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Abstract Acidizing technology has been widely applied when developing naturally
fractured–vuggy reservoirs. So testing and evaluating acidizing wells’ pressure behavior
become necessary for further improving the wells’ performance. Analyzing transient pres-
sure data can estimate some key reservoir parameters. Generally speaking, carbonate minerals
are usually composed of dolomite and calcite which are easy to be dissolved by hydrochlo-
ric acid which is often used to react with the rock to create a high conductivity channel,
namely wormhole. Pressure transient behavior in fractured–vuggy reservoirs has been stud-
ied for many years; however, the models of acidizing wells with wormholes were not reported
in previous studies. This article presented an analytical model for wormholes in naturally
fractured–vuggy carbonate reservoirs, and wormholes solutions were obtained through point
sink integral method. The results were validated accurately by comparing with previous
results and numerical simulation. Then in this paper, type curves were established to recog-
nize the flow characteristics, and flow was divided into six flow regimes comprehensively.
The calculative results showed that the characteristics of type curves were influenced by
inter-porosity flow factor, wormhole number, fluids capacitance coefficient. We also showed
that the pressure behavior was affected by the angles between wormholes, and the pres-
sure depletion increased as the angle decreased, because the wormholes were closer, their
interaction became stronger. At the end, a reservoir example was showed to demonstrate the
methodology of new type curve analysis.
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List of Symbols

Dimensionless Variables: Real Domain

pD Dimensionless pressure
d pD Dimensionless pressure derivative

Dimensionless Variables: Laplace Domain

s Time variable in Laplace domain, dimensionless
p̃D The dimensionless pressure pD in Laplace domain

Field Variables

cM Matrix compressibility (1/psi)
cV Vugs compressibility (1/psi)
cf Fractures compressibility (1/psi)
km Matrix permeability (mD)
kv Vugs permeability (mD)
kf Fractures permeability (mD)
pi Initial pressure (psi)
pf Fractures pressure (psi)
pv Vugs pressure (psi)
pm Matrix pressure (psi)
μ Fluid viscosity (cp)
h Formation thickness (ft)
φm Matrix porosity (fraction)
φf Fractures porosity (fraction)
φv Vugs porosity (fraction)
rw Wellbore radius (ft)
r The radius for any position in the reservoir (ft)
r ′ The radius for source position in the reservoir (ft)
re Equivalent drainage radius (ft)
t Time variable (h)
h Formation thickness (ft)
xf Wormhole length (ft)
N Wormhole number

Special Functions

K0(x) Modified Bessel function (2nd kind, 0 order)

Special Subscripts

D Dimensionless
w Wellbore property
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1 Introduction

Characterizing vuggy fractured rock has gained an increasing worldwide attention because
many fractured vuggy reservoirs have been found by many countries such as Canada and
China (Kossack and Curpine 2001; Rivas-Gomez et al. 2001; Camacho-Velázquez et al.
2005; Wu et al. 2006, 2007); however, complex pore systems in fractured–vuggy reservoirs
are posing significant research challenges (Noushabadi 2011; Popov et al. 2009; Rzonca
2008; Guo et al. 2012).

Generally speaking, fractured–vuggy porous media are composed of matrix, fractures, and
vugs systems and have varying properties such as porosity, permeability, and fluid transport
behaviors (Liu et al. 2003; Mai and Kantzas 2007; Guo et al. 2012). Recently, many scholars
have made some efforts to simulate the fluids flow and transport behaviors in fractured–vuggy
reservoirs through numerical simulation and analytical methods (Arana et al. 2009; Akram et
al. 2010; Cobett et al. 2010; Djatmiko and Hansamuit 2010; Gulbransen et al. 2010; Leveinen
2000; Guo et al. 2012; Wu et al. 2006, 2007; Yao et al. 2010). Arana et al. (2009) presented
a very practical and simple technique to numerically simulate the multiphase flow in multi-
porosity naturally fractured reservoirs. Akram et al. (2010) modeled the dynamic behavior of
a fissured dual-carbonate reservoir with discrete fracture network, and the results showed the
dynamic features of the reservoir and demonstrated how the simulation model was calibrated
using all variable information, particularly, the pressure buildup. Cobett et al. (2010) studied
the numerical well test modeling of fractured carbonate rocks, and showed that numerical well
testing had its limitations, especially when simulating disperse vugs. Djatmiko and Hansamuit
(2010) presented some techniques to identify vugs in a real pressure buildup data, and their
technique could be used to quantify vugs from well testing when analytical dual porosity
or triple porosity model was unable to handle all matrix-to-fracture inter-porosity flow due
to reservoir heterogeneity. Gulbransen et al. (2010) developed a multi-scale mixed finite-
element (MsMFE) method for detailed modeling of vuggy and naturally fractured reservoirs.
Guo et al. (2012) established a test analysis model of a horizontal well, and triple porosity
and dual permeability flow behavior were modeled; their results showed that type curves
were dominated by external boundary conditions as well as the permeability ratio of fracture
system to the sum of fracture and matrix systems. Wu et al. (2007) proposed an analytical
approach for pressure transient test analysis in naturally fractured–vuggy reservoirs, and
analytical solutions were obtained. Finally, actual well test data from a fractured–vuggy
reservoir in Western China were analyzed by using their model.

During oil and gas development, the near well zone is often damaged by well drilling and
completion, fines migration, and other operations, which hinders the hydrocarbons flow into
the well. In this case, the near well zone needs to be treated to improve fluids flow ability
(Liu et al. 2013). Carbonate minerals are usually composed of dolomite and calcite which
are easy to be dissolved by hydrochloric acid (Fredd 2000), which is often used to react with
the rock to create a high conductivity channel, namely wormhole, so that hydrocarbons can
bypass the damaged zone, called as carbonate acidizing. At present, carbonate acidizing has
been widely implemented into fractured–vuggy reservoirs. Therefore, wormhole propagation
problems have been studied by many researchers (Sollman et al. 1990; Gdanski 1999; Hung
and Sepehrnoori 1989; Jia et al. 2013; Yuan 1999; Huang et al. 1999; Fredd 2000; Wang and
Chen 2004; Tremblay 2005; Istchenko and Gates 2011, 2012; Liu et al. 2013), and most of
above papers studied the mechanism of wormhole forming. Their results showed that acid
selectively flowed into the big pores to create wormhole structures, which could be divided
into five main types of dissolution structures: 1. Face dissolution. 2. Conical wormholes.
3. Dominant wormholes. 4. Ramified wormholes. 5. Uniform dissolution. The transition
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from dissolution structure 1–5 is commonly observed as acid injection rate increases (Fredd
2000).

Wormholes were not considered into the above models presented by those authors (Arana
et al. 2009; Akram et al. 2010; Cobett et al. 2010; Djatmiko and Hansamuit 2010; Gulbransen
et al. 2010; Leveinen 2000; Guo et al. 2012; Wu et al. 2006, 2007; Yao et al. 2010). Most
of the authors studied the pressure transient behaviors of only vertical wells or horizontal
wells. At present, there is no analytical model or numerical model presented on the worm-
holes in naturally fractured–vuggy porous media. In this paper, a wormhole seepage model
for fractured–vuggy carbonate reservoirs was investigated for the first time. The rest of the
article was structured as follows: Sect. 2 will introduce physical assumptions on physical
properties in naturally fractured–vuggy reservoirs which were conceptualized as multiple-
continuum medium, consisting of highly permeable fractures, low-permeability rock matrix,
vugs, and multi-branched wormholes with high conductivity. Section 3 established the math-
ematical model, and the point source solution was obtained by using Laplace transformation.
Then, multi-branched wormholes solutions were presented through using point sink integral
method. Section 4 established type curves and analyzed the flow characteristics, and showed
the effect of some key parameters on type curves. Finally, a case example was matched with
type curves.

2 Physical Modeling

Fractured–vuggy carbonate reservoirs with multi-branched wormholes are naturally struc-
tured by matrix system, fractures system, vugs system. (See Fig. 1a–c). Figure 2 shows
the physical modeling scheme of fractured–vuggy carbonate medium. As shown in Fig. 2,
four types of systems are relatively independent. Similar to the conventional double-porosity
model (Warren and Root 1963), fractures are considered as main pathways of global flow,
connected with multi-branched wormholes, and ultimately fluids flowed from multi-branched
wormholes into the wellbore.

The fracture–vug–matrix–wormhole system can be conceptualized as consisting of
(1) fractures, (2) vugs, (3) matrix, (4) and wormholes. With those conceptualizations above,
the assumptions of physical model are as follows:

(1) Sugar cube fractures as seen in classical multiple porosity media models are used in this
article (Warren and Root 1963; Wu et al. 2006, 2007); the shape of matrix blocks and
vugs varied with different shapes with different geometric shape factors αfv, αfm, and
αvm (Wu et al. 2007; Cobett et al. 2010).

(2) All rock properties (including matrix, natural fractures, vugs), such as permeability and
porosity, are constant. Fluids compressibility and viscosity are assumed to be constant.
The formation thickness is constant.

(3) Wormholes are conceptualized as vertical plates extending from the top to the bottom
of the domain in vertical direction (z axis). In horizontal direction (x − y plate), each
wormhole looks like a line which has a length xf .

(4) The external boundary of the reservoir in the radial direction (r axis direction) is infinite.
The top boundary of the reservoir is closed or impermeable, and the bottom boundary
of the reservoir is also closed or impermeable.

(5) Isothermal and Darcy flow are assumed.
(6) The total production of multi-branched wormholes is equal to total production Q.
(7) The well is considered into a point sink at changing rate q(t).
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Fig. 1 Schematic diagram: a fractured–vuggy carbonate reservoirs with multi-branched wormholes. b The
system of matrix, fractures, vugs. c Wormholes

Fig. 2 Physical modeling
scheme of fractured–vuggy
carbonate medium

(8) At the starting time of production, the pressure is uniformly distributed and is equal to
the initial pressure (pi).

3 Mathematical Modeling

3.1 The Governing Equations

To obtain wormhole pressure solution, point source model should be first established. It
is well known that fluids flow only occurs in the natural fracture system in naturally
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Fig. 3 Wellbore multiple wormholes model

fractured–vuggy porous media. Now to establish fracture equation, we consider a unit volume.
Eq. (1) shows the results. The first term in the right of governing equation represents change
of the mass flow flux under unit time in the unit volume. The first term in the left of governing
equation represents the difference between mass flow in and mass flow out in the unit vol-
ume. The second term in the left of governing equation represents inter-porosity flow volume
from the matrix into the fractures. The third term in the left of governing equation represents
inter-porosity flow volume from the vugs into the fractures (Liu et al. 2003; Wu et al. 2006,
2007):

kf

μ

1

r

∂

∂r

(
r
∂pf

∂r

)
− φmcmm

∂pm

∂t
− φvcv

∂pv

∂t
= φf cf

∂pf

∂t
. (1)

When vugs are regarded as unit volume, the total change of mass flow flux in unit volume
of the vugs is the sum of inter-porosity outflow volume from vugs into the fractures, and
inter-porosity outflow volume from the vugs into the matrix, which could be seen from the
direction of the arrow in Fig. 3,

φvcv
∂pv

∂t
= αfvkv

μ
(pf − pv) + αvmkm

μ
(pm − pv). (2)

Similarly, when matrix is regarded as the unit volume, the total change of mass flow flux
in unit body of the matrix is the sum of inter-porosity outflow volume from matrix into the
fractures, and inter-porosity inflow volume from the vugs into the matrix,.

φmcm
∂pm

∂t
= αfmkm

μ
(pf − pm) + αvmkm

μ
(pv − pm). (3)

The initial condition is
pf (r, 0) = pv(r, 0) = pm(r, 0) = pi. (4)
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Table 1 Dimensionless variables Parameters Definitions

Dimensionless time tD = kf t
μx2

f (φmcm+φvcv+φf cf )

Dimensionless pressure pD = 2πkf h(pi−pf (r,t))
μQ

Dimensionless radius rD = r
xf

Fracture–Matrix inter-porosity
coefficient

λfm = αfm x2
f km

kf

Fracture–Vug inter-porosity
coefficient

λfv = αfvx2
f kv

kf

Vug–Matrix inter-porosity coefficient λvm = αvm x2
f km

kf

Fracture capacitance coefficient ωf = φf cf
φmcm+φvcv+φf cf

Vug capacitance coefficient ωv = φvcv
φmcm+φvcv+φf cf

Matrix capacitance coefficient ωm = φmcm
φmcm+φvcv+φf cf

Dimension point source rate qD(t) = q(t)xf
Q

Outer boundary at constant pressure for infinite system can be expressed as

pf (r → ∞, t) = pv(r → ∞, t) = pm(r → ∞, t) = pi. (5)

In this paper, inner boundary condition of point source which is different from that given by
Wu et al. (2007) can be decided by a changing flow rate, q(t), imposed to the wellbore. It
can be given as

2πrwkf h

μ

∂pf

∂r
(rw → 0, t) = q(t). (6)

Equations (1)–(6) can be redefined by using dimensionless quantities which are listed in
Table 1. The dimensionless equations are defined as following:

ωf
∂pDf

∂tD
− 1

rD

∂

∂rD

(
rD

∂pDf

∂rD

)
− λfv(pDv − pDf ) − λfm(pDm − pDf ) = 0. (7)

ωv
∂pDv

∂tD
+ λfv(pDv − pDf ) + λvm(pDv − pDm) = 0. (8)

ωm
∂pDm

∂tD
+ λfm(pDm − pDf ) − λvm(pDv − pDm) = 0. (9)

Initial condition is

pDf (rD, 0) = pDv(rD, 0) = pDm(rD, 0) = 0. (10)

Outer boundary condition is
pDf (rD → ∞, tD) = 0. (11)

Inner boundary condition is

− rD
∂pDf

∂rD rD→0
= qD(tD). (12)
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3.2 The Point Source Solution in Laplace Space

The Laplace transform is based on tD and functions as follows

p̃D(rD, s) =
∫ ∞

0
pD(rD, tD)e−stD dtD. (13)

Applying the Laplace transformation to Eqs. (7)–(12), we have

ωf s p̃Df − 1

rD

∂

∂rD

(
rD

∂ p̃Df

∂rD

)
− λfv( p̃Dv − p̃Df ) − λfm( p̃Dm − p̃Df ) = 0. (14)

ωvs p̃Dv + λfv( p̃Dv − p̃Df ) + λvm( p̃Dv − p̃Dm) = 0. (15)

ωms p̃Dm + λfm( p̃Dm − p̃Df ) − λvm( p̃Dv − p̃Dm) = 0 (16)

Outer boundary condition is
p̃Df (rD → ∞, s) = 0. (17)

Inner boundary condition is

− rD
∂ p̃Df

∂rD rD→0
= q̃D(s). (18)

Substituting the vug and matrix equations of (15) and (16) into the fracture equation (14),
we can obtain

1

rD

∂

∂rD

(
rD

∂ p̃Df

∂rD

)
− sg(s) p̃Df = 0, (19)

where

g(s) = wf + (λfv + λfm)s + 1−ωf
ωvωm

[λfvλfm + (λfv + λfm)λvm]

s2 +
[

λfv
ωv

+ λfm
ωm

+
(

1
ωv

+ 1
ωm

)
λvm

]
s + λfvλfm+(λfv+λfm)λvm

ωvωm

. (20)

The general solution of Eqs. (17)–(19) could be expressed as

p̃Df = q̃D(s)K0(RD
√

sg(s)). (21)

Equation (21) represents a point source solution in Laplace space.

3.3 Multi-branched Wormholes Solution

The points (r, θ) and (r ′, θ ′) represent the any position and source position in the reservoir,
respectively. And R represents the distance from any point to source position. Therefore, as
is known, the following relationships can be given in the polar coordinates:

R =
√

r2 + r ′2 − 2r ′r(cos θ cos θ ′ + sin θ sin θ ′). (22)

Equation (22) can be re-written as following by defining the dimensionless variables rD =
r/xf and β = r ′/xf

RD =
√

r2
D + β2 − 2rDβ cos(θ − θ ′). (23)

Using point sink integral method, for a single wormhole solution in polar coordinates,
Equation (21) can become

p̃Df (RD, s) =
∫ 1

0
q̃Df (β, s)K0

(
RD

√
sg(s)

)
dβ. (24)
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As shown in Fig. 3, near wellbore, multiple wormholes are composed of a finite number, N ,
of wormholes with the same length, xf . The dendritic wormholes are assumed to be vertical
and to extend from the top to the bottom of the formation of thickness h, and the wormholes
have infinite conductivity. The well is located at the center and the radius of the well is rw.

Consider N multiple wormholes as shown in Fig. 3. With the solution given in Eq. (24)
for a single wormhole and the method of superposition, the following expression in the
Laplace space to compute the dimensionless pressure at any point of the reservoir due to the
production of N wormholes can be obtained

p̃Df (RD, s) =
n∑

k=1

∫ 1

0
q̃Dfk(β, s)
k(RDk, s)dβ, (25a)

where

k(RDk, s) = K0

(
RDk

√
sg(s)

)
, (25b)

and

RDk =
√

r2
D + β2 − 2rDβ cos(θ − θfk), (25c)

where (rD, θ) and (β, θfk) are the polar coordinates in the reservoir and along the kth worm-
hole, respectively.

If uniform flux distribution along the wormholes, Eq. (25) for the j th wormhole at θ = θf j

can be evaluated as

p̃Df j (RD jk, s) =
n∑

k=1

q̃Dfk

∫ 1

0

 jk(RD jk, s)dβ, (26a)

With

RD jk =
√

r2
D + β2 − 2rDβ cos(θf j − θfk). (26b)

Integrating Eq. (26a) along the j th wormhole approximates the infinite conductivity wellbore
condition, Eq. (26a) can be written as

p̃Df j (RD jk, s) =
n∑

k=1

∫ 1

0

∫ 1

0
q̃Dfk
 jk(RD jk, s)dβdrD. (27)

The integral of the flux along the wormholes should be equal to the total well flow rate, and
thus we have

Flux equation
n∑

k=1

q̃Dfk = 1

s
, (28)

Writing Eq. (27) for each wormhole, requiring the pressure at each wormhole be equal to
the wellbore pressure p̃Dw(s), will produce n + 1 equations with n + 1 unknowns. These
equations can be obtained in a matrix form as

⎡
⎢⎢⎢⎢⎣

δ11 δ12 . δ1n −1
δ21 δ22 . δ2n −1
. . . . .

δn1 δn2 . δnn −1
1 1 . 1 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

q̃Df1

q̃Df2

.

q̃Dfn

p̃Dw

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0
0
0
0
1
s

⎤
⎥⎥⎥⎥⎦ (29)
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Fig. 4 Validation for numerical simulation

where

δ jk =
∫ 1

0

∫ 1

0

 jkdβdrD (30)

The solution for the matrix system given in Eq. (29) yields wellbore pressure. The Laplace
space solution can be numerically inverted by using the Stehfest algorithm (Stehfest 1970).

4 Results and Discussions

4.1 Validation of the Presented Solution

Figure 4 compares the results from this work and those computed data with commercial soft
Eclipse with four wormholes. The input parameters are listed in Table 3 and g(s) in Eq. (24) is
set to be 1. Eclipse uses the numerical solution for four wormholes. The comparison suggests
that the results from this work are highly consistent with the results from commercial soft.
Thus far, the eight wormholes model is hard to simulate by using Eclipse. There we could
not validate more wormhole number through numerical simulation.

As early as Kuchuk and Brigham (1979), Kuchuk and Brigham studied the analytical
solutions for two wings of fracture at the angle of 180◦ in homogeneous reservoirs. To
compare our solution with theirs, we must select a special case in our model. First, the
solution of two branched-wormholes at the angle of 180◦ is used. Second, let the variable
g(s) be equal to 1 and thus our model could be simplified as the solution of homogeneous
reservoirs. As shown in Fig. 5, our results obtained in this paper are consistent with the results
in the literature, which verifies that the results of this paper should be correct.

4.2 Flow Characteristics

The transient transport characteristics are graphically showed by type curves, which can be
used to analyze transient pressure so as to recognize the flow characteristics of fluids in
fractured–vuggy reservoirs. In addition, by Type curves matching, some reservoir property
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Fig. 5 The solution for two
branched-wormholes at the angle
of 180 degrees used to compare
with that in the literature

parameters, such as permeability, skin factor, oil in place, reservoir drainage area, can be
obtained. (Wang et al. 2013; Nie et al. 2012).

On the pressure derivative curves of Fig. 6, the first V-shaped segment represents the
inter-porosity flow from vugs to fractures, and the second V-shaped segment represents the
inter-porosity flow from matrix to fractures and from vugs to matrix. It’s possible that both
the first V-shaped and the second V-shaped segments emerge in linear flow period (as shown
in Fig. 6a), or both of them emerge in the radial flow period (as shown in Fig. 6b), or one
of them emerges in linear flow period and the other one emerges in the radial flow period
(as shown in Fig. 6c). Therefore, according to the emergence of two V-shaped segments
mentioned above, the following three cases are analyzed in detail and the used data is listed
in Table 2:

Case I (See Fig. 6a):
Two V-shaped segments are both appearing in the linear flow regime.

(i) Linear flow regime shows a 0.5 slope straight line on the pressure derivative curve.
(ii) Inter-porosity flow regime (a) is a regime of supplement from vug system to the fracture

system. Inter-porosity flow of vugs system to fracture system takes place first because
the fracture permeability is better than the matrix permeability. The derivative curve
shows the first V-shaped segment.

(iii) Transition flow regime (a) shows 0.5 slope straight line on the pressure derivative curve.
(iv) Inter-porosity flow regime (b) represents the inter-porosity flow regime of matrix system

to fracture system and vug system to matrix system. The pressure derivative curve
also shows the second V-shaped segment. This V-shaped segment is controlled by two
physical processes: one is inter-porosity flow from matrix system to fracture system,
another one is inter-porosity flow from vug system to matrix system.

(v) Transition flow regime (b) also shows a 0.5 slope straight line on the pressure derivative
curve.

(vi) The radial flow regime shows a zero slope straight line on the pressure derivative curve.
In this regime, inter-porosity flows have already finished and the pressure between
matrix, fracture, and vug systems have gone up to a state of dynamic balance.

Case II (See Fig. 6b):
Two V-shaped segments are both appearing in the radial flow regime.

(i) Linear flow regime is that the pressure derivative curve shows a 0.5 slope straight line.
There is no supplement in this regime.
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Fig. 6 Flow regimes can be
divided into the following three
cases: a two V-shaped segments
are both occurring in the linear
flow regime. b Two V-shaped
segments are both occurring in
the radial flow regime. c One of
two V-shaped segments is
occurring in the linear flow
regime and the other is occurring
in the radial flow regime

Table 2 The data used in Fig. 6 Name Value used
in Fig. 6a

Value used
in Fig. 6b

Value used
in Fig. 6c

λfv 300 0.026 300

λfm 1 10−5 0.01

λvm 1 10−5 0.01

ωv 0.04 0.04 0.04

ωf 0.0005 0.0005 0.0005

123



Analytical Modeling of Flow Behavior 551

(ii) Transition flow regime (a) shows zero slope straight line on the pressure derivative
curve.

(iii) Inter-porosity flow regime (a) is a regime of supplement from vug system to the fracture
system. Because fluids in the fractures are rich enough, this regime is found later.

(iv) Transition flow regime (b) also shows zero slope straight line on the pressure derivative
curve.

(v) Inter-porosity flow regime (b) represents the inter-porosity flow regime of matrix system
to fracture system and vug system to matrix system.

(vi) The radial flow regime shows a zero slope straight line on the pressure derivative curve.

Case III (See Fig. 6c):
One of two V-shaped segments is appearing in the linear flow region and the other is

appearing in the radial flow regime.

(i) Linear flow regime is that the pressure derivative curve shows a 0.5 slope straight line.
This regime is similar to Regime 1 of Case 1.

(ii) Inter-porosity flow regime (a) is a regime of supplement from vug system to the fracture
system. This regime is similar to regime 2 of case 1.

(iii) Transition flow regime (a) shows 0.5 slope straight line on the pressure derivative curve.
(iv) Transition flow regime (b) also shows zero slope straight line on the pressure derivative

curve.
(v) Inter-porosity flow regime (b) represents the inter-porosity flow regime of matrix system

to fractures system and vugs system to matrix system.
(vi) The radial flow regime shows a zero slope straight line on the pressure derivative curve.

The type curve shapes are affected by a number of parameters including, inter-porosity flow
factor, wormhole number, fluid capacitance coefficient et al. In addition, both linear flow
regime and radial flow regime are inherent features of fluids flow in porous media. However,
double V-shaped derivative curves are typical of fluids flow in fractured–vuggy carbonate
reservoirs. The first V-shaped segment is due to the occurrence of inter-porosity flow between
vug system and fracture system, and the second V-shaped segment is owing to the occurrence
of inter-porosity flow between vug system and matrix system, and inter-porosity flow between
matrix system and fracture system.

4.3 Parameter Influence

Figures 7, 8, 9, 10, 11 show the influence of parameters (wormhole number N , vugs capac-
itance coefficient ωv, fractures capacitance coefficient ωf , inter-porosity flow coefficient
between vugs and fractures λfv, and inter-porosity flow coefficient between matrix and frac-
tures λfm) on pressure and pressure derivative curves and the same data are listed in Table 3.
The ranges of parameters are presented in Table 4.

Figure 7 shows the effects of the wormhole number N on pressure and pressure derivative
curves. The value of wormhole number N is fixed as 1, 2, 4, and 8, respectively, and the
angle of any two wormholes is same (e.g., four branched wormholes, 90◦). The wormhole
number represents total conductivity near well zone, and a big wormhole number means a
high total conductivity. According to the definition of the dimensionless pressure, a bigger
dimensionless pressure will mean bigger pressure depletion. As shown in Fig. 7a, the dimen-
sionless pressure will cut down as the wormhole number increases and this means a bigger
wormhole number will obtain smaller pressure depletion. During the process of carbonate
acidizing, forming more wormholes can help reduce pressure depletion to improve well pro-
duction. In addition, the dimensionless pressure increases like a ladder as the dimensionless
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Fig. 7 The influence of wormhole number N on type curves: a pressure curves. b Pressure derivative curves

Fig. 8 The influence of vugs capacitance coefficient ωv on type curves: a pressure curves. b Pressure derivative
curves

Fig. 9 The influence of fractures capacitance coefficient ωf on type curves: a pressure curves. b Pressure
derivative curves

time becomes long, which are inherent flow characteristics in fractured–vuggy reservoirs.
The pressure derivative curves can reflect fluids flow behavior in porous media (for example,
linear flow showing 0.5 slope straight line and radial flow showing 0 slope straight line in
derivative curves). Figure 7b shows the effects of wormhole number N on pressure deriva-
tive curves. We can see that the curves for different wormhole number are nearly parallel in
linear flow regime and inter-porosity flow between vug system and fracture system (the first
V-shaped segment); however, the curves are normalized as the dimensionless time increases
and the more the wormhole number, the more soon the curves become normalized. Due to
the same lined angle for any two wormholes, changing of starting and ending time of flow
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Fig. 10 The influence of inter-porosity flow coefficient λfv on type curves: a pressure curves. b Pressure
derivative curves

Fig. 11 The influence of inter-porosity flow coefficient λfm on type curves: a pressure curves. b Pressure
derivative curves

Table 3 The data used in
Figs. 7, 8, 9, 10, 11, 12

Name Value

λfv 300

λfm 1

λvm 1

ωv 0.04

ωf 0.0005

N 4

regime is not obvious, but the difference can be found when any two wormholes are forming
at different lined angles. This point will be discussed in the following section.

The fluid capacitance coefficient of the vug system ωv represents the relative capacity of
fluid stored in a vug system. According to the definitions of fluid capacitance coefficients of
vugs, matrix, fractures, ωv, ωm, ωf listed in Table 1, they are related such that ω f +ωm +ωv =
1. Figure 8 shows the effects of vugs capacitance coefficient ωv on pressure and pressure
derivative curves. When ωf is fixed as 0.0005 and ωv is set as 0.008, 0.04, and 0.1, respectively,
thus ωm will be automatically set as 0.9915, 0.9595, and 0.8995, respectively. The effect of
ωv on pressure curves is shown in Fig. 8a, from which it can be found that we can see there
are two flat segments showing zero slope and the smaller the ωv value is, the shorter the
first flat segment is. Besides, a bigger ωv will lead to smaller pressure depletion. Figure 8b
shows how ωv affects flow characteristics. The first V-shaped segment reflects supplement
from vugs to fractures, and the second V-shape represents the supplement between vugs

123



554 L. Wang et al.

Table 4 The ranges of each
sensitivity variable Range of the variables

λfv > 0

λfm > 0

λvm > 0

0 < ωv < 1

0 < ωf < 1

0 < ωm < 1

N is positive integers

and matrix, between matrix and fractures (See Figs. 10 and 11). As ωv increases, the first
V-shape on the left deepens, and the second V-shape on the right deepens, which indicates
that the supplement of the matrix to fractures will reduce when the vugs have fluids in
abundance.

The fluid capacitance coefficient of the fracture system ωf displays the relative capacity
of fluid stored in a fracture system. The effects of ωf on pressure curves are illustrated in Fig.
9. When ωv is fixed as 0.04 and ωf is set as 0.00002, 0.0001, and 0.0005, respectively, thus
ωm will be automatically set as 0.95998, 0.9599, and 0.9595, respectively. We can see from
Fig. 9a that the effects of ωf on pressure curves are concentrated in the early time. As ωf

increases, the pressure depletion reduces and the first horizontal segment which represents
the supplement segment from vugs becomes shorter. Figure 9b shows the effects of ωf on
pressure derivative curves. As ωf increases, the linear flow regime becomes longer and the
first V-shaped segment rapidly becomes swallow, which means the supplement from vugs
will be decreased owing to rich fluids stored in the fractures.

The inner-porosity flow coefficient between a vug system and a fracture system λfv rep-
resents the starting time of inter-porosity of the vug system to the fracture system. Figure 10
shows the type curves characteristics are affected by λfv values, which are set as 30, 300, and
3000, respectively. As shown in Fig. 10a, the first horizontal segment on the pressure curve
uplifts and the linear flow segment extends upward as λfv decreases, which implies that a
smaller λfv value will cause bigger pressure depletion. The corresponding pressure deriva-
tive curves in Fig. 10b also show the linear flow segment extends upward as λfv decreases;
however, the size of the first V-shape segment is not changing with increasing λfv value,
indicating that only the starting time of supplement from vugs to fractures is influenced by
λfv value but the energy of supplement is not affected by it.

The inner-porosity flow coefficient of a matrix system to a fracture system λfm represents
the starting time of inter-porosity of the matrix system to the fracture system. Figure 11
shows the type curves characteristics affected by λfm value, which are set as 0.1, 1, and 10,
respectively. As shown in Fig. 11a, the second horizontal segment on the pressure curve
uplifts as λfm decreases. The corresponding pressure derivative curves in Fig. 11b also shows
the size of the second V-shaped segment is not changing with increasing λfm value, indicating
that only the starting time of supplement from matrix to fractures is influenced by λfm value
but the energy of supplement is not affected by it.

In a word, the energy is decided by the capacitance coefficients ωv, ωm, ωf , but inter-
porosity flow coefficients λfv and λfm only affect the starting time of supplement between
vugs and fractures, and between matrix and fractures.
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Fig. 12 The pressure is affected by the angles η: a pressure curves. b Pressure derivative curves

4.4 The Effect of Angle of Wormholes on Type Curves

In Fig. 12, the pressure responses for two asymmetric wormholes are presented. One of
the wormholes is in the direction of the x axis and the other one makes an angle η with
the x direction. As shown in Fig. 12a, the pressure is affected by the angles and as the
angle decreases, the pressure depletion increases, because as the wormholes are closer, their
interaction becomes stronger. When the angle of the wormholes is bigger than 90◦, the
pressure curves coincide with each other and the pressure behavior is nearly not affected by
the angle. Figure 12b shows that in the early time and for the angle between the wormholes
bigger than 1◦, the pressure derivative exhibits linear flow, and the duration of the linear flow
is a function of the angle. As the angle decreases, duration of the linear flow ends earlier.
When the angle of the wormholes is bigger than 90◦, the pressure derivative curves coincide
with each other and the flow characteristic is nearly not affected by the angle. Finally, the
late time behavior illustrates that the derivatives are not influenced by the angle and can be
analyzed in conventional method.
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Fig. 13 Type curves are used to
match the data in naturally
fractured vuggy reservoirs

Table 5 Type curves used to
match field-case example

Well A Value

λfv 0.3

λfm 0.00152

λvm 0.00152

ωv 0.039

ωf 0.000052

N 8

Pi 8425.56 Psi

kf 237.6 md

4.5 Case Example

Pressure transient data from acidizing Well A in Tahe oil field which is a naturally fractured
vuggy reservoir in western China are used to make matching by using type curves. Figure 13
presents the buildup data that are used to match by using wormholes model proposed in this
article. The buildup data are so good that two V-shaped segments are observed, representing
inter-porosity flow from vugs to fractures and from matrix to fractures. As shown in Fig. 13,
model results reasonably match both measured pressure and pressure derivative data from
Well A. The corresponding results are presented in Table 5. The wormholes number is equal
to eight, which implies that the level of carbonate acidizing is okay.

5 Conclusions

(1) Based on a multiple-continuum-medium concept, a wormhole model is presented to
analyze flow behavior through fractured–vuggy rock. The proposed multiple-continuum
model is a natural extension of the classic double-porosity model. Analytical solutions
are obtained through point sink integral and Laplace transformation methods.

(2) The solution of two branched-wormholes at the angle of 180 degrees is used to compare
with previous results in the literature. The presented results in this paper are consistent
with the results in the literature, which validates the accuracy of the solution in this paper.

(3) Flow characteristics are proposed in this article, which can be divided into three cases
discussed according to the time of occurrence of the first V-shaped segment and the
second V-shaped segment. Each case is comprehensively sub-divided into six regimes.
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(4) The influence of parameters (wormhole number N , vugs capacitance coefficient ωv,
fractures capacitance coefficient ωf , inter-porosity flow coefficient between vugs and
fractures λfv, and inter-porosity flow coefficient between matrix and fractures λfm) on
pressure and pressure derivative curves are discussed in detail.

(5) The pressure responses for four asymmetric wormholes are presented, and the results
show that the pressure is affected by the angles and as the angle decreases, the pres-
sure depletion increases because as the wormholes are closer, their interaction becomes
stronger and starts to affect the pressure responses. In the process of the development,
to reduce pressure depletion, wormholes should be uniformly distributed.
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