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Abstract Various ideal periodic isotropic structures of foams (tetrakaidecahedron) with
constant ligament cross section are studied. Different strut shapes namely circular, square,
diamond, hexagon, star, and their various orientations are modeled using CAD. We performed
direct numerical simulations at pore scale, solving Navier–Stokes equation in the fluid space to
obtain various flow properties namely permeability and inertia coefficient for all shapes in the
porosity range, 0.60 < ε < 0.95 for wide range of Reynolds numbers, 10−6 < Re < 3000.
We proposed an analytical model to obtain pressure drop in metallic foams in order to correlate
the resulting macroscopic pressure and velocity gradients with the Ergun-like approach. The
analytical results are fully compared with the available numerical data, and an excellent
agreement is observed.

Keywords Strut diameter · Pore diameter · Morphology · Pressure drop · Permeability ·
Inertia coefficient
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�P Pressure drop (Pa)
�x Length of fluid medium (m)
K Forchheimer permeability (m2)
K ′ Darcian permeability (m2) (Eq. 7)
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β Inertia coefficient (polynomial curve) (m−1)
β ′ Forchheimer inertia coefficient (m−1) (Eq. 13)
Vs Solid volume of foam (m3)
VT Volume of octahedron (m3)
V Superficial fluid velocity (m s−1)
A Ergun parameter (dimensionless)
B Ergun parameter (dimensionless)
f Universal inertial coefficient (dimensionless)
Rec Critical Reynolds number (dimensionless)
Dp Particle diameter (m)
Re Reynolds number (dimensionless)
ac Specific surface area (m−1)
dp Pore diameter (m)
dcell Cell diameter (m)
∇ P Pressure gradient (Pa m−1)
∇〈P〉 Average Pressure gradient (Pa m−1)
〈V 〉 average velocity (m s−1)
P Fluid force (N)
S Solid-fluid interface area (m2)
deq

p Equivalent sphere diameter (m)
ds Strut diameter (m)
Aside Side length of strut shape (m)

Greek Symbols
ε Porosity, dimensionless
μ Fluid viscosity (kg m−1 s−1)
ρ Fluid density (kg m−3)
εsur Surface Porosity (dimensionless)

1 Introduction

Packed bed system induces a high pressure drop when the velocity is very high. Moreover,
the effective thermal conductivity of the system is quite low because of improper networking
between local contact points. Therefore, the idea of moving from the traditional packed bed
in the form of foam either made of metal or ceramic is becoming more and more popular
during last decade. Foam matrices have been recently introduced to improve the effective
thermal conductivity and reduction in pressure drop with the use of solid ligaments (or struts)
in foam material that allows the continuous connection.

Foams are widely used in a large range of applications, especially in the field of thermal
applications (Lu et al. 1998). These specific structures are commonly applied for pack-
aging of food, disposable hot-drinks cup (Gibson and Ashby 1997), packed cryogenic
microsphere insulations, solar energy utilization, transpiration cooling, cavity wall insula-
tion (Beavers and Sparrow 1969), electro-magnetic radiation shielding (Losito 2008), crash
energy absorption (Jung et al. 2011), rocket jacket cooling (Avenall 2004), heat exchangers
(Kim et al. 2000), efficiency enhancement in phase change materials (Lafdi et al. 2007),
etc.
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Micro-structural Impact of Different Strut Shapes 59

Usually fluid flow in metal foams is characterized by weak inertia regime. Thus, permeabil-
ity and inertia coefficient are important parameters for characterization of foams employed
in industrial applications.

Darcy’s law is a generalized relationship for viscous flow in porous media. It is a simple
proportional relationship between the instantaneous discharge rate through a porous medium,
the viscosity of the fluid, and the pressure drop over a given distance and is given by Eq. 1:

�P

�x
= μ

K
V (1)

where �P is the pressure drop along the length �x of the medium, K is the permeability
due to viscous effect, μ is the viscosity of fluid, and V is the superficial fluid velocity.

It is well known that the pressure drop during one-dimensional flow through a packed bed
(or metallic foams) of granular material is given by the sum of two terms: a viscous energy
loss term and an inertial loss term, and it is well described by Forchheimer Equation:

�P

�x
= μ

K
V + βρV 2 (2)

where β is the inertia coefficient and ρ is the fluid density.
In determining pressure drop analytically, many authors (e.g., Dietrich et al. 2009; Incera

Garrido et al. 2008; Moreira et al. 2004; Lacroix et al. 2007; Richardson et al. 2000) have
adopted the approach of Ergun and Orning (1949) to fit their experimental data in order to
develop their correlations as given in the Eq. 3 which was based upon packed bed of spheres.

�P

�x
= A

(1 − ε)2

ε3 a2
c μV + B

(1 − ε)

ε3 acρV 2 (3)

where A and B are the coefficients of the viscous and inertial term, respectively, ε is the
porosity of the medium, and ac is the specific surface area.

Usually, the geometry of metallic foam is described using three parameters: open-cell or
close-cell structure, porosity, and PPI (Pores per linear inch) grade. It appears that there is
no general relation between these parameters and the measured morphological parameters
as described by Vicente et al. (2006).

The strut morphology greatly influences the specific surface area and thus the heat and
mass transfer and the pressure drop properties of the foam structures. Therefore, the accu-
rate knowledge of the geometrical parameters of the foam structures is critically important.
Depending upon the porosities, foam structures exhibit different strut morphologies such as
cylindrical, triangular convex, and concave as visualized by Bhattacharya et al. (2002) and
Inayat et al. (2011) which actually depends on manufacturing process. The type of mater-
ial also plays a key role in determining the structure of the strut, and hence, the difference
between the calculated and the measured values is adjusted by empirical correction factors
that was proposed by authors. These factors, however, are sensitive to both porosity range
and foam strut configuration. On the other hand, De Jaeger et al. (2011) have manufactured
in-house open-cell aluminum foams to characterize the geometrical parameters analytically
and obtained convex triangular strut shape up to 88 % porosity range. Kelvin cell is produced
by CTIF (see Dairon and Gaillard 2009) using foundry route. They have reported neither
circular nor concave triangular strut shapes during casting process. This is one of the reasons
why the authors have assumed a simple geometry to determine pressure drop analytically
using experimental fitting curves. These correlations may be in agreement only at higher
porosities (0.90 < ε < 0.95), but flow properties for low porosities (0.60 < ε < 0.90) are
not yet reported.
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As foam characteristics and pressure drop are greatly affected by the geometry interface,
it is important that the value of the specific surface area, ac, is well calculated. Edouard et al.
(2008) have plotted the calculated values of various authors (e.g., Buciuman and Kraushaar-
Czarnetzki 2003; Plessis et al. 1994; Giani et al. 2005; Lacroix et al. 2007; Lu et al. 1998;
Moreira et al. 2004; Richardson et al. 2000) as dimensionless product acdp (product of
specific surface area and pore diameter) versus the foam porosity (ε). They have shown the
independent of the pore size, the evolution of the specific surface area as a function of the
foam porosity follows two different behaviors. For a group of authors (e.g., Richardson et al.
2000), acdp increases linearly with porosity, while for a group of authors (e.g., Buciuman and
Kraushaar-Czarnetzki 2003; Plessis et al. 1994; Giani et al. 2005; Lacroix et al. 2007; Lu et
al. 1998; Moreira et al. 2004), acdp decreases by a factor ranging between 2 and 4 according
to the correlation used. They reported that the standard deviation between experimental
and theoretical values of the pressure drop can be as high as 100 % which severely limits
the development and validation of model of flow properties as a function of geometrical
parameters of the used foam.

In the case of open-cell foams, there are various definitions to choose characteristic length,
CL of Reynolds number. Reynolds number is generally defined as

Re = ρV CL

μ
(4)

In the literature, commonly used characteristic length (CL) is either particle diameter (Dp) or
pore diameter (dp). Bonnet et al. (2008) and Madani et al. (2006) have shown that for a given
pore size, the pressure drop coefficients are dispersed over at least one order of magnitude
for high flow rates (ReDp > 1000) and over more than two orders of magnitude for low flow
rates (1 < ReDp < 10). The main reason for dispersed values is because of the definition
of characteristic length. The most widely used characteristic size is the pore diameter. This
parameter is relatively easy to measure from 3-D tomography images. Nowadays, 3-D μ-CT
scan is routinely used in research and industry, and thus, both 3-D image and measurement
software (open source or commercial) are easily accessible to measure geometrical properties
of foam (see Vicente et al. 2006). The strut size and the hydraulic diameter of the channel
containing the porous medium are also often quoted.

It has been proposed to use the value
√

K or
√

K/ε, which has the dimension of a length
and contains information about the viscous part of flow law. Thus, this expression can only
be used in the case of Darcy flows. When the Forchheimer model is used, some authors
(see Chauveteau 1965) propose K × β as a characteristic length. These two formulations
make it possible to evaluate the characteristic size from flow experiments but cannot be used
to quantify the structural influence of the solid matrix on the flow parameters as discussed
by Bonnet et al. (2008). These remarks are made on the basis of experiments using foams
measured in PPI.

During experiments, it is very difficult to control the velocity in Darcy regime. All the
studies presented in the literature are performed at velocities which do not physically deter-
mine Darcy regime and inertia coefficient separately. In the work of Madani et al. (2006),
they have explained the feasibility to measure pressure drop precisely in Darcy regime as
it is very small with the working fluids like water or air. They have performed uncertainty
analysis of experimental data and have shown that viscous effects (or permeability) are not
accurately measured. On the other hand, inertia coefficients, β in the case of metallic foams,
are correctly measured. One can measure accurately permeability using very viscous fluid
such as silicon oil. Moreover, many authors (e.g., Boomsma and Poulikakos 2002; Langlois
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and Coeuret 1989) have calculated universal inertial coefficient f ( f = β
√

K ). The problem
is that this quantity is meaningless due to great uncertainties concerning permeability.

Madani et al. (2006) have analyzed the experiments performed by Boomsma and
Poulikakos (2002) and Langlois and Coeuret (1989) using the approach based on

�P

�x
.

1

V
= a + bV (5)

The parameter b is identified by plotting line slope and a by the intercept of the line. They
have shown that at high velocities, inertia coefficient can be easily distinguished, but at
low velocities, a strong dispersion of experimental points in the linear part of the curve is
observed which concludes the fact that the Eq. 5 does not give correct estimation of a due
to large errors associated with low velocities. This approach supposes, by analogy with flow
in a tube, a flow regime transition from Darcian to a regime governed by both viscous and
inertial effects which is then utilized to determine a critical velocity (Vc) or critical Reynolds
number (Rec) associated with the transition regime. The parameter Rec is generally evaluated
as Rec = �x/Kβ and that cannot be determined precisely due to errors associated with Darcy
regime where it dominates compared to inertial one.

For a range of Reynolds number tested (low and high Re), there is an occurrence of Cubic
law as a transition regime in the case of periodic foams as explained in the work of Firdaous
et al. (1997). Experimentally, the probability of occurrence of Cubic Law is very low in the
case of non-periodic foams as it is very difficult to control the Reynolds number for the
experiments performed at high velocity. Transition regime occurs on a very narrow Reynolds
number range, and its visibility is generally suppressed by inertia regime. Thus, fluid flow
using cubic law in porous media is generally not reported in the literature.

However, few authors (e.g., Mei and Auriault 1991; Wodie and Levy 1991) have shown
that the onset of the non-linear behavior (which is sometimes called the weak inertia regime)
can be described by a Cubic law:

�P

�x
= μ

K
V + γρ2

μ
V 3 (6)

where γ is a dimensionless parameter for the non-linear term. β(V ) = γρ
μ

V can be described
as a velocity dependent inertial coefficient.

This expression 6 is proposed to describe flows in porous media at intermediate Reynolds
numbers (typically 1 < Re < 1000). This equation has been obtained by numerical sim-
ulations in a 2-D periodic porous medium and using the homogenization technique for an
isotropic homogeneous 3-D porous medium. In spite of the numerous attempts to clarify
the physical reasons for the non-linear behavior described above, neither the Forchheimer
(Eq. 2) nor the weak inertia (Eq. 6) has received any physical justification (see Fourar et al.
2004). For all three formulations of the pressure gradient through a porous medium, K , β,
and γ are intrinsic characteristics of the solid matrix alone and are thus independent of the
fluid nature.

In our work, we have studied periodic open-cell foams of different strut shapes in contrast
to reticulated foams. As periodic open-cell foams represent a class of cellular porous materials
with defined pore size and cell geometry, they can be produced by rapid prototyping using
different techniques. The periodic open-cell foams with ideal geometry are therefore ideal
for the systematic study of morphological parameters and pressure drop properties in order to
develop appropriate correlations for the prediction of wide range of shapes and better support
the analytical models proposed in the literature. These correlations can further be adapted to
the non-ideal foam geometries encountered in reticulated foams.
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Fig. 1 Presentation of tetrakaidecahedon model of square strut shape Kelvin-like cell open foam (left). Strut
length (Ls), Node Length (L), and cubic length (2

√
2L) are clearly shown. For a fixed cell diameter, change

in strut shape is also highlighted circular strut (top-right) and hexagon strut (bottom-right) and is presented
with their characteristic dimension. Different sections in X, Y, and Z directions are also marked for fluid flow
calculations

In this work, we have generated virtual Kelvin-like foams having strut shapes from sim-
ple circular strut shape to the complex star strut shape (regular hexagram). Using CAD,
we are able to generate different and constant strut shapes for a wide range of porosity
(0.60 < ε < 0.95). This work aims at developing new correlations (based on the tetrakaidec-
ahedron geometry and different strut morphologies of the foam structures) for the theoretical
estimation of pressure drop of any kind foams that are applicable to different foam mate-
rials and porosities and can be valid for wide range of existing foams. Note that we have
derived the correlations for a constant cross section of the ligament of different strut shapes.
We construct our foam samples with only one cell size as its influence on both K and β is
already known (see Bonnet et al. 2008).

2 Design of Virtual Foam Samples

We have realized different shapes of Kelvin-like foams using truncated octahedron geometry
as shown in the Fig. 1. The node length (L) is fixed for entire calculations which is based on
fixed cell diameter (dcell). Using the methodology of fixed dcell, we can generate foams of
chosen porosity for any strut shape that allows us to vary strut shape and porosity, mainly as
a control parameter.

The purpose of studying different strut shapes was to understand its impact on hydraulic
properties. Using our virtual foams, we can vary any individual parameter keeping the oth-
ers constant and consequently, identify the influence, and derive the relationships between
geometrical and hydraulic properties.

We have created virtual samples with different strut shapes namely, circular, diamond
(double equilateral triangle), square, rotated square, hexagon, and star (regular hexagram)
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(a) (b) (c)

(d) (e) (f)

Fig. 2 Representation of different 3-D strut and ligament shapes a circular, b square, c diamond (double
equilateral triangle), d hexagon, e star, f rotated square. The characteristic dimensions are also presented that
are used in the Sect. 5 and Appendies 1 and 2 for analytical solutions

(see Fig. 2) for constant ligament cross section in porosity range, 0.60 < ε < 0.95. We have
measured all geometrical parameters of 37 virtual Kelvin-like foams using classical CAD
approach and presented them in Table 1. We have generated porosities down to 60 %, but our
methodology to develop diamond and rotated square strut shapes is limited to 80 % porosity
(up to 75 % porosity for star strut shape).

3 Numerical Simulation

We have performed numerical simulations based on volume mesh generated from actual solid
surface using CFD commercial code, StarCCM+. The mesh is composed of core polyhedral
meshes in fluid phase. The complete scheme of boundary conditions and characteristics
dimension of the unit periodic cell is presented in Fig. 1. Navier–Stokes equations are solved
using direct numerical simulations in fluid phase only with a segregated solver in order to
determine flow laws parameters. The mesh independence study was performed for these 3-
D periodic models. Using a single cell model to simulate pressure drop in open-cell foams
takes advantage of the repeated cell structure of foams and also the properties of flow through
porous media. Here, periodicity is applied in only one direction (X direction). In the other
directions, the remaining boundaries are set as symmetry planes (Y and Z directions) as
shown in Fig. 1. As permeability and inertia coefficient are independent of fluid nature (see
Bonnet et al. 2008), we vary the fluid viscosity from 10−7 to 1 kg m−1 s−1 in order to carry
out calculations for wide range of Reynolds number. The used fluid has constant density of
998.5 kg m−3. We imposed pressure drop across X direction (between sections X− and X+)
and measured mass flow rate and subsequently velocity.

We have calculated pressure and velocity fields for entire fluid phase. From this data,
we extract pertinent values in order to determine flow parameters at macro-scale. We have
calculated pressure gradient at each mesh point, pressure force exerted by the fluid on each
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solid-fluid interface point. From these local quantities, we calculated averaged and integrated
values in order to extract permeability and inertia coefficient. The calculations were performed
until the values of Darcian permeability, K ′, and Forchheimer inertia coefficient, β ′, differed
less than 1 % between two consecutive mesh sizes. Mesh size (about 0.4 mm) was chosen in
order to optimize results reliability and computational time.

For each case, we checked convergence in terms of asymptotic behavior of Darcian per-
meability K ′ which was calculated at each iteration. The simulations were stopped when
variations of K ′ were less than 0.1 %. Moreover, we also systematically checked mass in-
balance, and there were no variations in the global flow.

Below is the procedure used to determine macro-scale quantities from pore scale numer-
ically calculated information.

In case of flow in Darcy regime, we write macroscopic equation (see Whitaker 1999):

− K ′∇〈P〉 = μ〈V 〉 (7)

∇〈P〉 in Eq. 7 can be determined by the Eq. 8:

∇〈P〉 = 〈∇ P〉 − 1

S

∫

S

P.nx dS (8)

where S is the solid-fluid interface of the sample and nx is the unit vector normal to the
elementary surface of integration dS.

For the flow at high Reynolds number in which inertial effects are no longer negligible, we
introduce the Forchheimer law. The details about choosing a flow law are detailed in Sect. 4.
This law is rather empirical, and many authors have shown that it is well adapted to fluid
flow in foams (see Bonnet et al. 2008):

− ∇〈P〉 = μK ′−1〈V 〉 + ρβ ′‖V ‖〈V 〉 (9)

where ∇〈P〉 is the average pressure gradient, K ′ is the permeability tensor of the foam, 〈V 〉
is the average velocity over all the volume of the foam sample, and β ′ is tensor component
of inertial regime.

We have mainly studied the flow properties relative to a given orientation of flow with
respect to the foam. As we are studying the flow properties of isotropic foams, we have
checked that flow properties do not change when pressure drop applied between sections Y+
and Y− (or Z+ and Z−) making other sections as symmetry. We have carried out all the
calculations in X+ and X− sections for all the samples. We use, thus, 1-D scale form of Eq. 9

for which K ′ and β ′ reduce to scalar.
There are two ways to determine average pressure gradient. The first method consists to

use the volume average of local pressure gradient (〈∇P〉) and surface integral of the pressure
force exerted by fluid on the solid foam surface ( 1

S

∫
S P.nx ds) as presented in Eq. 8.

The second method (taking into account boundary conditions) is to measure the macro-
scopic pressure difference between inlet and outlet faces. In this case, one must take into
account the surface porosity and is written as

∇ P = �〈P〉surface
fluid

�x
= εsur.

�P

�x
(10)

where �〈P〉surface
fluid is fluid pressure on foam surface and εsur is the surface porosity at the

faces of inlet and outlet.
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Similarly, the macroscopic velocity can be determined either by measuring velocity using
mass flow rate or by volume averaging of local velocity over the entire cubic sample.

We have checked and validated the two methods in different flow regimes and carried out
simulations at low and high Reynolds number. We have also checked that second term of
RHS (right-hand side) of the Eq. 8 is significant in inertial regime but in Darcy regime, it is
negligible.

We have verified that the two methods, i.e., average pressure gradient method and imposed
pressure drop using numerical calculations in Darcy and inertial regimes and the periodic
cubic volume of foam matrix, provide the same results which also validate using numerical
simulations (see Eq. 11), we can determine precisely the pressure fields.

∇〈P〉 = 〈∇ P〉 − 1

S

∫

S

P.nx ds = εsur.
�P

�x
(11)

Physically, there is a notable difference between the two calculations. At high Reynolds
number, the proportion of the pressure drop due to the fluid force on the solid ( 1

S

∫
S P.nx ds)

is much larger than in the case of low Reynolds number. We have numerically calculated all
the flow properties as enlisted in Table 1.

4 Analysis of Flow Properties

Using direct numerical calculations, we have studied the flow properties at very low velocity
in order to extract permeability precisely in Darcy regime and consequently increased the
velocity to enter in inertial regime for all strut shapes in the studied porosity range.

We have used equivalent pore diameter (deq
p ) as a characteristic length of the porous

medium to calculate the Reynolds number. We have calculated deq
p as equivalent included

spherical diameter of fluid space. We have first started with Darcy regime (Re < 1) and
consequently increased the velocity to study the influence of inertial regime. Figures 3 and 4
show the velocity flow fields obtained in the case of square strut shape at 60 % porosity and
hexagon strut shape at 95 % porosity.

From the Fig. 3, it is clearly visible for Re < 1, flow characteristics are well set-
tled in Darcy regime and upon increasing Re (Re > 5), fluid flow starts to introduce a
transitional regime for a very limited range followed by inertial regime. This transition
clearly depends on the porosity range. Steady flow conditions are obtained only up to
Re = 200 for low porosity (60 %), while for high porosity (95 %), this condition holds
true up to Re =2,000. Obviously, the threshold for transition behavior is linked to the strut
size.

We have also shown in the Fig. 5 that for a given porosity, transition regime occurs almost
at the same critical Reynolds number for different strut shapes. In the case of 80 % porosity,
Rec = 20 (see Fig. 5) is observed for different strut shapes. The value of Rec changes with
the porosity. In Fig. 6, we have presented different critical Reynolds numbers for circular
shape in the porosity range (60–95 %), varying from 5 < Rec < 50.

It is often quoted in the literature that the choice of fluid flow law is a tricky problem
(Alder et al. 2013; Firdaous et al. 1997). Choice of flow law depends on flow condition, i.e.,
velocity. It was shown in the work of Bonnet et al. (2008) that fluid flow in open-cell foams
generally follows Forcheimmer law. They analyzed also their results using Cubic law and
found that error is considerably higher compared to Forcheimmer law.
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Fig. 3 Representation of average velocity flow fields. Various regimes of square strut shape at 60 % porosity
are presented at different Reynolds number

Fig. 4 Representation of average velocity flow fields. Various regimes of hexagon strut shape at 95 % porosity
are presented at different Reynolds number

However, Firdaous et al. (1997) proposed a methodology to identify the flow law. These
authors proposed a normalization technique given by following Equation:

yF = 1 + (
K ′.〈∇ P〉) /μV

1 + (K ′.〈∇ P〉max) /μVmax
(12a)
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Fig. 5 Representation of average velocity flow field for different strut shapes at the beginning of transition
regime. The flow fields are shown for 80 % porosity, observed at Rec = 20

Fig. 6 Representation of transition regimes for porosity range (60–95 %) of circular strut shape. The critical
Re(Rec) changes with the porosity and shifts towards a higher value with increasing porosity

and

xF = V

Vmax
(12b)

They demonstrated that if the experimental data within some range of Reynolds numbers are
on the line yF = xF, it means that the flow follows Forcheimmer law, whereas if the data
collapse on parabola yF = x2

F, it follows Cubic law. If the data are on the line yF = 0, it
follows Darcy law.
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Fig. 7 a Plot of ∇ P/V versus V . Darcy, transient and inertia regimes are shown. Plot of yF versus xF to
identify the flow law: b darcy regime, c transition regime, d inertia regime (Circular strut shape of 60 %
porosity data is shown)

Typical pressure drop results are shown by two ways in Fig. 7: by plotting ∇ P/V against
V and using Firdaouss normalized parameters (Eq. 12). In Fig. 7a, three regimes are clearly
shown. It is clear that cubic law (transition regime, three-five data points in our numerical
experiments) occurs between Darcy and inertia regimes for a very small range of Reynolds
number. In Fig. 7b, we have presented only Darcy regime (Regime I) that clearly follows
yF = 0. Figure 7c is shown for Darcy and transition regime (Regimes I and II) that follows
cubic law, i.e., yF = x2

F. Lastly, for the entire range of velocity (Regimes I, II, and III),
the pressure drop data follow Forcheimmer law, i.e., yF = xF as presented in Fig. 7d. The
impact of inertia regime is very significant compared to transition regime which suppresses
its visibility in fluid flow.

With our database, we have two possibilities to study flow laws and flow characteristics:
distinguish the three regimes and identify associated flow parameters that will be valid only
for a given Reynolds number range and choose a “global” flow law, and identify associated
flow parameters for wide range of Reynolds number.

Generally, transition regime is not clearly identified as it occurs on a very limited Reynolds
number range, and thus, we choose the latter method to obtain flow characteristics.

Based on rigorous analysis of flow properties reported in the literature and local analysis
of Darcy, transition, and inertial regimes, we have presented the global pressure drop curve
for square strut shape at 60 % porosity in the Fig. 8 in order to compare the permeability and
inertia coefficient obtained directly from the polynomial curve fit and develop a methodology
to determine precisely the flow properties.
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Fig. 8 Global pressure drop, ∇〈P〉 versus velocity, V for square strut shape at 60 % porosity. Fluid properties:
μ = 0.8887 (kg m−1 s−1) and ρ = 998.5 (kg m−3) are used

We have generated a database of 1,200 values (corresponding to several strut shapes,
porosity, and Reynolds range) to determine permeability and inertia coefficients precisely for
the studied porosity range of different strut shapes. Generally, pressure drop as a polynomial
function of velocity from the Forchheimer equation directly gives us K and β. As discussed
in Sect. 1, one can obtain β with sufficient accuracy, but the polynomial curve does not
provide the K value precisely even if one has performed the numerical experiments at very
low velocities (Darcy regime). This polynomial curve accounts for Forchheimer K (obtained
from the polynomial curve) but not Darcian permeability K ′. Moreover, using K and β

obtained from polynomial curve, one cannot trace back to same values of pressure drop
obtained experimentally or numerically (illustrated in Fig. 10).

In order to determine Darcian permeability K ′ and Forchheimer inertia coefficient β ′,
we have first analyzed the pressure drop at very low velocities to avoid discrepancies in
permeability values using Eq. 7. For high velocities, we have used Eq. 13 to determine
Forchheimer inertia coefficient (β ′) as

β ′ = ∇〈P〉 − μ
K ′ V

ρV 2 (13)

Using Eq. 13, we have calculated β ′ for the entire range of velocity. We have presented K
(obtained using polynomial curve), β (obtained using polynomial curve), K ′ (obtained using
Darcy Eq. 7), and β ′ (obtained using Forchheimer Eq. 13) in Table 1. In Fig. 9, one can easily
notice that K and K ′ vary in the range of 20–97 %. Similarly, we have shown the variations in
β and β ′, and these variations are very close but significantly different (maximum difference
up to 6 %).

One can trace back the same values of pressure drop using K ′ (obtained using Eq. 7) and
β ′ (obtained using Eq. 13) as shown in Fig. 10. Using K and β obtained from polynomial
curve, one can track back only the inertial regime, but significant error in the Darcy regime
at very low Reynolds number (in other words, velocity) is inevitable and presented in the
Fig. 10 (zoom view). Hence, to obtain flow characteristics with maximum accuracy in open-
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Fig. 9 Comparison of KForchheimer and KDarcy (left) and βpolynomial and βForchheimer (right)

Fig. 10 Comparison of ∇〈P〉 in Darcy regime (zoom) and ∇〈P〉 in inertial regime. The results are shown
for 95 % porosity for square strut shape. The zoom of Darcy regime clearly explains that K obtained from
the polynomial curve introduces discrepancy in flow properties and analytical solutions. Fluid properties:
μ − 0.8887 (kg m−1 s−1) and ρ − 998.5 (kg m−3) are used

cell foams, one should obtain the permeability only in pure Darcy regime and then utilizing
this permeability in Eq. 13 to obtain inertia coefficient.

Different strut shapes impact strongly on flow regimes and thus flow properties. In Fig. 11,
we have observed that K ′ increases up to a factor of 6 for 60–95 % porosity range for different
shapes. Moreover, K ′ varies significantly with different strut shapes (Fig. 11: left-top) for
a given porosity which suggests that flow properties are dependent on strut shape (see also
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Fig. 11 Left-plot of K ′ (KDarcy) with porosity. The variation in K ′ for different strut shapes for porosity
range (80–95 %) are also presented (left-top). Right-Plot of β ′ (βForchheimer) with porosity. The variation in
β ′ for different strut shapes for porosity range (80–95 %) are also presented (right-top)

Table 1). Hexagon shape possesses the maximum permeability, while square strut shape
possesses the minimum permeability for a given porosity. For applications in Darcy regime,
strut shapes significantly play an important role.

On the other hand, β ′ decreases with increase in porosity. One can notice that the variation
in β ′ at low porosities is quite significant and is mainly due to high specific surface area till
80 % porosity. Inside the porosity range 80–95 %, the variation in β ′ starts to decrease and
possesses quite similar behavior at very high porosity (ε = 0.95). We have also presented
the dependence of β ′ on strut shapes for porosity range 80–95 % (Fig. 11: right-top). The
behavior of β ′ is opposite to that of K ′. β ′ for hexagon strut shape is observed to be lowest
at different porosities and highest for star strut shape. At lower porosities, specific surface
area (as well sharp angles of strut shape with respect to fluid flow direction) contributes
significantly in high inertia coefficient values. This strong variation in β ′ suggests that it is
indeed a parameter of strut shape. For engineering application purposes in inertial regimes,
one should use star or rotated square or diamond strut shape for low porosity (up to 80 %)
to obtain high pressure drop and for lower pressure drop applications, hexagon strut shape
at all porosities can be used along with circular and square strut shapes at high porosity
(95 %).

5 Pressure Drop Modeling

Pressure drop properties are strongly related only with porosity and pore diameter. In Sect. 4,
we have seen the impact of different strut shapes for wide range of porosity on permeability
and inertia coefficient. Thus, it is necessary to obtain the flow characteristics in relation
with geometrical parameters of foam structure. Moreover, it has been widely discussed that
Ergun parameters (Eq. 3) are not constant but are functions of geometrical parameters. Their
relationships with geometrical parameters are still uncharacterized.

In this section, we have derived the various relationships between geometrical parameters
to characterize the foam matrix. Subsequently, we use these relationships to relate them to
flow properties, and correlations for Ergun parameters are derived.
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5.1 Geometrical Parameterization

In order to derive analytical model of foam geometry, we have to make some simplifications
and assumptions. We divide the solid matrix in two parts: nodes and ligaments. Parameters
relative to the ligament are calculated on the actual cross section. On the other hand, for
node volume calculation, we introduce a geometrical simplification that node volume is the
volume of the intersection of four circular struts; each strut is of equivalent radius Req.

We have considered an equivalent circular shape of radius, Req as circular shape is easy
to visualize at the node and do not possess complex geometry at nodes compared to other
strut shapes. For each strut shape, we defined an equivalent radius, Req which is the radius
of the circle of same area of the strut cross section. Obviously, for a given Req, node volume
is the same and independent of the strut shape. It is the most important hypothesis in our
derivation. We have enlisted specific surface area and porosity obtained directly from CAD
measurements for all strut shapes in Table 1.

We chose to base our node volume on the calculation given by Kanaun and Tkachenko
(2008). Volume of node at the junction of four struts of equivalent circular shape is given as

Vnode = 4

3
π R3

eq (14)

Volume of the ligament of equivalent circular shape is given as

Vligament = π R2
eq Ls (15)

At the junction, we can approximate node using geometrical interpretation based on our
construction methodology (see Kanaun and Tkachenko 2008):

1.6Req + Ls = L (16)

In non-dimensional form, we can rewrite Eq. 16 as

1.6αeq + χ = 1 (17)

where αeq = Req
L and χ = Ls

L .
Total volume of a truncated octahedron is given as

VT = 8
√

2L3 (18)

5.1.1 Specific Surface Area Model

In a truncated octahedron structure (see Fig. 1), there are 36 ligaments and 24 nodes. Consid-
ering the foam shape in the cubic cell of volume Vc, specific surface area, ac can be written
as

ac =
(
36 Sligament + 24 Snode

)
Vc

(19)

where Sligament and Snode are the surface area of one ligament and node contained in the cubic
cell of volume, Vc(Vc = 2VT ).

In Fig. 1, one can easily notice that there are 12 full ligaments and 24 half ligaments at
the square face. Also, at the node, there are two half nodes and one one-fourth node.

Specific surface area of a circular strut shape (Req = Rc) is given as
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ac =
{

48π RcLs + 24. 3
4

(
5
4π R2

c

)}

2
(

8
√

2L3
) = 1√

2L

(
3παcχ + 45

32
πα2

c

)
, (20)

where αc = Rc
L and χ = Ls

L .
For all the other strut shapes, we have presented the relation between specific area, node

length, and geometrical parameters in Appendix 1. According to the strut shape, the specific
formula is used in the calculations.

Equation 20 presents a general equation to determine specific surface area of circular strut
shape if geometrical characteristics-like strut diameter and node length are known. Using the
approach of αeq and χ (see Appendix 2) for a given shape, one can easily predict specific
surface area from cell size and porosity. Normally, all the geometrical characteristics are
difficult to measure compared to porosity. We have derived another correlation that is a
function of strut shape, geometrical characteristics, and porosity.

5.1.2 Porosity Model

Because of periodic characteristics of Kelvin-like foam, only 1/3rd of both, volume of lig-
ament and volume of node will be considered (see Fig. 1). For periodic open-cell foam of
circular strut shape in a unit cell (Req = Rc), solid volume (Vs) and porosity (ε) for truncated
octahedron are related as

ε = 1 − Vs

VT
= 1 − 1

3

(
36π R2

c Ls + 24. 4
3π R3

c

)
8
√

2L3
(21)

On substitution from Eq. 17, we get

12πα2
c χ + 32

3
πα3

c = 8
√

2 (1 − ε) (22)

Using Eq. 22, geometrical parameters can be easily correlated with porosity and thus can
be determined simultaneously using Eqs. 17 and 22. For all the other strut shapes, we have
presented the relations between porosity and geometrical parameters in Appendix 2.

5.2 Pressure Drop Correlations

Ergun and Orning (1949) obtained A = 4.17 and B = 0.292 that were actually determined
for packed bed of spheres. In the literature, many authors have adopted Ergun-like approach
for deriving correlations to predict pressure drop in foam structures. Several authors (e.g.,
Giani et al. 2005; Lacroix et al. 2007; Moreira et al. 2004) have even used the same values of
Ergun parameters to obtain a fitting correlation without relating it with any other geometrical
parameters of foam matrix. In case of open-cell foams, Ergun parameters A and B are strictly
functions of geometrical parameters and cannot have constant numerical values.

We have used the Darcian permeability (K ′) and Forchheimer inertia coefficient (β ′) and
related them to Ergun-like approach given in Eq. 3 to evaluate precisely Ergun parameters A
and B. We found the best fits shown in Fig. 12 where Ergun parameters A and B are valid
for all different strut shapes and flow regimes.

We have tried to incorporate as much as known geometrical parameters in Ergun parame-
ters to determine precisely the relationships for any strut shape. As expected, Ergun parame-
ters A and B depend very strongly on geometrical parameters, and the correlations are given
by Eqs. 23 and 24:
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Fig. 12 Parameter A and B (left and right) of Ergun-like approach (Eq. 3) versus porosity

A

(1 − ε)2 = √
αeq.Exp

(
4.4293n0.403) (23)

B

(1 − ε)3 = √
αeq.Exp (1.5) n3.15, (24)

where n = ε
1−ε

.
The complex strut shapes are difficult to visualize at the node, and hence, we have provided

an average value of exponents on parameter n for entire range of porosity of all strut shapes
(see Fig. 12). The parameters A and B follow the same trend with parameter n which is a
function of porosity. It is seen that A and B for all strut shapes increase with increase in poros-
ity. The correlations established in the literature are performed on very high porosity range
where Rec does not change significantly, and authors have obtained the Ergun parameters A
and B by curve fitting with dp for a given simplified strut shape.

6 Validation

For a given strut shape (here, circular strut) in low and high velocity range, we have obtained
an error range of ±5% on calculated pressure drop values for ε ≥ 0.70 (see Fig. 13). The
error increases up to ±10% for 0.60 ≤ ε ≤ 0.70. The pressure drop data are calculated
using Ergun-like approach (Eqs. 3, 23 and 24) and analytical specific surface area (Eq. 20).
In low porosity range (0.60 ≤ ε ≤ 0.70), error in specific surface area and geometrical
characteristics of foam matrix are more significant due to node complexity. The correlations
for Ergun parameters A and B in our studied case for a given strut shape resulted in an
excellent agreement.

Globally, for all strut shapes in wide porosity range (60–95 %) and taking into account
different flow regimes and Rec, we have compared numerical and calculated pressure drop
values and presented in Fig. 14. The results are in good agreement within an error range of
±15% for complex strut shapes (mainly diamond and star) only at low porosities. On the
other hand, the error is in the range of ±7% for all strut shapes at ε ≥ 0.70 (see Fig. 14).
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Fig. 13 Comparison of ∇〈P〉 obtained analytically (using A and B of Eqs. 3, 23 and 24 and analytical ac,
Eq. 20) and numerically obtained ∇〈P〉 for porosity range (60–95 %) of circular strut shape

Fig. 14 Comparison of ∇〈P〉 obtained analytically (using A and B of Eqs. 3, 23 and 24 and analytical ac
from Appendix 1) and numerically obtained ∇〈P〉 for all strut shapes in the entire porosity range

7 Conclusion

We derive correlations between geometrical parameters and macro-scale flow properties
based on pore scale flow simulations in virtual samples of various strut shapes and porosity.
Numerical simulations are performed over wide range of Reynolds number (10−6 −3000) to
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understand different flow regimes. Firstly, the microscopic numerical results are processed
to determine the Darcian permeability for entire porosity range for all strut shapes. Secondly,
a methodology is then detailed to determine Forchheimer inertia coefficient. These values
are substituted in the Ergun-like approach to derive analytical correlations and are compared
against numerical results that give the most reasonable estimate on the pressure drop for any
given porosity and strut shape. The correlations include geometrical parameters namely strut
diameter, porosity, and node length. An excellent agreement is observed for whole range of
porosity and shapes. Accuracy stays very good even for very complex strut shapes.

Acknowledgments The authors express their gratitude to ANR (Agence Nationale de la Recherche) for
financial support in the framework of FOAM project and all project partners for their assistance.

Appendix 1

Specific surface area of a square strut shape is given as

ac =
{

96AsLs + 24. 3
4

(
5
4 A2

s

)}

2
(

8
√

2L3
) = 1√

2L

(
6αsχ + 45

32
α2

s

)
(25)

where αs = As
L and β = Ls

L .
Specific surface area of a rotated square strut shape is given as

ac =
{

96ArsLs + 24. 3
4

(
5
4 A2

rs

)}

2
(

8
√

2L3
) = 1√

2L

(
6αrsχ + 45

32
α2

rs

)
(26)

where αrs = Ars
L and β = Ls

L .
Specific surface area of a diamond strut shape is given as

ac =
{

96Adet Ls + 24. 3
4

(
5
4

(√
3

2 A2
det

))}

2
(

8
√

2L3
) = 1√

2L

(
6αdetχ + 45

√
3

64
α2

det

)
(27)

where αdet = Ars
L and β = Ls

L .
Specific surface area of a hexagon strut shape is given as

ac =
{

144Ah Ls + 24. 3
4

(
5
4

(
3
√

3
2 A2

h

))}

2
(

8
√

2L3
) = 1√

2L

(
9αhχ + 135

√
3

64
α2

h

)
(28)

where αh = Ah
L and β = Ls

L .
Specific surface area of a star strut shape is given as

ac =
{

288Ast Ls + 24. 3
4

(
5
4

(
3
√

3A2
st

))}

2
(

8
√

2L3
) = 1√

2L

(
18αstχ + 135

√
3

32
α2

st

)
(29)

where αst = Ast
L and β = Ls

L .
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Appendix 2

For a square strut shape, Req = As/
√

π

ε = 1 − 1
3

(
36A2

s Ls + 24. 4
3 A3

s /
√

π
)

8
√

2L3
⇔ 12α2

s χ + 32

3
√

π
α3

s = 8
√

2 (1 − ε) (30)

For a rotated square strut shape, Req = Ars/
√

π

ε = 1 − 1
3

(
36A2

rsLs + 24. 4
3 A3

rs/
√

π
)

8
√

2L3
⇔ 12α2

rsχ + 32

3
√

π
α3

rs = 8
√

2 (1 − ε) (31)

For a diamond strut shape, Req = Adet.

√√
3/2π

ε =
1 − 1

3

(
36

√
3

2 A2
det Ls + 24. 4

3 .
√

3
2 .

√√
3

2π
A3

det

)

8
√

2L3
⇔ 6

√
3α2

detχ + 16√
3

√√
3

2π
α3

det

= 8
√

2 (1 − ε) (32)

For a hexagon strut shape, Req = Ah.

√
3
√

3/2π

ε =
1 − 1

3

(
36 3

√
3

2 A2
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3 . 3
√

3
2 .

√
3
√

3
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h

)

8
√

2L3
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√
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√

3

√
3
√

3

2π
α3

h

= 8
√

2 (1 − ε) (33)

For a star (regular hexagram) strut shape, Req = Ast.

√
3
√

3/π

ε =
1 − 1

3

(
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√
3A2
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3 .3

√
3.

√
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3
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st

)

8
√
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√
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√

3

√
3
√

3

π
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√
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References

Alder, P.M., Malevich, A.E., Mityushev, V.V.: Nonlinear correction to Darcy’s law for channels with wavy
wall. Acta Mech. 224, 1823–1848 (2013)

Avenall, R.J.: Use of metallic foams for heat transfer enhancement in the cooling jacket of a rocket propulsion
element. Master’s thesis, University of Florida (2004)

Beavers, G.S., Sparrow, E.M.: Non-Darcy flow through fibrous porous media. J. Appl. Mech. 36(4), 711–714
(1969)

Bhattacharya, A., Calmidi, V.V., Mahajan, R.L.: Thermophysical properties of high porosity metal foams. Int.
J. Heat Mass Transf. 45(5), 1017–1031 (2002)

Bonnet, J.P., Topin, F., Tadrist, L.: Flow laws in metal foams: compressibility and pore size effects. Transp.
Porous Media 73(2), 233–254 (2008)

Boomsma, K., Poulikakos, D.: The effects of compression and pore size variations on the liquid flow charac-
teristics in metal foams. J. Fluids Eng. 124(1), 263–272 (2002)

Buciuman, F.C., Kraushaar-Czarnetzki, B.: Ceramic foam monoliths as catalyst carriers. 1. Adjustment and
description of the morphology. J. Ind. Eng. Chem. Res. 42, 1863–1869 (2003)

Chauveteau, G.: Essai sur la loi de Darcy. PhD thesis, University of Toulouse (1965)
Dairon, J., Gaillard, Y.: Casting parts with CTIF foams. MetFoam Conference, Brastislava (2009)

123



Micro-structural Impact of Different Strut Shapes 81

De Jaeger, P., T’Joen, C., Huisseune, H., Ameel, B., De Paepe, M.: An experimentally validated and parame-
terized periodic unit-cell reconstruction of open-cell foams. J. Appl. Phy. 109(10), 103519 (2011)

Dietrich, B., Schabel, W., Kind, M., Martin, H.: Pressure drop measurements of ceramic sponges—determining
the hydraulic diameter. Chem. Eng. Sci. 64(16), 3633–3640 (2009)

Du Plessis, P., Montillet, A., Comiti, J., Legrand, J.: Pressure drop prediction for flow through high porosity
metal foams. Chem. Eng. Sci. 49(21), 3545–3553 (1994)

Edouard, D., Lacroix, M., Huu, C.P., Luck, F.: Pressure drop modeling on solid foam: state-of-the-art corre-
lation. Chem. Eng. J. 144(2), 299–311 (2008)

Ergun, S., Orning, A.A.: Fluid flow through randomly packed columns and fluidized beds. Ind. Eng. Chem.
Res. 41, 1179–1184 (1949)

Firdaous, M., Guermond, J.L., Le Quere, P.: Nonlinear corrections to Darcy’s law at low Reynolds numbers.
J. Fluid Mech. 343, 331–350 (1997)

Fourar, M., Radilla, G., Lenormand, R., Moyne, C.: On the non-linear behavior of a laminar single-phase flow
through two and three-dimensional porous media. Adv. Water Resour. 27(6), 669–677 (2004)

Giani, L., Groppi, G., Tronconi, E.: Mass-transfer characterization of metallic foams as supports for structured
catalysts. Ind. Eng. Chem. Res. 44(14), 4993–5002 (2005)

Gibson, L.J., Ashby, M.F.: Cellular Solids: Structure and Properties, 2nd edn. Cambridge University Press,
Cambridge (1997)

Inayat, A., Freund, H., Zeiser, T., Schwieger, W.: Determining the specific surface area of ceramic foams: the
tetrakaidecahedra model revisited. Chem. Eng. Sci. 66(6), 1179–1188 (2011)

Incera Garrido, G., Patcas, F.C., Lang, S., Kraushaar-Czarnetzki, B.: Mass transfer and pressure drop in ceramic
foams: a description of different pore sizes and porosities. Chem. Eng. Sci. 63(21), 5202–5217 (2008)

Jung, A., Natter, H., Diebels, S., Lach, E., Hempelmann, R.: Nano-Nickel coated aluminum foam for enhanced
impact energy absorption. Adv. Eng. Mat. 13(1–2), 23–28 (2011)

Kanaun, S., Tkachenko, O.: Effective conductive properties of open-cell foams. Int. J. Eng. Sci. 46, 551–571
(2008)

Kim, S.Y., Paek, J.W., Kang, B.H.: Flow and heat transfer correlations for porous fin in plate-fin heat exchanger.
J. Heat Transf. 122(3), 572–578 (2000)

Lacroix, M., Nguyen, P., Schweich, D., Huu, C., Savin-Poncet, S., Edouard, D.: Pressure drop measurements
and modeling on SiC foams. Chem. Eng. Sci. 62(12), 3259–3267 (2007)

Lafdi, K., Mesalhy, O., Shaikh, S.: Experimental study on the influence of foam porosity and pore size on the
melting of phase change materials. J. Appl. Phy. 102, 083549 (2007)

Langlois, S., Coeuret, F.: Flow-through and flow-by porous electrodes of nickel foam. I. Material characteri-
zation. J. Appl. Electrochem. 19(1), 43–50 (1989)

Losito, O.: An analytical characterization of metal foams for shielding applications. PIERS Online 4, 805–810
(2008)

Lu, T.J., Stone, H.A., Ashby, M.F.: Heat transfer in open-cell metal foams. Acta Mater. 46(10), 3619–3635
(1998)

Madani, B., Topin, F., Tadrist, L., Rigollet, F.: Flow laws in metallic foams: experimental determination of
inertial and viscous contribution. J. Porous Media 10(1), 51–70 (2006)

Mei, C.C., Auriault, J.L.: The effect of weak inertia on flow through a porous medium. J. Fluid Mech. 222,
647–663 (1991)

Moreira, E.A., Innocentini, M.D.M., Coury, J.R.: Permeability of ceramic foams to compressible and incom-
pressible flow. J. Eur. Ceram. Soc. 24(10–11), 3209–3218 (2004)

Richardson, J.T., Peng, Y., Remue, D.: Properties of ceramic foam catalyst supports: pressure drop. Appl.
Catal. A 204(1), 19–32 (2000)

Vicente, J., Topin, F., Daurelle, J.V.: Open celled material structural properties measurement: from morphology
to transport properties. Mater. Trans. 47(9), 2195–2202 (2006)

Whitaker, S.: The Method of Averaging, vol. 13. Kluwer Academic Publisher, Dordrecht (1999)
Wodie, J.C., Levy, T.: Correction non linéaire de la loi de Darcy. Comptes rendus de l’Académie des sciences

312(2), 157–161 (1991)

123


	Micro-structural Impact of Different Strut Shapes and Porosity on Hydraulic Properties of Kelvin-Like Metal Foams
	Abstract
	1 Introduction
	2 Design of Virtual Foam Samples
	3 Numerical Simulation
	4 Analysis of Flow Properties
	5 Pressure Drop Modeling
	5.1 Geometrical Parameterization
	5.1.1 Specific Surface Area Model
	5.1.2 Porosity Model

	5.2 Pressure Drop Correlations

	6 Validation
	7 Conclusion
	Acknowledgments
	Appendix 1
	Appendix 2
	References


