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Abstract The effect of high-frequency vibrations on the nonlinear regimes of thermal con-
vection in a two-layer system composed of a horizontal pure fluid layer and fluid-saturated
porous layer heated from below is studied in the framework of the average approach. For large
porous layer thicknesses it has been found, that at low vibration intensities the evolution of
convective regimes with the growth of the Rayleigh number proceeds as follows: stationary
regime—oscillatory regime—stationary regime. At high vibration intensities the stationary
convective regimes take place at any values of the supercriticality used in the calculations.
At close values of the fluid layer and porous layer thicknesses the interaction between the
short-wave and long-wave instability modes is investigated. It has been found that at high
vibration intensities the ambiguity of the stationary solutions is observed in a certain range
of supercriticalities.
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1 Introduction

The paper is concerned with the effect of vertical high-frequency vibrations on the onset and
evolution of convection in a two-layer system of a pure fluid and saturated porous medium
heated from below and subject to the field of gravity. Such systems are frequently encountered
in various natural and industrial processes. For example, during crystal growth from the melt
in terrestrial conditions a two-phase mushy zone with properties similar to the properties of
porous medium saturated with the fluid is formed between the melt and solidification front.
Convection in the melt and in the mushy zone affects the structure of the crystal.
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A linear problem on the equilibrium stability of a two-layer system involving a horizontal
pure fluid layer and fluid-saturated porous layer in a static gravity field was considered in
Lyubimov and Muratov (1977), Chen and Chen (1988, 2001). It was found, that the neutral
curves of equilibrium stability are bimodal over some range of parameters (the ratio of layer
thicknesses, permeability of the porous medium, the thermal conductivity ratio, etc.). When
the fluid moves through a porous medium it becomes resistant to the porous matrix. Therefore
in the systems with a rather thick fluid layer a convective flow is initiated just in this layer.
In this case the instability is caused by the evolution of short-wave perturbations. And vice
versa, in the case of thick porous layers most dangerous are the long-wave perturbations,
which spread through both layers. At intermediate values of the layer thickness ratio, one can
observe a competition between the short-wave and long-wave perturbations corresponding
to the minima of bimodal neutral curves.

The structure of the convective flow and heat transfer in a two-layer system composed
of a horizontal pure fluid layer and fluid-saturated porous layer in a static gravity field were
investigated numerically and experimentally in Chen and Chen (1992, 1989) for different
values of supercriticality. The calculations carried out in Chen and Chen (1992) up to the
twentyfold supercriticality showed that a stationary regime of convection was maintained over
the entire examined range of parameters. It was found, that a sharp growth of the Nusselt
number with the growth of the supercriticality, occurring at small values of the ratio of fluid
layer to porous layer thicknesses, is replaced by a moderate increase of the heat flux with
a growth of the heat intensity at a certain critical value of the thickness ratio. The obtained
data are in a good agreement with the experimental results (Chen and Chen 1989).

The interaction between the short-wave and long-wave instability modes at small super-
criticalities was studied in Lyubimov et al. (2002, 2004). The focus of these papers was a
three-layer system consisting of two saturated porous layers separated by a pure fluid layer
in a static gravity field. It was found that at small values of the supercriticality the long-wave
vortex loses its stability and breaks down into a few short-wave vortices located in the fluid
layer.

The analysis of the nature of the convection excitation and supercritical convective regimes
in a two-layer system of a horizontal pure fluid layer and a fluid-saturated porous layer heated
from below in a static gravity field was carried out in Kolchanova et al. (2013). It was found,
that in the case when the thickness of the fluid layer is small compared to the thickness of the
porous layer and the long-wave mode of convection is predominate, the stationary regime
of convection loses its stability at some value of the supercriticality and is replaced by the
oscillatory regime, which is again replaced by the stationary regime with a further increase of
the supercriticality In addition, the paper investigates the interaction between the short-wave
and long-wave instability modes near the threshold of the convection and the evolution of
the convection up to the fivefold supercriticality at comparable thicknesses of the fluid and
porous layers.

In recent years, various theoretical and experimental studies have supported the idea
that vibrations can be used as one of the ways to control the behavior of hydrodynamical
systems. The effect of vibrations of finite frequency and amplitude on linear stability of a
conductive state of saturated horizontal porous layer subjected to vertical temperature gradient
was studied in Govender (2004, 2005a, b, c), weakly-non-linear analysis was carried out in
Govender (2005d). It is found that the increase of frequency results in the rapid stabilization
of convection below the transition point from the synchronous to subharmonic convection
and in the slow destabilization of convection above the transition point.

The effect of high-frequency vibrations on the onset of convection in a fluid-saturated
horizontal porous layer was studied in Zenkovskaya and Rogovenko (1999) in the framework
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of average approach accounting for the viscosity in the equations for pulsations. It has been
found, that vertical vibrations stabilize conductive state, moreover the effect of absolute
stabilization can be achieved.

In Bardan and Mojtabi (2000) the effect of high-frequency vertical vibrations on linear
stability of Lapwood convection in a rectangular cavity was studied analytically and numeri-
cally in the framework of the same approach as in Zenkovskaya and Rogovenko (1999). The
stabilizing effect of vibrations was demonstrated.

Vibration effect on the onset of Soret-driven convection in binary-fluid-saturated porous
medium was investigated in Charrier-Mojtabi et al. (2004, 2007), Elhajjar et al. (2009).

The onset of convection in a system of superposed horizontal layers of pure fluid and fluid-
saturated porous medium subjected to the gravity field and vertical high-frequency vibrations
was studied in Lyubimov et al. (2004) for the case of thin fluid layer, in the framework of
average approach. The authors succeeded to reduce the problem of convection in a two-layer
system to the problem of convection in a single porous layer and the presence of a fluid layer
was taken into account by effective boundary conditions at the upper boundary of porous
layer. The neutral curves were found to be unimodal which well corresponds to the above
discussion. It was shown, that with the growth of the vibration intensity the threshold of
the conductive state instability rises and the wavelength of most dangerous perturbations
increases. In the limit case of zero liquid layer thickness the results obtained for the porous
layer with rigid boundaries are reproduced.

In Lyubimov et al. (2008), the same problem was considered for a two-layer system with
fluid layer of arbitrary thickness. It has been shown, that in this case, as well as in the absence
of vibrations, in some parameter range the neutral curves are bimodal. Vibrations make
stabilizing effect on both modes, besides, stabilization effect on the short-wave perturbations
located in the fluid layer is much greater than that on the long-wave perturbations spreading
all over the system. This result is explained by a different relative role of inertial effects in
the fluid and porous layers. For thin fluid layers the lower instability mode is related to the
perturbations which cover the entire system and most of the perturbation energy falls in the
porous layer. In this case vibrational stabilization is rather weak. In opposite case of thick
fluid layers, the flow is mainly concentrated in this layer, it penetrates only slightly into the
porous layer and is strongly stabilized by vibrations. Note that, due to the smallness of the
hydraulic resistance in the fluid layer, thick fluid layers go over to asymptotic behavior fairly
rapidly.

The nonlinear regimes of convection in a two-layer system of a horizontal pure fluid layer
and a fluid-saturated porous layer heated from below in the gravity field and subjected to
vertical high-frequency vibrations were not investigated.

2 Governing Equations and Boundary Conditions

Consider a two-layer system composed of a horizontal pure fluid layer and a porous layer
saturated by the same fluid (Fig. 1). The upper and lower rigid boundaries of the system
are kept at different constant temperatures. The system is subject to the gravity field and
vertical vibrations with the frequency ω and amplitude a. We restrict the discussion to a
two-dimensional case, i.e., the horizontal layers are assumed to be homogeneous along the
z-axis.

The flow in the nonuniformly heated fluid layer is described by the equations of ther-
mal buoyancy convection in the Boussinesq approximation (Gershuni and Zhukhovitskii
1972). The natural convective filtration of the fluid in the saturated porous medium is
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Fig. 1 System configuration

described by equations written in the Darcy-Boussinesq approximation (Nield and Bejan
2013).

The equations are written in the reference frame of the layer oscillating boundaries and
for the fluid layer are given as

∂v
∂t

+ (v∇)v = − 1

ρf
∇ p + νf∇2v + βTT (g − aω2 cosωt)j, (1)

∂T

∂t
+ (v∇)T = χf∇2T, (2)

∇ · v = 0, (3)

and for the porous layer are

1

m

∂u
∂t

= − 1

ρf
∇π − νf

K
u + βTϑ(g − aω2 cosωt)j, (4)

b
∂ϑ

∂t
+ (u∇)ϑ = χeff∇2ϑ, (5)

∇ · u = 0. (6)

Here, v is the convective flow velocity in the fluid layer, u is the velocity of the convective
filtration in the porous medium; p, π are the pressures in the fluid and porous medium layers
excluding the hydrostatic additive; T , ϑ are the temperature deviations from the average
values in the fluid and porous layers; ρf , νf are the density and the kinematic viscosity of
the fluid; βT is the thermal expansion coefficient; g is the acceleration of gravity; m is the
porosity, K is the permeability of the porous medium; b is the ratio of the porous medium
heat capacity to that of the fluid per unit volume, χf , χm are the thermal diffusivities of the
fluid and the porous medium, χeff is the effective thermal diffusivity defined by the ratio of
the thermal conductivity of the fluid-saturated porous medium to the fluid heat capacity per
unit volume, χeff = bχm, j is the unit vector of the vertical axis. Indices f and m stand for
the fluid and porous medium, respectively.

The no-slip condition is imposed at the upper rigid boundary of the two-layer system and
the impermeability condition at the lower boundary; the constant different temperatures are
maintained at both boundaries:
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y = hf : vx = vy = 0, T = −Θf ,

y = −hm : uy = 0, ϑ = Θm. (7)

The interface between the fluid and porous layer is assumed to meet the following con-
ditions: the continuity of vertical velocity component, the jump of the tangential velocity
component, the continuity of the temperature and heat flux and the balance of normal stresses

y = 0 : vy = uy, vx = 0, T = ϑ, (8)

κ f
∂T

∂y
= κm

∂ϑ

∂y
, p = π. (9)

The application of the boundary condition vx = 0 is justified by the fact that the veloc-
ities of the convective filtration in the porous medium are generally small because of small
characteristic values of the porous medium permeability K (Lyubimov and Muratov 1977).
In this case the condition of the normal stress balance reduces to the pressure balance at the
interface between the layers (Lyubimov and Muratov 1977; Kolchanova et al. 2013).

According to the theory of thermal vibrational convection in the pure fluid (Gershuni
and Lyubimov 1998) and in the saturated porous medium (Zenkovskaya and Rogovenko
1999; Bardan and Mojtabi 2000; Lyubimov et al. 2004, 2008), we represent the velocity,
temperature, and pressure fields in the fluid and porous layers as a sum of average and
pulsation components:

v = va + vp, T = Ta + Tp, p = pa + pp, (10)

u = ua + up, ϑ = ϑa + ϑp, π = πa + πp. (11)

We consider the case of vertical vibrations. The vibration frequency is assumed to be so
high that the thicknesses of the viscous and thermal boundary layers near the rigid boundaries
and near the interface are small compared to the thickness of the layers L: (νf/ω)

1/2 = δv �
L , (χf/ω)

1/2 = δT � L or ωL2/νf � 1, ωL2/χf � 1.
At the same time, it is supposed that the sound wavelength at this frequency of vibrations is

large compared to the thickness of the layers. This imposes the upper limit on the frequency:
if the conditionω � c/L (c is the sound velocity) is fulfilled, one can neglect the effect of the
fluid compressibility. Thus, the range of frequencies to be considered is νf/L2 � ω � c/L .
For example, for water (νf = 0.01 cm2/ s) at L = 1 cm the range of examined frequencies
is 10−2 � ω � 105 s−1 or 10−3 � ω/2π � 104 Hz.

The amplitude of vibrations is assumed to be so small that the nonlinear term (vp∇)vp can
be neglected as opposed to the acceleration ∂vp/∂t in the momentum equation for pulsations.
In view of the fact that the pulsating component of the velocity is defined by the relationship
vp ∼ aωβTϑ (where ϑ is the temperature difference at the boundaries of the fluid layer), this
condition leads to the following limit on the amplitude of vibrations: a � L/βTϑ . Since the
Boussinesq parameter βTϑ is generally small, the vibration amplitude and the thickness of
the fluid layer may have the same order of magnitude (Gershuni and Lyubimov 1998).

We also neglect the buoyancy force in the static gravity field in the equations for pulsations
assuming that gβTϑ

ω2 L
� 1 , i.e., the ratio g

aω2 of the gravitational acceleration to the vibrational

one multiplied by aβTϑ
L should be small which is satisfied due to our assumption of small

vibration amplitude.
The assumptions described above makes it possible to neglect the viscous and nonlinear

terms in the equations for pulsations in the fluid layer. However, we cannot neglect the viscous
term in the equation for pulsations in the saturated porous medium because of the small
characteristic values of the porous medium permeability K (Zenkovskaya and Rogovenko
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1999; Bardan and Mojtabi 2000; Lyubimov et al. 2004, 2008). In this case, the ratio νf m/Kω
of the viscous term to acceleration can be small only if ω � νf m/K (where K 1/2 is the pore
size). For the layer of sand saturated by water and having thickness L = 1 cm, permeability
K = 10−6 cm2 and porosity m = 0.25 we get 2.5 × 103 � ω � 105 s−1 or 2.5 × 102 �
ω/2π � 104 Hz. Thus, for moderately high vibration frequencies it is necessary to take into
account the viscous term in the equation for pulsations in the porous layer.

The nonlinear terms in the equations for pulsations in the porous layer can be neglected
because of the small amplitude of vibrations (a � mL/βTθ ), where θ is the temperature
difference at the boundaries of the porous layer).

Taking into account the assumptions made above, we obtain the following system of
equations for pulsations in the fluid layer:

∂vp

∂t
= − 1

ρf
∇ pp − aω2βTTa j cosωt, (12)

∂Tp

∂t
= −(vp∇)Ta, (13)

∇ · vp = 0, (14)

and in the porous layer:

1

m

∂up

∂t
= − 1

ρf
∇πp − νf

K
up − aω2βTϑa j cosωt, (15)

b
∂ϑp

∂t
= −(up∇)ϑa, (16)

∇ · up = 0. (17)

We will search for the solution of equations (12)–(17) given by

vp = �
(

Vpeiωt
)
, pp = �

(
Ppeiωt

)
,

up = �
(

Wpeiωt
)
, πp = �

(
Πpeiωt

)
.

Using these formulas and integrating the Eqs. (13) and (16) we obtain the following
explicit expressions for temperature pulsations in the fluid and porous layers:

Tp = 1

ω
�

(
i
(
Vp∇

)
Taeiωt

)
, ϑp = 1

ωb
�

(
i
(
Wp∇

)
ϑaeiωt

)
. (18)

The equations for amplitudes of the pulsating components of velocity and pressure in the
fluid and porous layers can be written as

iωVp = − 1

ρf
∇Pp − aω2βTTa j, (19)

∇ · Vp = 0, (20)

iω

m
Wp = − 1

ρf
∇Πp − νf

K
Wp − aω2βTϑa j, (21)

∇ · Wp = 0. (22)

Averaging Eqs. (12)–(17) over the fast time (the period of vibrations) and applying the
relations

Tp cosωt = 1

2ω
�(i(Vp∇)Ta), ϑp cosωt = 1

2ωb
�(i(Wp∇)ϑa),
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we obtain the following equations for average components of the velocity, temperature and
pressure fields in the fluid layer:

∂va

∂t
+ (va∇) va = − 1

ρf
∇ pa + νf∇2va + gβTTa j

−aω

2
βTj� (

i
(
Vp∇

)
Ta

)
, (23)

∂Ta

∂t
+ (va∇) Ta = χf∇2Ta, (24)

∇ · va = 0, (25)

and in the porous layer:

− 1

ρf
∇πa − νf

K
ua + gβTϑa j − aω

2b
βTj� (

i
(
Wp∇

)
ϑa

) = 0, (26)

b
∂ϑa

∂t
+ (ua∇) ϑa = χeff∇2ϑa, (27)

∇ · ua = 0. (28)

Boundary conditions (7) and (8) should be completed by the conditions for velocity and
pressure pulsations at the rigid boundaries:

y = hf : Vp · j = 0,

y = −hm : Wp · j = 0, (29)

and at the interface between the layers:

y = 0 : Vp · j = Wp · j, Pp = Πp. (30)

Note that the term (1/m)∂ua/∂t in Eq. (24) for the average flow in the porous medium can
be neglected due to small characteristic values of convective filtration velocities. However,
the term (1/m)∂up/∂t in Eq. (15) for pulsations cannot be neglected since it is proportional
to the vibration frequency ω � 1 (Zenkovskaya and Rogovenko 1999; Bardan and Mojtabi
2000; Lyubimov et al. 2004, 2008). The necessity to take into account the time-derivative in
the momentum equation for porous medium was pointed out earlier by Vadasz and Straughan
(Vadasz 1998; Straughan 2001) in their studies of the stability of the rotating porous layer
where it was found that if the time-derivative is left in the momentum equation, then the
convection may arise in oscillatory way.

The main goal of the present paper is to study the effect of vibrations on the non-linear
regimes of convection in the two-layer system of superposed pure fluid layer and fluid-
saturated porous layer. That is why we choose the same scales as in Kolchanova et al. (2013)
where the same problem was studied for the case when vibrations are absent, i.e., for the
length, time, average components of the temperature, velocity and pressure and amplitudes
of the pulsating components of the velocity and pressure we use the quantities

[x, y, z] = hf ≡ L , [t] = L2

χf
, [Ta] = [ϑa] = Af L ,

[va] = [ua] = χf

L
, [pa] = [πa] = ηfχf

K
,

[
Vp

] = [
Wp

] = aω2βT Af L K

νf
,

[
Pp

] = [
Πp

] = aω2ρf Af L2βT.
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The dimensionless equations for thermal vibrational convection in the fluid layer can be
written as

1

Prf

(
∂va

∂t
+ (va∇)va

)
= −∇ pa + ∇2va + Rf Ta j

− Rfvj�(i(Vp∇)Ta), (31)
∂Ta

∂t
+ (va∇)Ta = ∇2Ta, (32)

∇ · va = 0, (33)

iΩf Vp = −∇Pp − Ta j, (34)

∇ · Vp = 0, (35)

and in the porous layer:

−εf∇πa − ua + εf Rfϑa j − εf

b
Rfvj�(i(Wp∇)ϑa) = 0, (36)

b
∂ϑa

∂t
+ (ua∇)ϑa = κ∇2ϑa, (37)

∇ · ua = 0, (38)
iΩf

m
Wp = −∇Πp − 1

εf
Wp − ϑa j, (39)

∇ · Wp = 0, (40)

with the following boundary conditions at the upper and lower boundaries of the system:

y = 1 : va = 0, Ta = −1, Vp · j = 0,

y = −h : u · j = 0, ϑa = h

κ
, Wp · j = 0, (41)

and at the interface between the layers:

y = 0 : va · j = ua · j, vax = 0, pa = πa,

Ta = ϑa,
∂Ta

∂y
= κ

∂ϑa

∂y
, Vp · j = Wp · j, Pp = Πp, (42)

The system of Eqs. (31)–(40) and the boundary conditions (41), (42) contain the fol-
lowing dimensionless parameters: the ratio of porous layer thickness to that of the fluid
layer h = hm/hf , the effective permeability of porous medium ε f = K/L2 (εf = h2 Da
where Da is the Darcy number), the Prandtl number Prf = νf/χf , the Rayleigh number

for homogeneous fluid Rf = gβT Af L4

νfχf
, the vibrational Rayleigh number for homogeneous

fluid Rfv = (aωAfβT L3)2ω

2ν2
f χf

, the dimensionless frequency of vibrations Ωf = ωL2/νf , the

ratio of thermal conductivity of the porous medium saturated by the fluid to that of the fluid
κ = κm/κf .

Let us introduce the stream functions for the average and pulsating components of the
velocity field in the fluid and porous layers and the vorticity of the flow in the pure fluid layer

vax = ∂ψ

∂y
, vay = −∂ψ

∂x
, uax = ∂ϕ

∂y
, uay = −∂ϕ

∂x
, J = ∇ × va,

Vpx = ∂Ψ

∂y
, Vpy = −∂Ψ

∂x
, Wpx = ∂Φ

∂y
, Wpy = −∂Φ

∂x
.

123



Vibration Effect on Convection in a Two-Layer System 245

A complete system of equations for average components and pulsation amplitudes written
in terms of the stream functions and vorticity in the fluid layer is

1

Prf

(
∂ Jz

∂t
+

(
∂ψ

∂y

∂ Jz

∂x
− ∂ψ

∂x

∂ Jz

∂y

))

= ∇2 Jz + Rf
∂Ta

∂x
− Rfv�

(
i
∂

∂x

(
∂Ψ

∂y

∂Ta

∂x
− ∂Ψ

∂x

∂Ta

∂y

))
, (43)

∂Ta

∂t
+

(
∂ψ

∂y

∂Ta

∂x
− ∂ψ

∂x

∂Ta

∂y

)
= ∇2Ta, (44)

Jz = −∇2ψ, (45)

iΩf∇2Ψ = ∂Ta

∂x
, (46)

and in the porous layer:

∇2ϕ + εf Rf
∂ϑa

∂x
− εf

b
Rfv�

(
i
∂

∂x

(
∂Φ

∂y

∂ϑa

∂x
− ∂Φ

∂x

∂ϑa

∂y

))
= 0, (47)

b
∂ϑa

∂t
+

(
∂ϕ

∂y

∂ϑa

∂x
− ∂ϕ

∂x

∂ϑa

∂y

)
= κ∇2ϑa, (48)

iΩf

m
∇2Φ = − 1

εf
∇2Φ + ∂ϑa

∂x
, (49)

with the boundary conditions:

y = 1 : ψ = 0, Ta = −1, Ψ = 0,

y = −h : ϕ = 0, ϑa = h

κ
, Φ = 0, (50)

y = 0 : ψ = ϕ,
∂ψ

∂y
= 0, εf

∂3ψ

∂y3 + ∂ϕ

∂y
= 0,

Ta = ϑa,
∂Ta

∂y
= κ

∂ϑa

∂y
,

Ψ = Φ,
∂Ψ

∂y
= ∂Φ

∂y

(
1

m
− i

εfΩf

)
. (51)

Here the condition of the normal stress balance pa = πa at the interface between the fluid
and porous layers (at y = 0) for average fields is written in terms of the stream functions.
This condition is derived using the horizontal projections of the momentum equations for
fluid (31) and for porous medium (36). Then, taking into account the smallness of the Darcy
parameter ε f and inertial terms compared to the viscous term and the force of resistance of
the porous matrix to the fluid motion, we obtain the condition

εf
∂2vx

∂y2 + ux = 0

rather than the pressure continuity condition. When written in terms of the stream functions
this condition is given as

εf
∂3ψ

∂y3 + ∂ϕ

∂y
= 0.
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Similarly, the condition of the normal stress continuity at the layer–layer interface for
amplitudes of the pulsating components Pp and Πp can be written in terms of the stream
functions as

∂Ψ

∂y
= ∂Φ

∂y

(
1

m
− i

εfΩf

)
.

3 Method of Numerical Solution

The numerical solution to the problem (43)–(51) was obtained by the finite-difference method.
The calculations were performed following the explicit finite-difference scheme, in which
the central differences are used to approximate the spatial derivatives.

The Poisson equation (45) was solved by the method of successive over-relaxation.
According to the data of the linear stability analysis (Lyubimov et al. 2008), the horizontal

dimension of the computational domain was chosen to be equal to the wave length l = 2π/k
of most dangerous perturbations. At the vertical boundaries of the computational domain,
x = ±l/2 all functions satisfy the periodical condition f (−l/2, y, t) = f (l/2, y, t).

4 Numerical Results

The calculations were performed at fixed values of the parameters κ , b, Prf , εf , Ωf and m:
κ = 1, b = 1, Prf = 6.7, εf = 10−3, Ωf = 10 and m = 0.25.

Two cases differing by the ratio of porous to fluid layer thicknesses were considered: (1) the
case of thick porous layer (h = 8), when according to the linear stability analysis (Lyubimov
et al. 2008) the long-wave perturbations are realized in both layers; (2) the case of comparable
layer thicknesses (h = 3), when the critical Rayleigh numbers determining the thresholds
of equilibrium instability with respect to the long-wave and short-wave perturbations are
similar.

According to the linear stability theory (Lyubimov et al. 2008), the effect of vibration
is stronger for the short-wave perturbations located in the fluid layer than for long-wave
perturbations occurring in both layers since the inertial effects in the porous medium are
weak compared to the pure fluid layer (typical values of the effective permeability εf are
usually small) (Lyubimov et al. 2008). This result is confirmed by Fig. 2a and b, which show
the neutral curves of the conductive state stability in the two-layer system for two values of
thickness ratio h = 3 and h = 8 and different values of the vibrational Rayleigh number.

It is known that in most situations, vertical high-frequency vibrations make stabilizing
effect on pure fluids up to the absolute stabilization (see, Gershuni and Lyubimov 1998). The
same result was found in Zenkovskaya and Rogovenko (1999); Bardan and Mojtabi (2000);
Lyubimov et al. (2004) for saturated porous media. In Fig. 3 we plotted the dependence
of minimal critical Rayleigh number on the vibrational parameter η = (2PrΩf Rfv/R2

f )
1/2

which does not contain the temperature gradient (it equals to the ratio of the vibrational
to gravitational accelerations) for the short-wave instability mode. As one can see, there
is strong stabilization of this instability mode by vibrations. Note, however, that for the
parameter values under consideration, the long-wave minimum of the neutral curve lies
lower than the short-wave one, i.e., the long-wave instability mode is more dangerous. As it
is seen from Fig. 2a and b, the effect of vibrations on the long-wave instability mode is much
weaker than that on the short-wave mode. As mentioned above, this is related to the fact
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Fig. 2 Neutral curves of the conductive state stability for various values of the vibrational Rayleigh number
Rfv: 1 - Rfv = 0, 2 - Rfv = 1, 000, 3 - Rfv = 5, 000, 4 - Rfv = 10, 000, a h = 3, b h = 8

Fig. 3 Minimal critical Rayleigh
number versus vibrational
parameter η

that the inertial effects in the porous medium are weaker due to the very small values of the
effective permeability ε f . The smallness of the vibration effect on the long-wave instability
mode can be also explained in terms of the vibrational Rayleigh numbers: the ratio of the

vibrational Rayleigh number in porous medium Rpv = (aωAmβT K L)2ω
2bν2χeff

to that in the pure fluid

Rfv = (aωAfβT L3)2ω

2ν2
f χf

is of the order of εf
2, i.e., in our case it is of the order of 10−6 (if both

Rfv and Rpv are defined using the same length scale). Thus, to achieve essential stabilization
of the long-wave instability mode (and thus, for the parameter values under consideration,
essential stabilization in total) we should apply vibrations of much larger intensity.

Let us discuss the results of the investigation of nonlinear regimes and the nature of
convection excitation in the examined two-layer system in the presence of high-frequency
vibrations for two values of the thickness ratio h: h = 3 and h = 8.
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4.1 Thick Porous Layer (h = 8). Implementation of Long-Wave Perturbations

In Fig. 4a and b, the maximum modules of the stream function are plotted versus the thermal
Rayleigh number at various values of the vibrational Rayleigh number Rfv for short-wave
and long-wave modes of stationary solutions corresponding to the neutral curve minima at
h = 8 (Fig. 2b). The calculations were carried out for square cavity using the uniform mesh
with (hx = hy = H ). The long-wave branch was obtained at H = 0.1 and the short-wave
one – at H = 0.04. The main criterion for the generation of these meshes is maintenance of
the optimal balance between the computation time and accuracy of results.

Following Fig. 4, the convection is excited via direct bifurcation both in the presence and
in the absence of vibrations, and at small supercriticalities the flow intensity increases with Rf

according to the square root law for both instability modes. Vibrations do not have a marked
effect on the threshold of the conductive state stability with respect to long-wave perturbations
(Fig. 4a), in contrast to the case of short-wave perturbations, which are strongly stabilized by
vibrations (Fig. 4b). Thus, the nonlinear calculations confirm the results obtained with the
use of the linear stability analysis (Fig. 2).

As it was shown in Kolchanova et al. (2013), in the absence of vibrations, with increasing
supercriticality up to a certain value, the large-scale stationary flow becomes unstable and is
replaced by the oscillatory regime. At even higher values of supercriticality the flow again
transfers to a stationary regime, which however has a different structure (the black solid curve
at Fig. 4a). Figure 5a shows variation of the maximum module of the stream function in the
absence and in the presence of vibrations for Rfv = 200. It can be seen that vibrations lead to
a decrease in the range of Rf in which a stationary solution does not exist. The calculations
carried out at different values of the vibrational Rayleigh number show that at Rfv = 330
the indicated range completely disappears (Fig. 5b) and stable stationary convective regimes
are observed at all values of Rf . According to the obtained estimates, the supercriticality
range, corresponding to the oscillatory regime of the convection, completely disappears at
the vibrational acceleration aω2 = (2PrΩf Rfv/R2

f )
1/2g ≈ 0.34g.

Let us compare the change of the flow structure during oscillations in the absence or in
the presence of vibrations at the same intensity of heating (Rf = 600). Figures 6 and 7

Fig. 4 The maximum module of the stream function versus thermal Rayleigh number at h = 8 and various
values of the vibrational Rayleigh number Rfv: a long-wave mode of instability (with wave length l = 16), b
short-wave mode of instability (with wave length l = 3)
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Fig. 5 Long-wave mode of stationary solutions: a dependences of maximum module of the stream function
on the thermal Rayleigh number at two different values of the vibrational Rayleigh number Rfv: Rfv = 0
(solid line), Rfv = 200 (dashed line). b the dependence of the thermal Rayleigh number determining the lower
and upper limits of the oscillatory regime existence on the vibrational Rayleigh number

Fig. 6 The long-wave mode of stationary solutions at Rf = 600 (after the loss of stability of stationary
solutions) in the absence of vibrations: a the dependence of the maximum module of the stream function
on time, b the dependence of the maximum module of the stream function on time within the 1.5th of the
oscillation period determined by the minimum frequency

present the oscillation modes of the maximum module of the stream function at Rfv = 0 (in
the absence of vibrations) and at Rfv = 200. The Fourier spectra of the oscillations in the
absence and in the presence of vibrations are shown in Fig. 8. It can be seen, that with the
growth of the vibrational Rayleigh number the amplitude of oscillations decreases (see Figs.
6a, 7a) and the period of oscillations increases (see Figs. 6b, 7b). In this case, the spectrum
of oscillations is shifted toward the low-frequency range (Fig. 8b).

A rearrangement of the flow structure with a change of the thermal Rayleigh number is
illustrated in Fig. 9, which presents the stream function fields for Rfv = 200 at the instants
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Fig. 7 The long-wave mode of stationary solutions at Rf = 600 and Rfv = 200 (after the loss of stability
of stationary solutions): a the dependence of the maximum module of the stream function on time, b the
dependence of the maximum module of the stream function on time within the 1.5th of the oscillation period
determined by the minimum frequency

Fig. 8 Fourier spectra of oscillations of the maximum module of the stream function for the long-wave
instability mode at Rf = 600 (after the loss of stability of the stationary solution): a in the absence of
vibrations, b in the presence of vibrations (Rfv = 200)

of time corresponding to dots in Fig. 7b. As it was shown in Kolchanova et al. (2013),
in the absence of vibrations a large-scale vortex occupying both layers coexists with the
vortices located in the fluid layer. During oscillations one of the additional vortices gradually
increases in size. This growth proceeds in an orderly fashion until the vortex is separated
and reconnected to the adjacent additional vortex formed in the region of the upstream flow.
Then the process is repeated. In the presence of vibrations a qualitative change in the flow
structure during oscillations occurs in the same way as in the case of the static gravity field:
a moderate growth of one of the additional vortices (Fig. 9a, b) is followed by its separation
and reconnection to the adjacent additional vortex (Fig. 9c–e). The main difference from the
vibration-free case is that in the presence of vibrations the growth of one of the additional
vortices takes more time (points 1 and 2 in Figs. 6b, 7b) and the number of reconnections of
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Fig. 9 The stream function for long-wave instability mode at Rf = 600 and Rfv = 200 (after the loss of
stability of the stationary solution stability) at various time intervals within the 1.5th of the oscillation period
determined by the minimum frequency at points indicated in Fig. 7b: a t = 240.1 (point 1), b t = 273.2 (point
2), c t = 276.2 (point 3), d t = 278.1 (point 4), e t = 278.9 (point 5), f t = 286.8 (point 6). The streamlines
are spaced at the same intervals equal to 0.2

additional vortices during one period determined by the minimum oscillation frequency is
much less (see curve maxima in Figs. 6b, 7b).

We compared the structure of convective flows at finite supercriticalities for two values
of Rfv: Rfv = 0 (aω2 = 0) and Rfv = 5, 000 (aω2 = (2PrΩf Rfv/R2

f )
1/2g ≈ 0.87g, where

Rf = 880). Figure 10 shows the streamlines for the long-wave instability mode at Rf = 880
in the absence and in the presence of vibrations with Rfv = 5, 000, respectively. As is seen
from Fig. 10a, in the absence of vibrations, apart from the main large-scale vortex occurring
in both layers there are two additional vortices formed in the fluid layer in the downstream
region. In the presence of vibrations and at the value of the Rayleigh number (Rf = 880)
identical to that used in the vibration-free case, additional vortices in the fluid layer do not
arise (Fig. 10b).

For the short-wave instability mode in the considered range of parameters the flow struc-
ture (Fig. 11) and the maximum value of the stream function (Fig. 4b) obtained at the thermal
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Fig. 10 The structures of the stationary flow for the long-wave instability mode at h = 8 and Rf = 880 for
two values of the vibrational Rayleigh number Rfv: a Rfv = 0, b Rfv = 5, 000. The streamlines are spaced
at the same intervals equal to 0.4

Fig. 11 The structures of the
stationary flow for the long-wave
instability mode at h = 8 and
Rf = 4, 500 for two values of the
vibrational Rayleigh number Rfv:
a Rfv = 0, b Rfv = 5, 000. The
streamlines are spaced at the
same intervals equal to 0.2

Rayleigh number Rf = 4, 500, widely deviating from the threshold value, do not actually
depend on the vibration intensity. This is explained by the fact that with increasing supercrit-
icality the perturbations begin to penetrate into the porous layer where the inertial effects are
less pronounced than in the pure fluid layer (Fig. 11). However, near the threshold an increase
in the vibrational Rayleigh number Rfv results in a significant difference in the values of the
stream functions (Fig. 4b), which is related to the occurrence and original localization of the
convective flow in the fluid layer.

4.2 The Interaction of the Long-Wave and Short-Wave Instability Modes

Let us analyze and compare the stationary solutions in the case of close threshold values
of the thermal Rayleigh number for short-wave and long-wave instability modes at h = 3
(see Fig. 2a) and various intensities of vibrations. Figure 12 shows the dependence of the
maximum module of the stream function on the thermal Rayleigh number at different values
of the vibrational Rayleigh number Rfv (the size of the computational domain is defined by
the size of the long-wave vortex with the wave number k ≈ π/4.5 corresponding to the
minimum of the neutral curve 1 in Fig. 2a at Rfv = 0).

As it is shown in Kolchanova et al. (2013), in the absence of vibrations, the long-wave
vortex emerging near the threshold loses its stability with increase of supercriticality and
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Fig. 12 The interaction between the long-wave and short-wave modes of stationary solutions at h = 3. The
dependence of the maximum absolute stream function on the thermal Rayleigh number: a at various values
of the vibrational Rayleigh number Rfv (1 - Rfv = 0, 2 - Rfv = 500, 3 - Rfv = 1, 000, 4 - Rfv = 2, 200, 5 -
Rfv = 3, 000, 6 - Rfv = 5, 000), b at Rfv = 3, 000

breaks down into a few short-wave vortices located in the fluid layer; with a further increase of
Rf the intensity of the steady motion in this layer grows in accordance with the square root law
(see a part of the curve 1 at large supercriticalities in Fig. 12a). A transition mode corresponds
to the arc-shaped part of curve 1 in Fig. 12 (the part of the curve at low supercriticalities).
In the absence of vibrations the size of the region of transition modes increases with the
growth of Rfv (see curve 2 and 5 in Fig. 12a). This is attributed to the fact that the short-wave
perturbations are strongly stabilized by vibrations in contrast to the long-wave perturbations,
for which the effect of vibrations is considerably weaker (see curves 2–4 in Fig. 2a).

At sufficiently high intensities of vibrations (Rfv > 1, 000) there is an abrupt transition to
another branch of the steady flows (curves 4, 5, 6 in Fig. 12a). In the absence of vibrations
(curve 1) this transition is not observed. The calculations made in the case of inverse change
in the thermal Rayleigh number from large to small values, reveals a hysteresis effect: over
some range of Rf the solution is ambiguous.

Figure 13 illustrates the rearrangement of the steady-state flow structure caused by vari-
ation of the thermal Rayleigh number at a fixed value of the vibrational Rayleigh number
Rfv = 3, 000 (the figure shows the flow structure at the points indicated by dots in Fig. 12b).
As it is readily seen, the main long-wave vortex occurs near the threshold (Fig. 13a, point 1
in Fig. 12b). With the growth of the Rayleigh number the center of this vortex is shifted to the
interface between the upward flows (Fig. 13b, point 2 in Fig. 12b). With a further increase of
the Rayleigh number the main vortex is supplemented by a number of small vortices arising
in the fluid layer and rotating in the same direction as the main vortex (Fig. 13c, the point
3 in Fig. 12b). As supercriticality grows further, the number of additional vortices in the
fluid layer increases and there appear a number of vortices rotating in the opposite direction
relative to the main large-scale vortex. (Fig. 13d, point 4 in Fig. 12b). In the range of Rayleigh
number values 1384 < Rf < 1420 the stationary solution is ambiguous. Thus, at Rf = 1390
there are two stable regimes of convection, the intensity of which is determined by the value
of the maximum module of the stream function at points 3 and 5 in Fig. 12b. The structure of
flows in a fluid layer for these two regimes is shown Fig. 14 on a larger scale. It is seen that a
gradual increase of Rf leads to the onset of convective regime characterized by co-existence

123



254 D. Lyubimov et al.

Fig. 13 The structures of the stationary flow near the onset of convection in the case of the interaction
between the long-wave and short-wave instability modes at h = 3, Rfv = 3, 000 and different values of the
thermal Rayleigh number at points indicated in Fig. 12b: a Rf = 1, 330 (point 1), b Rf = 1, 360 (point 2),
c R f = 1, 390 (point 3), d Rf = 1, 410 (point 4), e Rf = 1, 390 (point 5), f R f = 1, 410 (point 6), g
Rf = 1, 450 (point 7), h Rf = 1, 466 (point 8). The streamlines are spaced at the same intervals equal to 0.03

of the main large-scale vortex and additional vortices located in a fluid layer and rotating
in the same direction as the main one (Fig. 14a). And in the case of gradual decrease of Rf

or when the initial supercriticality is set equal to a high value, the regimes of convection
are excited in a finite-amplitude manner and involve the formation of additional vortices in
the fluid layer rotating in the opposite direction relative to the direction of the main vortex
(Fig. 14b). In this case, the flow in the fluid layer is more intensive than in the case of a
gradual increase of Rf . In the range of the Rayleigh number values Rf > 1, 420 there is the
stationary solution, for which the intensity of additional vortices increases with the increase
of supercriticality (Fig. 13g, point 7 in Fig. 12b), and the main large-scale vortex loses its
stability and breaks into several short-wave vortices (Fig. 13h, point 8 in Fig. 12b).
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Fig. 14 The structures of the stationary flow in the fluid layer for case of the interaction between the long-wave
and short-wave instability modes at h = 3, Rfv = 3, 000, Rf = 1, 390 at points marked in Fig. 12b: a point
3, b point 5. The contour values for streamlines are of the same interval equal to 0.08. Solid lines correspond
to positive values of the stream function, dashed lines – to negative values of the stream function

5 Conclusion

We have investigated the onset and nonlinear regimes of convection in a two-layer system
composed of horizontal pure fluid layer and fluid-saturated porous layer subjected to the
gravity field and high-frequency vibrations.

Previous investigations of linear stability of a conductive state of superposed horizontal
pure fluid layer and saturated porous layer have shown that in some range of the ratios of
porous layer to fluid layer thicknesses h the neutral curves of the conductive state instability
are bimodal: there exist long-wave instability mode when perturbations cover both layers and
short-wave instability mode when perturbations develop in the fluid layer. We have performed
the calculations for two values of h: for comparable layer thicknesses h = 3 when the critical
Rayleigh numbers determining the thresholds of the conductive state instability with respect
to the long-wave and short-wave perturbations are close and for h = 8 (thick porous layer)
when the long-wave perturbations are more dangerous.

High-frequency vertical vibrations exert stabilizing effect on both instability modes,
besides, the effect of vibrations on the short-wave perturbations located in the fluid layer
is much stronger than on the long-wave perturbations occurring in both layers since the iner-
tial effects in the porous medium are weak compared to the pure fluid layer (typical values
of the effective permeability ε f are small).

Investigation of the convection excitation type has shown that in both cases convection is
excited via direct bifurcation.

The study of nonlinear regimes of convection in the absence of vibrations have shown that
in the case, when the thickness of the fluid layer is small compared to the thickness of the
porous layer (h = 8) and a long-wave mode of convection predominates, with the growth
of supercriticality the steady-state regime losses its stability and is replaced by oscillatory
regime. With further growth of supercriticality the oscillatory regime in its turn becomes
unstable and is replaced again by steady-state regime. The transition to the oscillatory regime,
in our opinion, is related to the stability loss of the conductive state in a fluid layer: additional
vortices generated as a result of this instability are located in the fluid layer. The instability is of
the oscillatory nature; during oscillations the reconnection of additional vortices is observed.
With further growth of the Rayleigh number the large-scale vortices covering porous and
fluid layers and additional vortices formed in the fluid layer merge and a steady-state regime
of convection is re-established.

Vertical vibrations usually stabilize the conductive state of the fluid heated from below.
In the examined situation, they also have a stabilizing effect: they prevent the occurrence
of the additional vortices in the fluid layer and thus increase the threshold of the oscillatory
regime of convection. As it follows from the calculations, vibrations also reduce the Rayleigh
number, at which the oscillatory convective regime is again replaced by the stationary regime.
Thus, vibrations reduce the range of parameters responsible for the oscillatory regime, so that
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at sufficiently high vibration intensity and at any values of the supercriticality the steady-state
regime of convection takes place.

For comparable thicknesses of the fluid and porous layers (h = 3) we have investigated
the interaction between the short-wave and long-wave instability modes near the threshold
of convection and the development of convection with a nearly five-fold increase in the
supercriticality. In this case in the absence of vibrations with the supercriticality growth
the large-scale vortex occurring near the threshold of the conductive state instability and
spreading through both layers is splitted into several short-wave vortices located in the fluid
layer. Under the action of vibrations the rearrangement of the structure flow with the growth of
supercriticality generally follows the same scenario as in the absence of vibrations. However,
at sufficiently large values of vibration intensity the solution becomes nonunique in some
range of the Rayleigh numbers, and a change in the supercriticality leads to hysteresis. In this
case, if the initial supercriticality is assigned high value, the arising flow structure involves
the main large-scale vortices and a few additional vortices generated in the fluid layer in the
direction opposite to the direction of the large-scale vortices.

The work was made under financial support of Russian Scientific Foundation (grant N
14-21-00090).
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