cases P1 and S are only slightly attenuated,
whereas P2 and P3 are highly attenuated.

For every mode, there is a 3D-plot for both wavespeed and attenuation. These plots are
shown in Figs. 3 (P1), 4 (P2), 5 (P3), and 6 (S). From these figures, we conclude that P1,
P2, and S suddenly increase in speed by a few percent as soon as the CO2 boils, which is at
695 m, whereas the attenuation behaves conversely only for P1 and S. For P2 the attenuation
also increases as soon as the CO2 boils. P2 first decreases in speed as soon as the CO2 boils
and then continues to decrease in speed. The corresponding attenuation of P3 behaves in the
same way, like it is the case for P2.
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Fig. 4 Second mode pressure wave speed (left) and corresponding attenuation (right) as a function of depth
and frequency
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Fig. 5 Third mode pressure wave speed (left) and corresponding attenuation (right) as a function of depth
and frequency
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Fig. 6 Shear wave speed (left) and corresponding attenuation (right) as a function of depth and frequency

5 Discussion

We determined that the wave speed of P1 decreases by about 15% and that of P2 decreases
by about 95% if CO2 is present. When analyzing real data, this change in wave speed of P1

is not necessarily related to a pore-content change, because this could also be explained, for
example, by a change in the elastic moduli of the rock. The existance of a third mode could
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provide evidence of an additional phase in the pores, but P2 and P3 are very slow and highly
attenuated. This makes it difficult to detect these phases directly.

Previously, among others, Albers (2009) and Santos et al. (1990a, b) dealt with similar
problems, although they used different approaches and calculated wave speeds and attenu-
ation for different scenarios. Interestingly, Albers (2009) calculated very similar values for
a sandstone filled with an air-water mixture (Albers 2009, Fig. 4) using an approach based
on a macroscopic linear model, which accommodates both the Biot model and the Simple
Mixture Model of Wilmanski (1998). For the Lagrangian derivation of Santos et al. (1990a),
a thermodynamical approach including the principle of virtual complementary work and
energy density functions was used. They computed wave speeds for oil-water mixtures in
two different sandstone formations (Santos et al. 1990b). The derivation of our equations is
loosely based on Coussy (2004). The advantage of our work is that we only use the balances
of mass (Eq. 1) and linear momentum (Eqs. 14 and 15), as well as an equation which is based
on the equations of state (Eq. 8) and Darcy’s law (Eq. 17). This makes our derivation clear
and simple. Nevertheless, the similarity of our numerical results with the results from Albers
(2009) and Santos et al. (1990a, b) indicates that our approach is consistent with their work.

6 Conclusion

We have presented an extension of Biot’s theory valid for unsaturated porous media with
two different pore-space phases. We found that for each additional fluid phase there is an
additional pressure wave (i.e., the number of different kinds of pressure waves is α + 1).

We tested this extension for a representative CO2-storage scenario to assess whether
it is possible to detect leakage of a CO2-storage site. Our results suggest that it will be
difficult to detect the P3-wave because it is very slow and highly attenuated. More promising
attempts involve detection of changes in P1 and P2 wave speeds induced by a leak. This
requires a baseline seismic survey before injection and comparison of subsequent surveys
to the baseline, i.e., time-lapse seismic migration (Carcione et al. 2006). Another approach
involves cross-well monitoring (Morency et al. 2011).
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