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Abstract We consider the problem of three-dimensional non-linear buoyant convection in
ternary solidification. Under the limit of large far-field temperature, the convective flow is
modeled to be in a rectangular cube composing of a horizontal liquid layer above a primary
mushy layer, which itself is over a secondary mushy layer. We first apply linear stability
analysis to calculate the conditions at the onset of motion. Next, we carry out weakly non-
linear analyses to determine solutions in the form of hexagons and their possible stability
and to obtain information about tendency for chimney formation. We find that if the flow is
driven either from both mushy layers with equal critical conditions at the onset of motion or
only by the primary mushy layer, then the flow can be in the form of a double-cell structure
vertically with down-hexagons below or above up-hexagons. There is tendency for vertically
oriented chimney formation at different horizontal locations in each mushy layer. For the
cases where only the critical conditions at the onset of motion are equal in both mushy layers
and depending on the values of the mush Rayleigh numbers, the flow can be subcritical (or
supercritical) in both mushy layers or mixed subcritical in one layer and supercritical in
another layer.

Keywords Convective flow · Three-dimensional flow · Convection · Ternary solidification

1 Introduction

Convective buoyant flow during alloy solidification is known to affect the solid–liquid content
within the region close to the solid–melt interface and influences the critical conditions for the
generation of flow instabilities within the solidification system. It is important to understand
such flow and its pattern and then find a way to reduce its undesirable effects in the region
close to the solidification front that can lead to production of a class of defects known as
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freckles in the solidified alloy (Copley et al. 1970). There have been a number of analytical
studies for understanding such flow such as those in the binary alloy cases by Anderson and
Worster (1995), Chung and Chen (2000), Riahi (2002), and Roper et al. (2008) that were
essentially based on the scaling and assumptions of the original model due to Amberg and
Homsy (1993).

Although there have been many studies of the flow during the solidification of binary
alloys in addition to those referred to in the previous paragraph, there have been relatively less
number of studies of the ternary systems counterpart most of which are experimental in nature
(Aitta et al. 2001a,b; Anderson 2003; Thompson et al. 2003a,b; Bloomfield and Huppert 2003;
Anderson and Schulze 2005; Anderson et al. 2010). Ternary solidification systems belong
to larger class of multi-component solidification systems that are very common in Earth
sciences and metallurgical areas such as magma solidification and alloy casting.

Aitta et al. (2001a,b) were first to identify experimentally a double mushy layer geometry
for their investigated aqueous ternary system water–potassium nitrate–nitrate. They found
that two distinct mushy layers, which were referred to as the primary and secondary mushy
layers, were formed between the completely solid and completely liquid regions. Thompson
et al. (2003b) investigated the same type of ternary system for a convective flow case where
the primary mushy layer was unstable, while the secondary mushy layer was stable and
non-convective. Anderson (2003) investigated a diffusion-controlled solidification of ternary
alloys in mushy layers and examined the corresponding similarity solution.

Anderson and Schulze (2005) investigated two-dimensional buoyancy-driven flow during
the solidification of a ternary alloy. They used both a linear stability procedure and numerical
computations to determine the results for linear and finite-amplitude steady states for the
two-dimensional flow in the ternary state. This state was composed of a liquid layer and two
distinct mushy layers referred to as the primary and secondary mushy layers that each has an
independent Rayleigh number. They found that, in particular in the cases where one mushy
layer was unstably stratified and one layer stably stratified, two-dimensional convection was
primarily localized in the unstable layer and there was an adjacent set of rolls which circulated
in the opposite direction in the stable layer. In such cases the solid fraction perturbation was
found to be negative in one region and positive in another. In the case of convection driven in
the primary mushy layer, the non-linear regime was detected to be in the form of supercritical
rolls, while subcritical rolls were found for flow driven in the secondary layer.

In the present study, we are interested to uncover the types of three-dimensional flows in
the form of hexagons that can possibly be stable and the tendency for chimney formation
during the ternary alloy solidification for sufficiently small amplitude |ε| of motion. Even
though no experimental observation has been made so far for the observable convective flow
patterns in the present type ternary problem, it is known in the binary system counterpart
(Tait et al. 1992) that the observed convective flow is in the form of down-hexagons, and this
has been one of the motivation for the present study of three-dimensional hexagonal flow
in ternary solidification. We investigate theoretically a model of a three-dimensional ternary
system by considering a large far-field temperature limit and for the flow close to its onset
of motion. Due to a very complex ternary flow system, we restrict our non-linear studies to
O(ε2) of terms in the non-linear system and determine the three-dimensional solutions in the
form of hexagons, which is usually preferred in binary system counterpart for sufficiently
small |ε|. We then make use of the corresponding solvability condition at O(ε2) to form an
evolution type equation (Roper et al. 2008) and determine the preferred and stable hexagonal
solutions subjected to the constraint of this evolution equation. We find some interesting
results. In particular, we find that for the case that the flow is driven from both mushy layers
with equal critical conditions at the onset of motion or only by the primary mushy layer,
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Three-Dimensional Non-linear Buoyant Convection 251

the convective flow can be in the form of double-layer structure vertically with up-hexagons
above or below down-hexagons. Here by down-hexagons and up-hexagons we refer to those,
respectively, with down- and up-flow at the cells’ centers and up- and down-flow at the
cells’ boundaries. There is a tendency for vertically oriented chimney formation at different
horizontal locations in each of the mushy layers, and such tendency first increases and then
decreases with increasing the vertical variable.

2 Governing Systems

We consider a ternary alloy melt that is cooled from below and is solidified at a constant speed
V . Following Anderson and Schulze (2005), we consider the ternary alloy in a horizontal
region z >0 with a liquid region in z > d , a primary mushy layer h < z < d , and a secondary
mushy layer 0< z < h. Here z is the vertical variable, and d and h are two positive constants.
Our ternary model considers a vertically finite system that includes both of these mushy
layers and a finite sub-region of z > d that contains a liquid layer d < z < D on top of the
primary mushy layer (Fig. 1). Our present model has some physical relations similar to those
earlier models for the binary systems (Worster 1991; Amberg and Homsy 1993; Anderson
and Worster 1995), and the temperature of the liquid as z → ∞ is referred to as far-field
temperature T∞. Our ternary system model is based on the ternary phase diagram used by
Anderson (2003) and Anderson and Schulze (2005), which was presented in details by these
later authors and, thus, will not be repeated here. We consider the solidification system to be
three dimensional and in a moving frame of reference whose origin lies on the solidification
front and translating at the speed V with the solidification front in the upward direction. As
in the work due to Anderson and Schulze (2005), we assume there is no latent heat release by
the solidification process, no solute diffusion, no density change due to solidification, ternary
system in local equilibrium with constant thermal properties, and the liquid density depends
linearly upon temperature T and compositions A and B.

We consider the governing equations for momentum, under the assumption that the Stokes
equation describes the fluid flow in the liquid layer and the Darcy equation describes the fluid
flow in the mushy layers, and the equations for the mass conservation, heat, and solute for
the ternary system. The necessary equations for the relations between the temperature and
species composition in the mushy layers are due to the assumed thermodynamic equilibrium
of the phase diagram (Anderson and Schulze 2005). The governing equations that are used
in the present study are basically three-dimensional extension of those already derived in
Anderson and Schulze (2005) who provided sufficient descriptions as well as experimental
justification which will not be repeated here. Instead, the reader is referred to these authors’
paper for details. We make these equations dimensionless in the moving frame described
before using V , k/V,�T = T p − T E, μk/Π0, and V 2/k as scales for velocity, length,

Fig. 1 This is a schematic
diagram for the physical model of
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temperature excess (T –T p), pressure, and time, respectively (Anderson and Schulze 2005).
Here k is thermal diffusivity, T p is the temperature at the primary mushy layer front, T E is
the temperature at the eutectic front, μ is the dynamic viscosity, and Π0 is a reference scale
for the permeability.

Following the above description to make the equations as well as the boundary conditions
non-dimensional, we have the following three- dimensional systems in the liquid and the two
mushy layers which are given below.

In the liquid layer we have

Da∇2u = ∇ P + (Ra A + Rb B − RT )z, (1a)

∇ · u = 0, (1b)

(∂/∂t − ∂/∂z)T + u · ∇T = ∇2T, (1c)

(∂/∂t − ∂/∂z)A + u · ∇ A = 0, (1d)

(∂/∂t − ∂/∂z)B + u · ∇ B = 0, (1e)

T = T L, A = AL, B = BL, u = 0 at z = δL , (1f)

[T ] = [∂T/∂z] = [u] = [v] = [w] = [P] = φa|− = T |+ = 0 at z = lδ, (1g)

where u = (u, v, w) is the flux driven by the buoyancy with components u, v, and w along
the horizontal x-axis, horizontal y-axis, and the upward vertical z-axis, respectively; P is the
pressure; A and B are the two liquid compositions, which are measured in wt%; t is time
variable; z is vertical variable; Da = V 2Π0/k2 is the Darcy number; R = βt Π0 g�T/(V v)

is the thermal Rayleigh number representing stabilizing thermal buoyancy; g is acceleration
due to gravity; v is kinematic viscosity; βt is the coefficient of thermal expansion; z is a
unit vector in the vertical z-axis; Ra = βa g Π0/(V v) and Rb = βb g Π0/(V v) are the
compositional Rayleigh numbers due to the presence of the species composition; βa and
βb are the corresponding expansion coefficients due to change in density with the species
composition; δL = DV/k is the non-dimensional value of the vertical variable at the top
boundary of the liquid layer; L = D/h; l is a constant of order one quantity to be determined
later; δ = hV/k is the non-dimensional value of the vertical height of the secondary mushy
layer; T L, AL, and BL are constant quantities; and the square brackets [ ] ≡ |+ − |− denote
the jump in the enclosed quantity across the interface.

In the primary mushy layer we have

u/Π(χ) = −∇ P − (RpT + Mp)z, (2a)

∇ · u = 0, (2b)

(∂/∂t − ∂/∂z)T + u · ∇T = ∇2T, (2c)

(∂/∂t − ∂/∂z)(χ A + φa) + u · ∇ A = 0, (2d)

T = −1 + Ma(A − AE) + Mb(B − BE), (2e)

χ − 1 + φa = φb = 0, (2f)

B = BP(1 − A)/(1 − AP), (2g)

[T ] = [∂T/∂z] = [P] = [u] = [φa] = φb|− = T − T s|+ = 0 at z = δ, (2h)

where

Rp = −R + [Ra(1 − AP) − Rb BP]/[Ma(1 − AP) − Mb BP], (2i)

Mp = [Ma AE + Mb BE + 1 − Mb BP/(1 − AP)]Rp + Rb BP/(1 − AP), (2j)
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χ is the liquid fraction in the primary mushy layer, which is also given in (2f) explicitly,
φb is the solid fraction due to composition B, and the value of constant temperature T s was
determined in Anderson and Schulze (2005) by identifying the intersection of the tie-line
and the cotectic constraints on their considered phase diagram and apply the constraints on
the primary mushy layer side of the interface. Additional equations given by (2e) and (2g)
are of the type introduced and justified by Anderson and Schulze (2005), which are due to
the assumed thermodynamic equilibrium of the mushy layers analog of the linear liquidus
relation in the binary system (Anderson and Worster 1995). Here quantities with superscripts
“P” and “E” represent constant quantities at the primary mushy layer front and the eutectic
front, respectively, and the constants Ma and Mb are dimensionless liquidus slopes. Anderson
and Schulze (2005) provided detail description, derivation, and experimental justification of
equations (2e) and (2g) as well as derivation for the primary mushy layer Rayleigh number
Rp; thus, these will not be repeated here.

In the secondary mushy layer we have

u/Π(χ) = −∇ P − (RsT + Ms)z, (3a)

∇ · u = 0, (3b)

(∂/∂t − ∂/∂z)T + u · ∇T = ∇2T, (3c)

(∂/∂t − ∂/∂z)(χ A + φa) + u · ∇ A = 0, (3d)

(∂/∂t − ∂/∂z)(χ A + φb) + u · ∇ B = 0, (3e)

χ = (1 − φa − φb), A = AE + (T + 1)/Mac, (3f)

B = BE + (T + 1)/Mbc, (3g)

T + 1 = u · z = 0 at z = 0, (3h)

where

Rs = −R + (Ra/Mac + Rb/Mbc), (3i)

Ms = Ra(AE + 1/Mac) + Rb(BE + 1/Mbc), (3j)

Mac and Mbc are constant dimensionless cotectic slopes and derivations of (3f)–(3g) are given
in Anderson and Schulze (2005).

3 Analyses and Solutions

3.1 Scaling and Expansion Procedure

From the result found by Anderson and Schulze (2005) for the relation between the depth δ

of the secondary mushy layer and the far-field temperature T∞, which we consider here to
be large (T∞ � 1) for large z � 1 and similar to the binary system counterpart described in
Anderson and Worster (1995), we have

eδ = (T∞ + 1)/[T∞ − T s + e−z(T s + 1)]. (4a)

Since |T s| is taken to be less than 0.55 as in Anderson and Schulze (2005), (4a) implies that
δ is small (�1) and to the first order in δ, we have

1 + δ = O(1 + 1/T∞), (4b)

123



254 D. N. Riahi

Table 1 Parameter values for 3
base states I–III

Quantity I II III

AL 0.37 0.37 0.37

BL 0.35 0.35 0.35

T L 0.6234 0.6234 0.8

l 1.54 2.20 1.54

T s −0.3506 −0.5455 −0.3506

L 2.5 3.57 2.772

da 0.8 0.8 0.8

R 0 0 0

δ 0.5 (or 0.2) 0.5 (or 0.2) 0.5 (or 0.2)

ε ±0.03 (or ±0.01) ±0.03 (or ±0.01) ±0.03 (or ±0.01)

AE 1/3 1/3 1/3

BE 1/3 1/3 1/3

which implies that

δ = O(1/T∞) � 1. (4c)

Similarly from the result obtained in Anderson and Schulze (2005), we have

lδ = O(1/T∞) � 1, (4d)

which together with (4c) imply that l is a constant of order one quantity.
In addition to the above explanation for the small value of δ, we also later in Sect. 4 set

our data collections for various results based on three base-state parameter values (Table 1)
for our vertically bounded ternary system which together with the result due to Anderson
and Schulze (2005) for the thickness of the secondary mushy layer, which is here in the form

δ = ln{(1 + T L)/[T L − T s + e−δD(1 + T s)]}, (4e)

implies δ � 1. Thus, similar to the well-known model for the binary system (Amberg and
Homsy 1993), we find that the thickness of each mushy layer is small in the limit of large
far-field temperature. Using this result, it motivated us a further scaling of the variables, and
so we assume the limit of large far-field temperature in the present study and use δ as a small
parameter. As noted in Roper et al. (2008), for values of z smaller than O(δ−1), we expect
that temperature T L at the top boundary of the rectangular cube region in the present study
should be an order one quantity for z = δL , which we consider to be a constant of at most
order one in this paper.

We now scale all lengths with δ and time with δ2. Then we expand the governing systems to
derive the systems for small perturbations to the motionless steady basic state, which varies at
most with respect to the vertical variable. Since the Darcy number is very small in applications
(Worster 1992), we scale it with δ2(Da = δ2da). Following Roper et al. (2008), we do some
rescaling for u and the effective Rayleigh numbers for the mushy layers and consider each
dependent variable to be sum of its basic state, which is designated with a subscript “B,” plus
small perturbations, which vary in general with respect to three-dimensional space and time
variables, and then make a double expansion in small amplitude ε and δ of the perturbations
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Three-Dimensional Non-linear Buoyant Convection 255

T = TB + ε(T0 + δT01 + · · · ) + ε2(T1 + δT11 + · · · ) + · · · , (5a)

δu = 0 + ε(u0 + δ u01 + · · · ) + ε2(u1 + δ u11 + · · · ) + · · · , (5b)

P = PB + ε(P0 + δP01 + · · · ) + ε2(P1 + δ P11 + · · · ) + · · · , (5c)

(A, B, χ) = (AB, BB, χB) + ε[(A0 + δA01 + · · · ), (B0 + δB01 + · · · ), (χ0 + δχ01

+ · · · )] + · · · , (5d)

(φa, φb) = (φaB, φbB) + ε[(δ−1φa(−1) + φa0 + δφa01 + · · · ), (δ−1φb(−1) + φb0 + δφb01

+ · · · )] + · · · , (5e)

δ(Rp, Rs) = [(Rp0 + δRp01 + · · · ), (Rs0 + δRs01 + · · · )] + ε[(Rp1 + δRp11 + · · · ), (Rs1

+ δRs11 + · · · )] + · · · , (5f)

where ε � δ � 1 is assumed. It can be noted that the O(δ−1)-terms in (5e) were found
to be needed to balance with the advection terms in the composition equations in order to
determine non-trivial solutions for the solid fraction perturbations.

3.2 Basic State

Using (5a–5f) in (1a–1g)–(3a–3j) and considering the terms in the absence of perturbations
by setting ε = 0, we find the systems for the motionless basic state. In the liquid layer
(l ≤ z ≤ L), we find to O(δ2)

TB = T L{[1 − (z − L)/(l − L)] + 0.5δ[z2 − z(l + L) + l L]/(l − L)}, (6a)

(AB, BB) = (AL, BL), (6b)

PB = z(−Ra AL − Rb BL + δRTB) + Pl0, (6c)

where Pl0 is a constant.
In the primary mushy layer (1 ≤ z ≤ l), we find to O(δ2)

TB = −T s{(l − z) + 0.5δ[z2 − z(1 + l) + l]}/(1 − l), (7a)

χB = [Ma(AL − 1) + Mb BL]/[Ma(AE − 1) + Mb BE + 1 + TB], (7b)

(AB, BB) = [1 + (AL − 1)/χB, BL/χB], (7c)

φA − 1 + χB = φB = 0, (7d)

PB = −Mp(z − l) − RpT s(0.5z2 − l z + 0.5 l2) − l(Ra AL + Rb BL) + Pl0, (7e)

where the condition [∂T/∂z] = 0 at the liquid–primary mush interface implies

T L/T s = (L − l)/(1 − l). (7f)

In the secondary mushy layer (0 ≤ z ≤ 1), we find to O(δ2)

TB = (T s + 1)z − 1 + 0.5δ(T s + 1)(z − z2), (8a)

(AB, BB) = {[AE + (TB + 1)/Mac], [BE + (TB + 1)/Mbc]}, (8b)

χB = (1 − AL − BL)/(1 − AB − BB), (8c)

φaB − (AL − χB AB) = φbB − (1 − χB − φaB) = 0, (8d)

PB = −Rs{1 − z + 0.5(1 + T s)[z − 1 + δ(z2/2 − z3/3 − 1/6)]} + Ms(1 − z)

−(Mp + 0.5RpT s)(1 − l) − l(Ra AL + Rb BL) + Pl0, (8e)

where the condition [∂T/∂z] = 0 at the primary mush–secondary mush interface implies

l = 1/(T s + 1). (8f)
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3.3 Linear Problem

We use the expansions (5a–5f) in (1a–1g)–(3a–3j) and similar to the work in Roper et al.
(2008), we assume in the present study that Π(χ) ≡ 1 in Darcy’s equations. Considering the
systems in the liquid and mushy layers to the lowest order in ε, we find the linear problem
whose leading order system is given below.

In the liquid layer we have

da∇2u0 = ∇ P0,∇ · u0 = 0,∇2T0 = w0 dTB/dz, A0 = 0, B0 = 0, (9a)

T0 = u0 = 0 at z = L , [T0] = [∂T0/∂z] = [u0] = [P0] = φa(−1)|− = T0|+
= 0 at z = l. (9b)

In the primary mushy layer we have

u0 + ∇ P0 + Rp0T0 z = 0,∇.u0 = 0,∇2T0 = w0dTB/dz, T0 = Ma A0 + Mb B0, (10a)

B0 + Bp A0/(1 − Ap), ∂/∂z{φa(−1)[1 − AB]} = w0dAB/dz, (10b)

[T0] = [∂T0/∂z] = [u0] = [P0] = [φa(−1)] = φb(−1)|− = T0|+ = 0 at z = 1. (10c)

In the secondary mushy layer we have

u0 + ∇ P0 + Rs0T0 z = 0,∇ · u0 = 0,∇2T0 = w0dTB/dz, (A0, B0)

= T0(1/Mac, 1/Mbc), (11a)

∂/∂z{[φa(−1) − AB(φa(−1) + φb(−1))], [φb(−1) − BB(φa(−1) + φb(−1))]}
= w0{dAB/dz, dBB/dz}, (11b)

T0 = w0 = 0 at z = 0. (11c)

The resulting leading order linear systems indicate that u0, P0, and T0 can be separable
from the result of the equations for the other dependent variable. Since the systems for u0, P0,
and T0 in the liquid and mushy layers contain the effective mush Rayleigh numbers Rp and
Rs, we consider these systems later whose analytical solutions will lead to the results at the
onset of motion and for the neutral stability boundaries for the stationary perturbations. The
non-linear extension of these systems at O(ε2) are also found to be sufficient to form the
solvability conditions, which are derived later in this section.

In the liquid layer we find the following steady results at O(ε)

w0 = [(b1 z + b2) exp(αz) + (b3 z + b4) exp(−αz)]H(x, y), (12a)

H(x, y) ≡
N∑

n=−N

En ηn(x, y), ηn(x, y)≡ exp(i αn · r), (12b)

T0 = [(b5 z + b6 z2) exp(αz) + (b0 + b7 z + b8 z2) exp(−αz)]H(x, y), (12c)

P0 = l0[2 b1 exp(αz) + 2 b3 exp(−αz) + p00]H(x, y), A0 = B0 = 0, (12d)

(u0, v0) = (1/α2)[(b1 + αb2 + αb1z) exp(αz) + (b3 − αb4 − αb3 z) exp(−αz)

−p00]
N∑

n=−N

[(iαnx , iαny)Enηn(x, y)], (12e)

where it is convenient for later references to designate the z-dependent coefficients for u0

and v0 in (12e) by f1(z, n) and f2(z, n), respectively, for w0 in (12a) by f3(z) and for T0 in
(12c) by f4(z). In addition,
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p00 ≡ −(1/α2)[(b1 + αb2 + b1L) exp(αL) + (b3 − αb4 − b3L) exp(−αL)], (12f)

x and y are the horizontal variables, the unknown constants bm(m = 0, 1, . . . , 8) satisfy a set
of lengthy linear algebraic equations, which are not given here, i is pure imaginary number
(
√ − 1), the subscript “n” takes only non-zero integer values from –N to N , N is a positive

integer, and the horizontal wave number vectors αn= (αnx , αny) satisfy the properties

αn · z = 0, |αn | = α,α−n = −αn . (13)

The constant coefficients En satisfy the conditions

N∑

n=−N

|En |2 = 1, E∗
n = E−n . (14a)

For the simplest types of solutions, which refer to as regular solutions and include those
observed in the applications (Busse 1978) like hexagonal type solutions, all angles between
two neighboring α-vectors are equal and (14a) yields

|E1|2 = · · · = |EN |2 = 1/(2N ). (14b)

We have provided general form of the solutions in (12a–12e)–(14a, 14b) in terms of arbitrary
positive integer N so that the present paper can be used as a suitable reference for future
extension of the present work, even though we shall later restrict our study to the cases for
sufficiently small ε where the hexagonal solutions with N = 3 can be stable and preferred.

In the primary mushy layer the system at O(ε) for the perturbations yields

w0 = {b9 exp[(γ 0.5)z] + b10 exp[−(γ 0.5)z] + b11 exp[(γ0)
0.5z]

+ b12 exp[−(γ0)
0.5z]}H(x, y), (15a)

T0 = {b13 exp[(γ 0.5)z] + b14 exp[−(γ 0.5)z] + b15 exp[(γ0)
0.5z] + b16 exp[

− (γ0)
0.5z]}H(x, y), (15b)

γ ≡ α2 + αβ(Rp0)
0.5, β2≡T s/(1 − l), γ0 ≡ α2 − αβ(Rp0)

0.5, (15c)

φa(−1) = [1/(1 − AB)](dAB/dz)

z∫

l

w0dz, A0 = (1 − AP)T0/[Ma(1 − AP)

− Mb BP], B0 = −BP A0/(1 − AP), (15d)

P0 =
N∑

n=−N

{−(1/γ )0.5(b9 + b13 Rp0)(exp[(γ )0.5z]

− exp[(γ )0.5l]) + (1/γ )0.5(b10 + b14 Rp0)(exp[−(γ )0.5z]
− exp[−(γ )0.5l]) − (1/γ0)

0.5(b11 + b15 Rp0)(exp[(γ0)
0.5z]

− exp[(γ0)
0.5l]) + (1/γ0)

0.5(b12 + b16 Rp0)(exp[−(γ0)
0.5z]

− exp[−(γ0)
0.5l]) + l0[2b1 exp(αl) + 2b3 exp(−αl) + p00]}Enηn, (15e)

(u0, v0) = −
N∑

n=−N

(αnx , αny)P ′
0(z)En ηn ≡

N∑

n=−N

[ f5(z, n), f6(z, n)]En ηn(x, y),(15f)

where for the later references the expressions for the z-dependent coefficients for u0, v0, w,
and T0 in the above equations will be designated by fi (i = 5, 6, 7, 8), respectively, and
P ′

0 is the z-dependent coefficient for P0 in (15e). In addition, the unknown constants bm
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(m = 9, 10, . . . , 16) satisfy a set of lengthy linear algebraic equations, which are not given
here.

In the secondary mushy layer the system at O(ε) for the perturbations yields

w0 = {b17 exp[(γ1)
0.5z] + b18 exp[−(γ1)

0.5z] + b19 exp[(γ2)
0.5z] + b20 exp[

−(γ2)
0.5z]}H(x, y), (16a)

T0 = {{b21 exp[(γ1)
0.5z] + b22 exp[−(γ1)

0.5z] + b23 exp[(γ2)
0.5z] + b24 exp[

−(γ2)
0.5z]}H(x, y), (16b)

(A0, B0) = T0(1/Mac, 1/Mbc), (16c)

γ1 ≡ α2 + α(1 + T s)(Rs0)
0.5, γ2 ≡ α2 − α(1 + T s)(Rs0)

0.5, (16d)

P0 =
N∑

n=−N

{−(1/γ1)
0.5(b17 + b21 Rs0)(exp[(γ1)

0.5z]

− exp[(γ1)
0.5]) + (1/γ1)

0.5(b18 + b22 Rs0)(exp[−(γ1)
0.5z]

− exp[−(γ1)
0.5]) − (1/γ2)

0.5(b19 + b23 Rs0)(exp[(γ2)
0.5z]

− exp[(γ2)
0.5]) + (1/γ2)

0.5(b20 + b24 Rs0)(exp[−(γ2)
0.5z]

− exp[−(γ2)
0.5]) + P ′

0(1)}En ηn(x, y), (16e)

(u0, v0) = −
N∑

n=−N

(αnx , αny)P ′′
0 (z)En ηn(x, y), (16f)

[φa(−1), φb(−1)] = {[(1 − BB) dAB/dz + ABdBB/dz, (1 − AB)dBB/dz

+BB dAB/dz]
1∫

z

w0dz + φap[(1 − AB1)(1 − BB)

−AB BB1, (1 − AB1)BB − BB1(1 − AB)]}/(1 − AB − BB), (16g)

where φap is the value at z = 1 of φa(−1) in the primary mushy layer given in (15d), AB1

is the value at z = 1 of AB, BB1 is the value at z = 1 of BB, and for later references the
expressions for the z-dependent coefficients for u0, v0, w0, and T0 in the above equations will
be designated by fi (i = 9, 10, 11, 12), respectively, and P ′′

0 is the z-dependent coefficient
for P in (16d). In addition, the unknown constants bm (m = 17, 18, . . . , 24) satisfy a set of
lengthy linear algebraic equations, which are not given here.

We consider the 25 linear algebraic equations for the unknown constants bm(m =
0, 1, . . . , 24), whose expressions are lengthy and will not be given here. These equations
can be written in matrix form like M b = 0, where b ≡ (b0, b1, . . . , b24)

T is the vertical
vector of the unknown constants, whose components are the 25 unknown scalar constants,
and M is the matrix of coefficients of these 25 constants in the 25 equations. Setting |M | = 0,
where |M | is the determinant of this matrix, we obtain by successive elimination approach
a very lengthy form for the eigenvalue relation for the marginal stationary stability problem.
For simplicity, the relation is in the form of an equation like

D(Rp0, Rs0, α, L , l, da, T s, T L) = 0. (17)

For given values of the constants T s, l, da, L , and T L, this equation is a function of two
effective mush Rayleigh numbers and the wave number at the onset of motion. Using iterative
procedure, we then determine the relation between the two Rayleigh numbers for each given
admissible value of the wave number, and consequently the critical conditions at the onset
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of motion can be found. It should also be noted that since the system of the 25 unknown
constants bm (m = 0, 1, . . . , 24) is a linear homogeneous algebraic system of 25 equations
for these unknowns, the solution for each of these unknowns can be written in terms of one
of these constants that we have chosen to be b1. This is due to the linearity property of this
system.

3.4 Adjoint Systems

In order to compute the solvability condition for the non-linear systems, which can provide
a non-linear evolution equation as well as an equation involving the non-linear coefficients
Rp1 and/or Rs1 in the expansions (5f) for the mush Rayleigh numbers, the solutions to the
adjoint problem of the linear system for the small perturbations are required. It turns out that
the linear adjoint systems are needed here only to the leading order terms in δ. As we also
noted in the first paragraph in Sect. 3.3, it turns out to be sufficient that the adjoint problem
to be presented here only by the following system for vertical volume flux, pressure, and
temperature whose symbols are designated with a superscript “(a)”:

In the liquid layer we have

da∇2u(a) = ∇ P(a) + T (a)(dTB/dz)z, (18a)

∇.u(a) = 0, (18b)

∇2T (a) = 0, (18c)

T (a) = u(a)0 at z = L , (18d)

[T (a)] = [∂T (a)/∂z] = [u(a)] = [P(a)] at z = l. (18e)

In the primary mushy layer we have

u(a) = ∇ P(a) + T (a)(dTB/dz)z, (19a)

∇.u(a) = 0, (19b)

∇2T (a) = −Rp0w
(a), (19c)

[T (a)] = [∂T (a)/∂z] = [u(a)] = [P(a)] = T (a)|+ = 0 at z = 1. (19d)

In the secondary mushy layer we have

u(a) = ∇ P(a) + T (a)(dTB/dz)z, (20a)

∇.u(a) = 0, (20b)

∇2T (a) = −Rs0w
(a), (20c)

T (a) = w(a) = 0 at z = 0. (20d)

Since it turns out that only the explicit form of the adjoint solution for the temperature
and the vertical flux are needed to form the solvability condition, we provide such explicit
form of solution in each of the three layers. From the system (18a–18e) for the liquid layer,
we find

T (a) = [g0 exp(αz) + g1 exp(−αz)]H(x, y), (21a)

w(a) = {[g2z − (dTB/dz)g0z2/(8l0)] exp(αz) + [g3z

−(dTB/dz)g1z2/(8l0)] exp(αz)]}H(x, y), (21b)

where for later references the z-dependent coefficients for T (a) and w(a) in (21a, 21b) will be
designated by Ta1(z) and wa1(z), respectively; the unknown constants gm (m = 0, 1, 2, 3)
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satisfy a set of lengthy algebraic equations, which are not given here. From the system (??–??)
and (18e) for the primary mushy layer, we find

(w(a), T (a)) = {(g4, g8) exp[(γ )0.5z] + (g5, g9) exp[−(γ )0.5z] + (g6, g10) exp[(γ0)
0.5z]

+(g7, g11) exp[−(γ0)
0.5z]}H(x, y), (22)

where for later references the z-dependent coefficients for w(a) and T (a) in (22) are designated
by wa2 and Ta2, the unknown constants gm (m = 4, . . . , 11) satisfy another set of lengthy
algebraic equations that are not given here. From the equations (20a–20d) and (19d) for the
secondary mushy layers, we find

(w(a), T (a)) = {(g12, g16) exp[(γ1)
0.5z] + (g13, g17) exp[−(γ1)

0.5z]
+ (g14, g18) exp[(γ2)

0.5z] + (g15, g19) exp[−(γ2)
0.5z]

+ (0, g20) exp(−αz)}H(x, y) ≡
∑

[wa(z), Ta(z)]En ηn(x, y), (23)

where for later references the z-dependent coefficients for w(a) and T (a) in (23) are designated
by wa3 and Ta3 and the unknown constants gm (m = 12, . . . , 20) satisfy a next set of
lengthy algebraic equations that are not given here. The system of 20 equations for the gm

(m = 1, . . . , 20) was then solved by a successive elimination method for given value of g0,
which is admissible due to the linearity of this system.

In addition for later use, we also designate the following form for the adjoint solution for
the flux vector and the pressure in each of the three layers:

[u(a), P(a)] =
N∑

n=−N

[ua(z, n), Pa(z)]En ηn(x, y). (24)

As will be seen in the next subsection, such designation (24) will be needed to form the
solvability condition, even though the explicit expressions for (24) will not be needed.

3.5 Non-linear Problem

Next, we analyze the non-linear problem for the governing systems (1a–1g)–(3a–3j) at order
ε2. The solutions to these systems are very lengthy and will not be presented here. The systems
for the dependent variables u, P , and T at O(ε2), which are needed to form the solvability
condition, are given by (37a–37e)–(39a–37d) in Appendix. The solvability condition for the
non-linear system requires the following special solutions uan, Pan, and Tan of the adjoint
system in each of the three layers:

(uan, Pan, Tan) = ([ua(z, n), Pa(z), Ta(z)]En ηn(x, y). (25)

Consider the systems (37a–37e), (38a–38d), and (39a–39d) given in the appendix. First,
we consider the liquid layer. Taking dot product of the equation (37a) by uan, multiplying
the equation (37b) by Pan and (37c) by Tan, adding, applying integration by parts, using the
boundary conditions (37d, 37e) and (18d, 18e), and averaging over the liquid layer, we obtain
an integral equation which also contains several terms evaluated at the primary mush–liquid
interface. We refer to this resulting equation as IL = 0. Now we consider the primary mushy
layer. Taking dot product of Eq. (38a) by uan, multiplying the equation (38b) by Pan and (38c)
by Tan, adding, applying the integration by parts, using the boundary conditions (38d) and
(19d), and averaging over the primary mushy layer, we find an integral equation which also
contains several terms evaluated at the primary mush–liquid and primary mush–secondary
mush interfaces. We refer to this resulting equation as IP = 0. Similarly, we consider the
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secondary mushy layer. Taking dot product of Eq. (39a) by uan, multiplying (39b) by Pan and
(39c) by Tan, adding, applying the integration by parts, using the boundary conditions (39d)
and (20d), and averaging over the secondary mushy layer, we find a third integral equation,
referred to here as IS = 0, which also contains several terms evaluated at the secondary
mush–primary mush interface. Next, we simplify the equation IL + IP + IS = 0 using
the adjoint equations and the boundary conditions for both adjoint systems and the finite
amplitude systems at o(ε2). This leads to the solvability condition for the present ternary
system which is simplified to the form

(Rp1S2 + Rs1S4)|En |2 =
N∑

p,q=−N

(Slpq + S3pq + S5pq)En E p Eq〈ηnηpηq〉,

×(n = −N , . . . ,−1, 1, . . . , N ), (26)

where an angular bracket indicates an average over the horizontal plane, and the expressions
for the quantities S1pq , S2, S3pq , S4, and 55pq are given by (40a–40e) in the appendix. The
right-hand side of (26) is zero, unless

αn + αp + αq = 0, (27)

for at least some p and q . The condition (27) can be satisfied in the case where convection
is in the form of hexagons (N = 3), which is the focus of present study.

For convective flow in the form of hexagons (N = 3), where (27) holds and En = (1/6)0.5,
(26) becomes

Rp1 = S9 Rs1 − S10, S9 ≡ −S4/S2, S10 ≡ −[2/(6)0.5](S1 + S3 + S5)/S2, (28a)

where S1, S3, and S5 are the expressions for S1pq , S3pq , and S5pq evaluated at pq = −1/2
and

φpq ≡ α p · αq/α
2. (28b)

It can be seen from the above description for S1, S3, and S5 and the expressions given in
(40a–40e) that S1 is due to the liquid layer, S2–S3 are due to the primary mushy layer, and S4–
S5 are due to the secondary mushy layer. We numerically calculated S1–S5 using Simpson’s
Rule (Isaacson and Keller 1966) for several cases, which are presented and discussed in the
next section.

As we noted earlier in Sect. 3.3, the linear solutions for the dependent variables depend on
the arbitrary constant b1. Hence, non-linear solutions at O(ε2) for the dependent variables are
also dependent on b1. As a kind of normalization procedure, we kept a fixed magnitude for
this constant in each case of calculation and found two distinct non-linear solutions depending
on whether this constant is positive or negative.

3.6 Non-linear Evolution Problem

Similar to the work in Roper et al. (2008) for the binary system case, we first write all the
dependent variables at O(ε) in the three layers in terms of an unknown amplitude function
C(τ ) so that, for example, the expression for the vertical flux (12a) in the liquid layer can be
in the form

w0 = C(τ )

N∑

n=−N

f3 En ηn(x, y), (29)
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where in the case of hexagonal planforms (Busse 1978) N = 3, amplitude of each of the three
modes C(τ )En(n = 1, 2, 3) in (29) are equal to C(τ )[1/(6)0.5], and the slowly varying time
τ (Roper et al. 2008) is defined here by τ = |ε|t . It should be noted that here the amplitude
function C(τ ) is taken as real since in our actual calculation of various quantities, we made
each solution real by making use of real functions, even though the formal expressions of
various solutions provided in this paper have z-dependent complex coefficients. We provided
such formal expressions since the equivalent real expressions were found to be more lengthy
and different for different investigated cases and so were not instructional to be provided for
the readers.

Next, following a similar procedure to that described in Sect. 3.5 to form the solvability
condition at O(ε2), we find the following result:

γ (S6 + S7 + S8)(dC(τ )/dτ) = (Rp1S2 + Rs1S4)C − [2/(6)0.5](S1 + S3 + S5)C
2, (30)

where γ = 1 for ε > 0 and -1 for ε < 0, and the expressions for the quantities S6–S8 are
given by (41) in the Appendix.

The solution to the non-linear equation (30) can be readily found to be

(C/C0) = M exp(Mτ/θ)/[(M − λC0) + λC0 exp(Mτ/θ)], (31a)

where C0 is some initial condition for C ,

M ≡ (Rp1S2 + Rs1S4), θ ≡ γ (S6 + S7 + S8), λ ≡ [2/(6)0.5](S1 + S3 + S5). (31b)

Here the quantities M, θ , and λ in (31b) are given in terms of the non-linear coefficients
Rp1 and Rs1 and the S1–S8 whose numerical values are given for different cases in Sect. 4.
The time-dependent evolution of the finite amplitude solution can then be determined by the
way the amplitude function C can vary in the slow time τ . However, if the initial value of
the amplitude takes the value M/λ, then (31a) implies that C = C0 for all times so that a
constant amplitude prevails here for all times in this case.

It can be seen from (31a, 31b) that asymptotic solutions for C as τ → ∞ can be

C→M/λ as τ → ∞ for M/θ > 0 if M/(λC0) > 0, (32a)

C→0 as τ → ∞ for M/θ < 0 if either M/(λC0) > 1 or M/(λC0) < 0. (32b)

The solution in (32a) is the equilibrium solution for the amplitude C of the finite-amplitude
solution, which we take into account to determine the steady finite amplitude solutions. It
can be seen from (31b) and (32a) that, for given parameter values, the equilibrium solution
cannot exist if both Rayleigh numbers are too close to their respective critical values.

It should be noted that there are also conditions under which solution can break down
after a finite time, so that

|C | → ∞ as τ → (θ/ M) ln [1 − M/(λ C0)], (33a)

provided if

(θ/M) < 0 and 0 < M/(λC0) < 1, (33b)

or

(θ/M) > 0 and M/(λ C0) < 0. (33c)

It can be seen that the finite time given in (33a), as |C | → ∞, depends on the initial
condition C0 of C , and this initial condition needs to be in particular domain either in (33b)
or (33c). It is suggested (Landau and Lifshitz 1987) that in this case for subcritical flow in a
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shear flow or convection problem there should be a lower critical RG of the corresponding
effective controlling parameter below which the bifurcated solution does not exist so that
the value of |C | begins to increase in the subcritical domain with the effective controlling
parameter (Drazin and Reid 1981). It is expected that the motionless basic state is globally
asymptotically stable with respect to all disturbances for the effective controlling parameter
less than RG .

In the previous investigations of amplitude equations, the interest had been on the stability
of the equilibrium solutions (Anderson and Worster 1995; Chung and Chen 2000), despite
the existence of some solutions of those equations that could break down under certain initial
conditions. Similarly, in the present study the equilibrium solution (32a), which can possibly
lead to a stable hexagonal solution, is of interest. We investigate its linear stability using the
amplitude equation approach (Chung and Chen 2000). We superpose a small perturbation
amplitude c(τ ) onto the solution (32a), use the resulting sum and (31b) in (30), subtract
the equation for the equilibrium solution from the resulting equation for (M/λ + c), and
linearize the subsequent equation with respect to c. We also assume c = a exp(στ), where
a is a constant and σ is the growth rate of the perturbation. Then the equation for such
perturbation amplitude reduces to the condition

σ = −M/θ, (34a)

so that equilibrium solution is stable if

M/θ > 0. (34b)

We calculated values of the quantities S6 − S8 given in (41) using a Simpson’s Rule for
several cases under the condition (32a) for the equilibrium solution, which are presented
and discussed in the next section. As we explained in Sect. 3.5, we have found two distinct
non-linear solutions for given fixed values of the non-linear coefficients Rp1 and Rs1, and it
turns out that for all the calculations that we carried out for different cases (34b) is satisfied
only for one of these solutions. So subjected to (30), one of the two solutions is stable and
another unstable.

4 Results and Discussion

Following Anderson and Schulze (2005), we consider zero thermal Rayleigh number and
a fully compositionally symmetric ternary phase diagram, where AE = BE = 1/3, Mb =
0, Ma = Mac = Mbc = 1/(AP − 1/3), AP = AL = 0.37, and BP = BL = 0.35. These
values, which do not affect the main systems, were found to be typical for our calculations. We
also tried different values for AL and BL and found no change on the qualitative behavior of
the solutions for the solid fractions. About the effects of the Darcy parameter, we calculated
the results for several values of da and found that its higher value has a slight stabilizing
effect, which is consistent with its increasing frictional role in the liquid layer. Hence, for
the finally produced results and figures, we kept the value of da at 0.8. We focused our study
on several different values of the constants T L, T s, L , and l that were found to affect the
results due to the main systems. However, due to the constraints (7f) and (8f), given values
for two of these constants determine the values of the other two constants. Thus, we provide
here three base-state parameter values (Table 1), which are found to be representative under
which the main results of the present study are determined.
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It should also be noted that δ, which is the thickness of the secondary mushy layer, is one
of the assumed small perturbation parameter that is used in the expansion procedure (5a, 5b,
5c, 5d, 5e, 5f) and is also used to determine the basic state solutions up to o(δ2).

4.1 Motionless Basic State

We generated data for the motionless basic state based on (6a–6c)–(8a–8e) for the base state
I (Table 1), which turns out to provide typical results for the temperature, compositions,
and solid fractions. As can be seen from (6a–6c) to (8a–8e), the basic state solutions are
all independent of the mush Rayleigh numbers. Our generated data indicated that the basic
state temperature is continuous due to the zero jump conditions for the temperature across
the interfacial boundaries. As expected physically, the basic state temperature was found to
increase with the vertical variable. The temperature profile is slightly non-linear due to the
second-order contribution of δ in the expressions for the basic state temperature. Since δ

represents a length scale for the thickness of each of the three layers as well as the thickness
of the secondary mushy layer, we also generated data for TB for two different values of δ to
see the effect of such length scale and found that the basic state temperature increases with δ.

Our generated data for the basic state compositions AB and BB versus z indicated that both
compositions increase vertically in the secondary mushy layer. In the primary mushy layer
the composition AB increases with z, while BB decreases with increasing z. In the liquid
layer both compositions are constant. Note that due to the symmetry of the phase diagram,
both compositions are found to be equal at the interface between the primary and secondary
mushy layers as well as at the eutectic front. Our generated data for different values of δ

indicate that the basic state compositions increases with δ.
Our calculation for the basic state solid fractions φaB and φbB as well as the sum φaB +φbB

indicated that these decrease with increasing z in the secondary mushy layer, but rate of
decrease with respect to z for φbB is higher. Due to the structure of each mushy layer, there is
no solid fraction for composition B in the primary mushy layer (φbB = 0). The solid fraction
φaB also decreases with increasing z in the primary mushy layer. The positive rate of decrease
of the solid fraction φbB in the secondary mushy layer is due to the zero value of this solid
fraction in the primary mushy layer and the highest value at the solid–secondary mushy layer
interface.

4.2 Linear Stability

The eigenvalue relation (17) for the onset of motion was calculated by applying an iterative
procedure for fixed values of the constants in each of the base states I, II, and III listed in
Table 1 as well for other cases with different values of the constants, and we found qualitatively
similar results. For given values of the constants in (17), this equation is a function of two
effective Rayleigh numbers and the wave number. Typical reported results here are for the
base state I. Using the iterative procedure we consider three specific convection scenarios
and determine the relation between the two Rayleigh numbers at the onset of motion for each
given admissible value of the wave number.
(i) Case 1 Here we assume that convection at the onset of motion is driven equally from both
mushy layers (Rp = Rs). We generated data for the neutral stability curve, and the numerical
values of the critical Rayleigh numbers and the wave number at the lowest point on this curve
are found to be Rpc = Rsc = 9.38 and αc = 1.54. Our results are in qualitative agreement
with the numerical results due to Anderson and Schulze (2005) using a pseudo-spectral
Chebyshev method.
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(ii) Case 2 Here we assume that convection at the onset of motion is driven mainly from
the primary mushy layer (Rs0 = 0.00001). We generated data for the neutral stability curve
for this case. Numerical values of the critical primary mush Rayleigh number and the wave
number at the lowest point on this curve are found to be Rpc = 9.40 and αc = 1.56, which are
also in qualitative agreement with those for Rs = 0 given in Anderson and Schulze (2005).
We also calculated this case for Rs0 = 0 by implementing different analytical expressions for
the solutions in the primary mushy layers, and we found that the results remain unchanged as
compared with those for Rs0 = 0.00001. The results indicate that the critical values for the
primary mush Rayleigh number and the wave number are very slightly higher if convection
is insignificant in the secondary mushy layer. This result is reasonable since less flow efforts
can be stabilizing.
(iii) Case 3 Here we assume that convection at the onset of motion is driven mainly from the
secondary mushy layer (Rp0 = 0.00001). We generated data for the neutral stability curve.
Numerical values of the critical secondary mush Rayleigh number and the wave number at
the lowest point on this curve are found to be Rsc = 60.78 and αc = 3.12. Again we found
qualitative agreement with those for Rp = 0 given in Anderson and Schulze (2005). We also
calculated this case for Rp0 = 0 by implementing different analytical expressions for the
solutions in the secondary layer and found that the results remain unchanged as compared
with those for the case Rp0 = 0.00001. Here the critical conditions are significantly higher
than those for the previous 2 cases (i)–(ii).

From the linear results presented above, it can be seen that convective flow in the primary
mushy layer is more significant than that in the secondary mushy layer, which appear rea-
sonable since the primary mushy layer contains solid dendrites due to only composition A;
while the secondary mushy layer contains solid dendrites due to both compositions A and
B, even though the secondary mushy layer is adjacent to the solidification front. In addition,
the flow significantly stabilizes and is of the lower horizontal wavelength if the flow is driven
mainly from the secondary mushy layer.

4.3 Non-linear Problem

We numerically evaluated the expressions for S1–S10, which were defined in Sects. 3.5 and
3.6, using Simpson’s Rule (Isaacson and Keller 1966) for each of the three base states I–III
(Table 1) and for the two detected solutions noted in the Sects. 3.5 and 3.6. In addition to
these calculations, we also generated data for several other cases and found that the sign
of the values for these expressions remain unchanged for each of the two solutions. Tables
2, 3, and 4 present numerical values of S1–S8 for the three base states I–III, respectively,
for the stable type solution that satisfies (33b), and each of these tables provides also the
corresponding values for three cases of Rp = Rs, Rs = 0, and Rp = 0, which are referred
to here, respectively, as the cases (i)–(iii). Since each of these three cases corresponds to
different critical onset parameters that enter the solvability condition, we had to carry out
separate calculation for each case to determine the values of S1–S8. It can be seen that Tables
2, 3, and 4 also provide values for the critical onset conditions as well as for the non-linear
coefficients Rp1 and Rs1 for each of the above three cases. We also calculated the expressions
for S1–S8 in each of the three cases for the unstable solution and found that the magnitudes of
S1–S8 as well as the signs of S1, S3, and S5 remain unchanged, but the sign of the expressions
for S2, S4, and S6–S8 are changed.
Case (i) Convective flow is driven equally both at the onset and beyond from both mushy
layers (Rp = Rs). We calculated the non-linear coefficients Rp1 and Rs1, volume flux, and
the solid fraction for the stable finite amplitude solution, which satisfies the condition (34b),
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for various values of the parameters for the base states I–III in Table 1 and also for other cases
for δ = 0.5 and |ε| = 0.03, which is found to be the maximum value of |ε| beyond which
the total solid fraction (basic state plus the perturbation) becomes negative and subsequently
physically unrealistic. The values of Rp1 and Rs1 for the stable solution, which were found
to be the case for ε > 0, are given in Tables 2, 3, and 4 for the base states I–III, respectively.
Hence, stable flow was found to be supercritical. Comparing the results given in Tables 2,
3, and 4 for the base states I–III, we find that flow is more supercritical for higher values of
either the thickness of the primary mushy layer or the temperature at the top of the liquid
layer.

Typical results are presented in Figs. 2 and 3 for the vertical distribution of vertical volume
flux and total solid fraction and for the base state I at center and a node of a hexagonal cell.
As is expected and we also inspected that the results to be reported in this paper at center and
a node of a cell are representative for center and node of any cell. It can be seen from Fig. 2
that in the secondary mushy layer flow is downward at the cell center and upward at the node,
and the magnitude of the vertical flux increases with z both at the center and at the node.
In the primary mushy layer up to the horizontal level about z = 1.282 flow is downward at
the cell center and upward at the node, but now the magnitude of the vertical flux decreases
with increasing z and becomes zero at the level z = 1.282. From this level to top of the
primary mushy layer, the flow is upward at the cell center and downward at the node, and
the magnitude of the vertical flux increases with z both at the center and at the node. In the
liquid layer the flow direction remains the same as in the upper section of the primary layer
for z > 1.282, but now magnitude of the vertical flux decreases with increasing z. So double
cellular structure in the vertical direction is evident from these results with down-hexagons
in the lower region and up-hexagons in the upper region of the ternary system.

Figure 3 presents total solid fraction versus z at center and a node of a cell. It can be
seen and implied from this figure as well as from the actual generated data that there is solid
fraction reduction, referred to hereafter as tendency for chimney formation, that varies with
respect to z and exists in both mushy layers. In the secondary mushy layer such tendency
for chimney formation initiates at different horizontal locations of the bottom of the layer, is

Table 2 Values of S1–S8 for the
base state I and for 3 cases
Rp = Rs, Rs = 0, and Rp = 0

Quantity (for
base state I)

Rp = Rs Rs = 0 Rp = 0

Rpc 9.383 9.40 0

Rsc 9.383 0 60.78

αc 1.54 1.56 3.12

S1 337(10−7) 427(10−11) 3(10−11)

S2 −1053(10−7) 122(10−8) −267(10−11)

S3 0.55694 813(10−8) 1(10−11)

S4 1872(10−6) 2.63124 1,393(10−6)

S5 −0.32456 6,306(10−7) −3847(10−6)

S6 −13066(10−7) 1,475(10−8) −1(10−12)

S7 −2577(10−6) 3,908(10−8) −2(10−12)

S8 2,046(10−5) 2,168(10−7) −6457(10−8)

Rp1 16.543 47.606 0

Rs1 16.543 0 −2.255
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Table 3 The same as in Table 2
but for the base state II

Quantity (for
base state II)

Rp = Rs Rs = 0 Rp = 0

Rpc 5.28 5.29 0

Rsc 5.28 0 86.86

αc 0.88 0.89 3.18

S1 2,883(10−8) 34(10−10) 383(10−11)

S2 −3240(10−7) 2,907(10−9) −7078(10−6)

S3 0.5804 659(10−7) −658(10−10)

S4 3,509(10−6) 1.9607 82.0607

S5 −0.3238 4,227(10−7) −2472.7698

S6 −6605(10−7) 7,181(10−9) −3622(10−10)

S7 −1781(10−6) 4,269(10−7) −1954(10−10)

S8 0.1672 1,847(10−7) −1011.2668

Rp1 80.653 137.236 0

Rs1 80.653 0 −301.334

Table 4 The same as in Table 2
but for the base state III

Quantity (for
base state III)

Rp = Rs Rs = 0 Rp = 0

Rpc 9.201 9.22 0

Rsc 9.201 0 60.79

αc 151 1.52 3.14

S1 0.02812 3,167(10−9) 2(10−13)

S2 −3307(10−6) 3,579(10−8) −2277(10−9)

S3 6.9624 8,357(10−7) 14(10−13)

S4 7,624(10−6) 8.0192 0.9757

S5 −3.7940 5782(10−6) −723.2225

S6 8,672(10−6) 9,278(10−8) −7945(10−13)

S7 −9739(10−6) 1,378(10−7) −348(10−13)

S8 0.07459 6,833(10−7) −0.8392

Rp1 935.803 151.02 0

Rs1 935.803 0 −674.302

along the vertical direction, and it first increases slightly and then decreases with increasing z
until it becomes negligible at the top of the secondary layer. These horizontal locations are the
vertical projections of the nodes of the down-hexagonal cells on the bottom of the secondary
layer. In the primary mushy layer the tendency for vertically oriented chimneys formation
begins on the internal horizontal level z = 1.282 between the two cellular flow structures.
Below this internal level such tendency decreases with decreasing z until it is negligible on
the bottom of the primary layer, while above this level such tendency increases first slightly
before decreases with increasing z until it ends at the top of the layer. The horizontal locations
of tendency for chimney formation in the primary mushy layer, which are vertical projections
of centers of down-hexagons and up-hexagons on this level, are all, in general, different from
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Fig. 2 Vertical volume flux versus z at center of a cell (solid line) and at a node of the same cell (dashed
line) for base state I listed in Table 1 and Rp = Rs case. Here ε = 0.03 and δ = 0.5. Dotted lines indicate
interfaces, and dash-dot line represents the level that separates the two vertical cellular structures

those in the secondary mushy layer. The amount of solid fraction reduction in the primary
mushy layer are relatively less than those in the secondary mushy layer, but the tendency for
chimney formation is again vertically oriented at discrete locations and over this layer such
tendency first increases and then decreases with increasing z.
Case (ii) Convection is driven both at the onset and beyond by the primary mushy layer
(Rs = 0). We calculated the non-linear coefficient Rp1, volume flux, and the solid fraction
for the stable solution for various values of the parameters and for the three base states in
Table 1 for δ = 0.5 and |ε| = 0.01, which is found to be the maximum value of |ε| beyond
which total solid fraction becomes negative and, thus, physically meaningless. The values
of Rp1 for the stable solution, which was found to be the case for ε > 0, are given in Tables
2, 3, and 4 for the base states I–III, respectively. Hence, we found that the stable flow is
supercritical. Comparing the results given in Tables 2, 3, and 4 for the base states I–III, we
found that flow is more supercritical for higher values of thickness of the primary mushy
layer or the temperature on top of liquid layer.

Typical results are presented in Figs. 4 and 5 for the vertical distribution of the vertical
volume flux and total solid fraction for the base state I at center and a node of a hexagonal
cell. It can be seen from Fig. 4 that in the secondary mushy layer flow is upward at the center
of the cell and downward at the node. The magnitude of the vertical flux increases with z
both at the center and the node. In the primary mushy layer and the liquid layer the results
shown in this figure as well as from our additional generated data indicate that flow continues
to be upward at the center in the lower part of the primary mushy layer up to the horizontal
level z = 1.285, beyond which the flow is downward. At the node of the cell flow direction
is opposite to that at the center. At z = 1.285, the vertical flux is zero. The magnitude of
the vertical flux decreases with increasing z both at the center and the node in the lower
part of the primary mushy layer for 1 < z < 1.285 and also in the liquid layer, while the
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Fig. 3 Total solid fraction versus z at center (solid line), a node (dashed line) of a cell for basic state I listed
in Table 1 and Rp = Rs case. Here ε = 0.03, δ = 0.5, and the basic state total solid fraction is also given
(dotted line) for comparison

magnitude of the vertical flux increases with z both at the center and the node in the upper
part of the primary mushy layer for 1.54 > z > 1.285. These results indicate the presence
of double-cell structure in the vertical direction with down-hexagons above up-hexagons.

Figure 5 presents total solid fraction versus vertical variable at center and a node of a cell,
and it also shows vertical distribution of the basic state solid fraction. It can be implied from
this figure as well as from the quantitative values of the generated data that in the secondary
mushy layer the tendency for chimney formation is initiated at the bottom of the layer. Then,
it takes place at different horizontal locations, which are vertical projections of centers of
up-hexagons on the bottom of the secondary layer, and such tendency is along the vertical
direction but first increases slightly before it decreases with increasing z until it becomes
negligible at top of the layer. In the primary mushy layer the tendency for chimney formation
begins on the internal horizontal level z = 1.285. This is the level between the two cellular
flow structures, where chimney formation begins at different horizontal locations, which are
vertical projections of the nodes of up-hexagons and down-hexagons on this level, and are
all, in general, different from those in the secondary mushy layer. Such tendency, which
is relatively less than the one in the secondary mushy layer, is again vertically oriented,
first slightly increases and then decreases with increasing z for z > 1.285 and decreases
with decreasing z for 1 < z < 1.285. Again as in the case (i), the tendency for chimneys
formation in each of the mushy layers takes place at different vertically oriented locations
and the vertical extension of each chimney is limited within each mushy layer.
Case (iii) Convection is driven both at the onset and beyond from the secondary mushy layer
(Rp = 0). We calculated the non-linear coefficient Rs1, volume fluxm and the solid fraction
for the stable finite amplitude solution which satisfies the stability condition (34b) for various
values of the parameters and for those of the base states I–III in Table 1 for δ = 0.5 and
|ε| = 0.03, which is found to be the maximum accepted value of |ε| above which the total
solid fraction is negative. The values of Rs1 for the stable solution, which were found to be
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Fig. 4 The same as in Fig. 2 but for ε = 0.01 and Rs = 0 case

Fig. 5 The same as in Fig. 3 but for ε = 0.01 and Rs = 0 case

for ε > 0, are given in Tables 2, 3, and 4 for the base states I–III, respectively. Hence stable
flow is subcritical. Comparing the results given in Tables 2, 3, and 4 for the base states I–III,
we find that the flow is more subcritical if the value of the primary mushy layer’s thickness
or the temperature at the top of the liquid layer is higher.

Typical results are presented in Figs. 6 and 7 for the vertical distribution of the vertical
volume flux and total solid fraction, respectively, for the base state I at center and a node of
a cell. It can be seen from Fig. 6 as well as from the actual generated data that flow occurs
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Fig. 6 The same as in Fig. 2 but for Rp = 0 case

Fig. 7 The same as in Fig. 3 but for Rp = 0 case

mainly in the secondary mushy layer and very slightly in the lower part of the primary mushy
layer up to about z = 1.33, where flow is downward at the center and upward at the node. The
magnitude of the vertical flow increases with z for z < 0.48 and decreases with increasing z
for z > 0.48. These results indicate the presence of only a single-cell structure in the vertical
direction, where flow is in the form of down-hexagons.

Figure 7 presents total solid fraction versus z. It can be seen from this figure as well as
from the actual generated data that the tendency for chimney formation exists only in the
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Table 5 Values of S9–S10 for 3
base states

Quantity Base state I Base state II Base state III

S9 1.777 10.830 2.033

S10 ±12.854 ±792.817 ±966.685

secondary mushy layer. This tendency begins at the bottom of this layer at different horizontal
locations, which are vertical projections of the nodes of down-hexagonal cells on the bottom
of this layer, and it is along vertical direction where it first increases slightly with z up to
about z = 0.12 and then decreases with increasing z until it becomes negligible at the top of
the layer.
Case (iv) Onset of motion is driven equally from both mushy layers (Rpc = Rsc). This case
is more general than the case (i) since here only the onset of motion takes place at the same
values of both mush Rayleigh numbers, but the Rayleigh numbers can have different values.
In this case we have the relation given in (28a) between the non-linear coefficients Rp1 and
Rs1, where the values of the constants S9 and S10 for both of the solutions and the three base
states I–III are given in Table 5. The positive sign for S10 corresponds to the stable solution
as detected also in the case (i), which is considered a sub-case of the case (iv), while the
negative sign for this constant corresponds to the unstable solution as detected in the case (i).
It can be seen from the results in Table 5 that the magnitudes of both of these constants are
higher if the primary mushy layer is thicker or if the value of the temperature at the top of
the liquid layer is higher. We also calculated these constants for other parameter values and
found that the signs for S9 and S10 remain unchanged for either type of solution.

It should be noted that due to the relation (28a), any of the two solutions in the case (i)
now can correspond to a set of solutions satisfying (28a) with a linear relationship between
the non-linear coefficients Rp1 and Rs1. The values of the constants S1–S8 that are given for
the stable solution of the case (i) in the three base states (Tables 2, 3, 4), were found to be the
same as those in the case (iv) corresponding to a first set of solutions since both non-linear
coefficients Rp1 and Rs1 can take different values satisfying (28a). The corresponding values
for S1–S8 for a second set of solutions in this case are found to have the same magnitudes as
those for the first one but with opposite signs for only S2, S4, and S6–S8. Using the stability
analysis presented in Sect. 3.6 and applying (5f) to O(ε), we find that the stable solutions
subjected to either of the base states I–III satisfy the following relation between the mush
Rayleigh numbers:

Rp − S9 Rs = (1 − S9)Rpc − |ε| S10. (35)

Here the value of S10 in Table 5 corresponds to the one with positive sign. The relation
(35) can be useful for the experimentalists to investigate the flow features using this type
of relation between the two mush Rayleigh numbers for the flow near its onset of motion
and for the prescribed value of the amplitude of the perturbation that is maintained in their
experimental systems.

For the base states I–III (Table 1), there is an important issue about the type of convection
that may prevail in this case. To address this issue, which turns out to be peculiar and very
particular for the ternary system, we extended further investigation and found that depending
on a prescribed value of either Rp or Rs, the resulting stable flow can be subcritical (or
supercritical) in both mushy layers or mixed subcritical in one mushy layer and supercritical
in another mushy layer. To show this result explicitly, we suppose that the flow in the secondary
mushy layer is supercritical, so that

Rs = Rpc + |ε||Rs1|. (36a)
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Using this in (35), we find

Rp = Rpc + |ε|(S9|Rs1| − S10). (36b)

Thus, since S9 > 0 and S10 > 0, convection in the primary mushy layer is supercritical if
|Rs1| > S10/S9 and subcritical if |Rs1| < S10/S9. If convection in the secondary mushy layer
is subcritical, so that

Rs = Rpc − |Rs1|, (36c)

then (35) implies that

Rp = Rpc − |ε|(S9|Rs1| + S10). (36d)

Thus, in this case flow is also subcritical in the primary mushy layer. As specific examples, we
also generated data for the volume flux and the solid fraction under the base state I (Tables 1, 2)
for three sub-cases of Rs1 = 10.0, Rs1 = 5.0, and Rs1 = −10.0 corresponding, respectively,
to both supercritical mushy layers (ε = 0.03, Rp1 = 4.916), supercritical secondary mushy
layer and subcritical primary mushy layer (ε = 0.03, Rp1 = −3.965), and both subcritical
mushy layers (ε = 0.03, Rp1 = −30.624). Due to some similarities between this case and
its sub-case (i), and the weak non-linear approach of present study, we find that the results
for the vertical flux and total solid fraction are qualitatively the same as those described for
the case (i) and in Figs. 2 and 3 and only differ quantitatively, and, thus, no figures were
produced for these three sub-cases. Hence, the results for the preferred flow pattern and the
tendency for chimney formation are qualitatively the same as those described for the case (i)
and will not be repeated here.

4.4 Discussion on the Three-Dimensional Results

We already provided a paragraph in the introduction section about the main results of the
two-dimensional steady rolls of the ternary system that was investigated by Anderson and
Schulze (2005). Here we present the main differences between that study and the results and
the corresponding ones in the present investigation. In contrast to the work in Anderson and
Schulze (2005), the present study considered three-dimensional convection in a naturally
fitted ternary system and investigated stability of the resulting three-dimensional hexagons.
It is known from previous theoretical and experimental studies of convective flow in binary
systems (Tait et al. 1992; Amberg and Homsy 1993; Roper et al. 2008) that three- dimen-
sional hexagons are the preferred and observable flow structure at least for sufficiently small
amplitude of the flow cases. Although no experimental investigation has yet been done to
determine the preferred patterns in a present type ternary system, it has been a motivation
for the present three-dimensional hexagonal studies to stimulate future experimental work to
uncover the observable flow patterns in ternary system.

The preferred flow structures that were detected in the present study such as down-
hexagons over or under up-hexagons in supercritical or subcritical states were completely
different from the results for two-dimensional rolls reported in Anderson and Schulze (2005).
The present study also uncovered for the first time new flow phenomena and mechanisms that
can play in the present system such as depending on the given parameter values one mushy
layer can be in supercritical state, while another layer in subcritical state. In addition, other
main results of the present study about tendency for chimney formation and its mechanisms
for various hexagonal convection scenarios that we presented in this paper and concluded
in this section are completely new and none of such results were detected in Anderson and
Schulze (2005) for the two-dimensional rolls counterpart.
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Despite the lack of any experimental results about the preferred patterns in a ternary type
flow system such as the present one and the fact that no other numerical or theoretical studies
have been available so far for the three-dimensional flow patterns near the onset of motion
in such ternary system, we would like to provide the following explanations that can provide
some support for the present three-dimensional results.

First, from the part (iii) of Sect. 4.3, we presented results for the case where the convective
flow is driven only by the secondary mushy layer, which is bounded from below by the
solidification front and from above by a passive primary layer with zero Rayleigh number
and a liquid layer. This is a limiting type ternary flow model, which is closet to the single
mushy layer model of a binary system (Worster 1992; Tait et al. 1992), where the mushy layer
is bounded from below by a solidification front and from above by a liquid layer. According
to the experimental results for the binary system due to Tait et al. (1992), the observed flow
pattern was in the form of down-hexagons with flow downward at the center of each cell and
with chimneys convective flow in the upward direction along the nodes of the hexagonal cells.
These are precisely the type of results that we found and presented in part (iii) of Sect. 4.3 in
the case of a passive primary layer (Rp = 0) with convection driven only by the secondary
mushy layer.

Next, a comparison between the present three-dimensional results and the two-dimensional
ones (Anderson and Schulze 2005), which were already described in Sect. 1, indicate some
general features which agree between the two studies such as supercritical realization of flow
driven by the primary layer, subcritical realization of flow driven by the secondary layer, and
the direction of flow circulation and the sign of the solid fraction perturbation in the case of
flow driven by one mushy layer.

In the present investigation non-linear examination of the three-dimensional ternary sys-
tem was restricted to O(ε2) of the perturbations superimposed on the basic state which
enabled us to examine the hexagonal type solutions that can be preferred for the smallest
values of the amplitude ε and the mush Rayleigh numbers. However, computation of the non-
linear properties of such flows for O(ε3) for three-dimensional hexagonal and non-hexagonal
type solutions will be quite complex requiring very extensive algebras and remain a subject
for future work.

5 Conclusion

We studied the problem of three-dimensional buoyant convection during the solidification
of ternary alloy and under the assumption of large far-field temperature and sufficiently
small amplitude of convection |ε|. We determined the motionless basic state solution and
then carried out linear stability analysis to determine the critical conditions at the onset of
convection for several cases. Applying weakly non-linear analyses up to and including O(ε2),
we examined the linear and non-linear properties of the three-dimensional flow in the form
of hexagons and found the stable non-linear solutions for several convection scenarios.

We found for the cases that the flow is driven from both mushy layers with equal critical
conditions at the onset of motion in both mushy layers; and depending on the values of the
mush Rayleigh numbers, the stable flow can be supercritical or subcritical in either of the two
mushy layers. Such flow is in the form of double cellular structure in the vertical direction with
down-hexagons under up-hexagons. There is a tendency for chimney formation in both of
the mushy layers. In the secondary mushy layer such tendency initiates at different horizontal
locations on the bottom of the layer and is vertically oriented where its amount first slightly
increases and then decreases with increasing the vertical variable z until it becomes negligible

123



Three-Dimensional Non-linear Buoyant Convection 275

at the top of this layer. In the primary mushy layer, tendency for chimney formation initiates
at different horizontal locations on an internal horizontal level within the layer. The amount of
tendency for chimney formation in this layer is relatively less than that in the secondary layer
but is again vertically oriented at discrete locations. Here the amount of such tendency above
the internal level first increases slightly and then decreases with increasing z in the upward
flow direction until ends at the top of the layer, while under the internal level this tendency
decreases with decreasing z in the downward flow direction until becomes negligible at the
bottom of the layer.

If the flow is driven only by the primary mushy layer, then the stable flow is supercritical
and has double cellular structure vertically but now down-hexagons are above up-hexagons.
The tendency for chimney formation in both mushy layers is similar to the corresponding
one described in the previous paragraph but the amount of such tendency is now relatively
less. For the case that the flow is driven only by the secondary mushy layer, the stable flow
is subcritical and has only a single cellular structure in the form of down-hexagons. Here
convection is mainly restricted to the secondary mushy layer and very slightly to the lower
part of the primary layer, and the tendency for chimney formation, which exists only in the
secondary mushy layer, is similar to the previous cases but is relatively less. The tendency
for chimney formation is found to be higher if the convection is driven by both mushy layers
with equal critical onset conditions for motion.

Since no experimental investigation has been done yet to determine the preferred patterns
in a ternary system, it has been a motivation for the present three-dimensional hexagonal
studies to stimulate future experimental work to uncover the observable flow patterns in
ternary systems. The present study detected for the first time new types of preferred flow
structures such as down-hexagons over or under up-hexagons in supercritical or subcritical
states as well as new flow phenomena and mechanisms that can play in the present ternary
system such as one mushy layer can be in supercritical state, while another layer can be in
subcritical state for the same values of the parameters of the flow system. In addition, other
main results of the present study about tendency and mechanisms for chimney formation in
different hexagonal convection scenarios that we also summarized in the last two paragraphs
of this section are completely new and none of such results have been detected before.

Although there have been some notable experimental results and discoveries in the ternary
systems (Aitta et al. 2001a,b; Thompson et al. 2003b) about the presence of distinct primary
and secondary mushy layers, which can form between solid and liquid layers, no experimental
result is known about the form of buoyancy driven convective flow near the onset of motion
that could operate in the ternary system cooled from below. It is hoped that the present
analytical results for the realizable type of flow near the onset of motion can stimulate future
experimental investigation on the subject.

Appendix

The systems for dependent variables u, P , and T at order ε2 in each of the three layers are
given below: In the liquid layer we have

da∇2u1 = ∇ P1, (37a)

∇ · u1 = 0, (37b)

∇2T1 − (dTB/dz)w1 = u0 · ∇T0, (37c)

T1 = u1 = 0 at z = L , (37d)

[T1] = [∂T1/∂z] = [u1] = [P1] = T1|+ = 0 at z = l. (37e)
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In the primary mushy layer we have

u1 + ∇ P1 = −(Rp0T1 + Rp1T0)z, (38a)

∇ · u1 = 0, (38b)

∇2T1 − (dTB/dz)w1 = u0 · ∇T0, (38c)

[T1] = [∂T1/∂z] = [u1] = [P1] = T1|+ = 0 at z = 1. (38d)

In the secondary mushy layer we have

u1 + ∇ P1 = −(Rs0T1 + Rs1T0)z, (39a)

∇ · u1 = 0, (39b)

∇2T1 − (dTB/dz)w1 = u0 · ∇T0, (39c)

T1 = w1 = 0 at z = 0. (39d)

The expressions for S1pq , S2, S3pq , S4, and S5pq , which were introduced in (26) are

S1pq =
L∫

l

Ta1(z){i f4(z)[αpx f1(z, q) + αpy f2(z, q)] + f3(z)[d f4(z)/dz]}dz, (40a)

S2 =
l∫

1

[wa2(z) f8(z)]dz, (40b)

S3pq =
l∫

1

Ta2(z){i f8(z)[αpx f5(z, q) + αpy f6(z, q)] + f7(z)[d f8(z)/dz]}dz, (40c)

S4 =
1∫

0

[wa3(z) f12(z)]dz, (40d)

S5pq=
1∫

0

Ta3(z){i f12(z)[αpx f9(z, q)+αpy f10(z, q)]+ f11(z)[d f12(z)/dz]}dz. (40e)

The expressions for S6–S8, which were introduced in (31a, 31b) are given below

S6 =
L∫

l

[Ta1(z) f4(z)]dz, S7 =
l∫

1

[Ta2(z) f8(z)]dz, S8 =
1∫

0

[Ta3(z) f12(z)]dz. (41)
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