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Abstract Double-diffusive natural convection in fluid-saturated porous medium inside a
vertical enclosure bounded by finite thickness walls with opposing temperature, concentration
gradients on vertical walls as well as adiabatic and impermeable horizontal ones has been
performed numerically. The Darcy model was used to predict fluid flow inside the porous
material, while thermal fields are simulated based on two-energy equations for fluid and
solid phases on the basis of a local thermal non-equilibrium model. Computations have
been performed for different controlling parameters such as the buoyancy ratio N , the Lewis
number Le, the anisotropic permeability ratio Rp, the fluid-to-solid thermal conductivity ratio
Rc, the interphase heat transfer coefficient H, the ratio of the wall thickness to its height D, the
wall-to-porous medium thermal diffusivity ratio Rw, and the solid-to-fluid heat capacity ratio
γ . Thus, the effects of the controlling parameters on heat and mass transfer characteristics
are discussed in detail. Moreover, the validity domain of the local thermal equilibrium (LTE)
assumption has been delimited for different set of the governing parameters. It has been
shown that Le has a noticeable significant effect on fluid temperature profiles and that higher
N values lead to a significant enhancement in heat and mass transfer rates. Moreover, for
higher H, Rc, Rp, Rw, or D values and/or lower γ values, the solid and fluid phases tend
toward LTE.

Keywords Double diffusive · Natural convection · Porous enclosure · Finite thickness
walls · LTNE model · Mechanical anisotropy
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List of symbols

Variables

A Aspect ratio of the cavity
( H

L

)

afs Fluid-to-solid surface exchange
(
m−1

)

c Concentration
(
mol m−3

)

C Dimensionless concentration
(

c−cc
ch−cc

)

cp Specific heat capacity at constant pressure
(
J kg−1 K−1

)

d Solid walls thickness (m)
D Dimensionless walls thickness

( d
L

)

Dc Diffusivity coefficient
(
m2 s−1

)

g Acceleration due to gravity
(
m s−2

)

hfs Interfacial heat transfer coefficient
(
W m−2 K−1

)

H Enclosure height (m)

H Interphase heat transfer coefficient,
(

hfsafs L2

λ

)

K Porous medium permeability
(
m2

)

L Enclosure width/thickness (m)

Le Lewis number
(

α
Dc

)

N Buoyancy ratio
(

βCΔc
βTΔT

)

Nu Local Nusselt number
(
− ∂θ

∂ X

∣∣
X=D,1−D,Z

)

Nu Average Nusselt number

(

− 1
A

A∫

0

∂θ
∂ X

∣∣
X=D,1−D,Z dZ

)

P Pressure
(
kg m−1 s−2

)

P0 Ambient pressure
(
kg m−1 s−2

)

Ra Modified Rayleigh number
(

Kx gβT L	T
ανf

)

Rc Fluid-to-solid thermal conductivity ratio
(

λf
λs

)

Rp Anisotropic permeability ratio
(

Kz
Kx

)

Rw Wall-to-porous medium thermal diffusivity ratio
(

αw
α

)

t Time (s)
T Temperature (K)
ΔT Characteristic temperature difference (Th − Tc)

Δc Characteristic concentration difference (ch − cc)

u, w Velocity components along x- and z-axes, respectively
(
m s−1

)

U, W Dimensionless velocity components along X- and Z-axes, respectively
x, z Cartesian coordinates (m)
X, Z Dimensionless Cartesian coordinates

Greek symbols

α Thermal diffusivity λ

(ρcp)f

(
m2 s−1

)

βT Coefficient of thermal expansion
(
K−1

)
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βC Coefficient of density change with concentration
(
m3 mol−1

)

ε Porosity

θ Dimensionless temperature
(

T −Tc
Th−Tc

)

|	θ | Dimensionless absolute temperature difference |θf − θs|
λ Effective thermal conductivity

(
W m−1 K−1

)

μ Fluid’s dynamic viscosity
(
kg m−1 s−1

)

υ Fluid’s kinematic viscosity
(
m2 s−1

)

Π Dimensionless pressure
ρ Fluid density

(
kg m−3

)

γ Solid-to-fluid heat capacity ratio
(

(ρcp)s
(ρcp)f

)

τ Dimensionless time

Subscripts

c Cold
e f f Effective
f Fluid
h Hot
re f Reference
s Solid
w Wall

Acronyms

LT E Local thermal equilibrium
LT N E Local thermal non-equilibrium
P M Porous medium

1 Introduction

The problem of double-diffusive convection in porous media has been the subject of several
surveys due to its emerging practical applications, from the solidification of binary mixtures
to the migration of solutes in water-saturated soils. The other examples include geophys-
ical systems, electrochemistry, and migration of moisture through air contained in fibrous
insulation, just to name a few applications.

The most available studies on double-diffusive natural convection in fluid-saturated porous
media were under the assumption that the solid and fluid phases are in local thermal equilib-
rium (LTE).

Mamou and Vasseur (1999) have studied double-diffusive instability in a horizontal rec-
tangular porous enclosure subjected to vertical temperature and concentration gradients.

A numerical investigation of double-diffusive convection in vertical annulus with opposing
temperature and concentration gradients has been studied by Chen et al. (2010) for higher
Rayleigh numbers using a simple Lattice Boltzmann Model.

Double-diffusive convection in a vertical enclosure filled with anisotropic porous media
has been studied numerically by Bennacer et al. (2001). Mamou et al. (2001) performed
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both analytical and numerical stability analyses of double-diffusive convection in a confined
horizontal rectangular enclosure based on Galerkin and finite element methods using the
Darcy–Brinkman model.

Bennacer et al. (2002) have studied thermosolutal convection in a two-dimensional rectan-
gular cavity filled with a saturated homogeneous porous medium that is thermally anisotropic.
They have presented an analytical and numerical study of combined heat and mass transfer
driven by buoyancy forces due to temperature and concentration variations.

Al-Farhany and Turan (2012) have presented numerical study of double-diffusive natural
convective heat and mass transfers in an inclined rectangular cavity filled with a porous
material. The authors have demonstrated that as the aspect ratio increases, the average Nusselt
and Sherwood numbers are reduced, although they decrease when the inclination angle
increases.

A steady conjugate double-diffusive natural convective heat and mass transfer in a two-
dimensional variable porosity layer sandwiched between two walls has been studied numeri-
cally using Forchheimer–Brinkman–extended Darcy model by Al-Farhany and Turan (2011).

However, in some applications, there are situations where the local thermal equilibrium
LTE assumption is not valid. In fact, when a substantial temperature difference exists between
the solid and fluid phases (Vafai 2000), it is essential that the phases of the porous material
should be modeled separately, and, therefore, the adoption of a two-temperatures model
known as local thermal non-equilibrium (LTNE) model has now become quite common
place for convecting flows in saturated porous media problems. A review by Rees and Pop
(2005) summarizes much of the present knowledge, including the various models used for
LTNE and their applications to free, mixed, and forced convective flows and stability analyses
problems.

Several numbers of papers dealing with natural convection in fluid-saturated porous media
problems based on LTNE approach have been studied by many authors (Baytaş and Pop 2002;
Saeid 2004; Borujerdi et al. 2007). Baytaş (2003) has studied thermal non-equilibrium natural
convection in a square enclosure filled with a heat-generating solid phase non-Darcy porous
medium. Wang et al. (2007) have presented a numerical investigation of natural convection
(without mass transfer) in an inclined square enclosure filled with a porous medium and sub-
mitted to a strong magnetic field using a LTNE model. Vadász (2011) has studied the problem
of natural convection in a vertical porous layer differentially heated from its sidewalls. He
has found that the LTNE state destroys the symmetry of the problem via deviatoric terms
in the solutions. Saeid (2006) has applied the LTNE model to study free convection from a
horizontal cylinder immersed in a porous medium (PM) using an implicit finite difference
method based on Keller box algorithm. A two-temperature model for predicting heat and
fluid flow by natural convection and radiation within a saturated porous vertical channel has
been studied numerically by Slimi (2009).

Double-diffusive convection in a porous layer using a LTNE model has been studied by
Malashetty et al. (2008). It has been concluded that small interphase heat transfer coefficient
has significant effect on the stability of the system. Ahmed (2011) has numerically analyzed
the problem of mixed convection in a vertical annular cylinder saturated with a PM using
a LTNE approach. Numerical results indicate that the LTNE approach gives more realistic
predictions of heat transfer rate and fluid flow behavior in the PM confined in the annular
cylinder.

Harzallah et al. (2010) have studied the problem of unsteady natural convection in an
anisotropic PM bounded by finite thickness walls. Their results have shown that as the wall-
to-porous thermal conductivity ratio and the heat capacity ratio are increased, conductive
heat transfer mode is enhanced. For larger longitudinal anisotropic permeability ratio, con-
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Double-Diffusive Natural Convection in Anisotropic Porous Medium 211

vective heat transfer mode is dominant. It was put in evidence that as the transverse thermal
conductivity ratio increases and/or the ratio of the wall thickness to its height decreases, the
heating rate of the medium increases.

The stability analysis of thermosolutal convection in a horizontal porous layer using a
LTNE model was studied by Chen et al. (2011). It has been demonstrated how the reaction
and non-equilibrium model affect the double-diffusive convection in porous media. Free
convection heat and mass transfers of fluid in a square packed bed enclosure have been
recently numerically studied by Mehdy (2012) using a LTNE model.

The present paper gives more attention to examine the effects of finite thickness con-
ducting walls as well as the mechanical anisotropy on the unsteady double-diffusive
natural convection taking place in a porous material sandwiched between two-vertical
finite thickness walls maintained at constant but different temperatures. The two-vertical
left and right interfaces wall-porous material are, respectively, kept at constant high
and low concentration values. The remaining two-horizontal walls are assumed to be
impermeable to mass transfer and thermally insulated. A LTNE model will be used to
derive the energy conservation equations for the two phases. Furthermore, the validity
of The LTE assumption will be examined for different set of the controlling parame-
ters.

First, the governing macroscopic equations along with the appropriate initial and bound-
ary conditions will be written in a dimensionless form on the basis of appropriate hypotheses.
The obtained set of the dimensionless governing equations along with the appropriate ini-
tial and boundary conditions will be numerically solved using the classical finite volume
method (Patankar 1980). Then, a sensitivity study restricted to the effects of the Lewis
number Le, the buoyancy ratio N , on fluid flow and heat and mass transfer rates will be
examined and discussed in detail. We shall precise that the effects of the other remaining
parameters have been previously done by the co-authors (see for instance, Slimi et al. 1998;
Amara and Slimi 2000; Slimi 2009; Harzallah et al. 2010). Our attention will also be paid
to determine the validity domain of the LTE assumption for different set of the controlling
parameters.

2 Mathematical Formulation

2.1 Problem Definition

A double-diffusive natural convective flow and heat and mass transfers inside a vertical
enclosure filled with a fluid-saturated PM sandwiched between two equal-thickness walls
are considered and displayed in Fig. 1.

The PM is assumed to be anisotropic in permeability. The left and right vertical walls
are kept at constant high and low temperatures, respectively, Th and Tc. While the vertical
wall’s interfaces to porous material left and right are to be, respectively, kept at constant high
and low concentrations. The remaining horizontal walls are assumed thermally insulated and
impermeable to mass transfer.

In order to predict thermal fields, energy conservation equations for the fluid and solid
phases are separately derived on the basis of a LTNE model. The mathematical model takes
also into account the energy transfer equation through the bounding finite thickness walls. The
Darcy model and the Oberbeck–Boussinesq approximations are used. Viscous dissipation,
compression work, radiative transfer, and the Soret as well as Dufour effects are assumed to
be neglected.
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Fig. 1 Physical model and coordinates system

2.2 Governing Equations

The governing set of macroscopic equations of the problem under investigation is rendered
dimensionless on the basis of the following scales and non-dimensional variables:

(X, Z) =
(

x

L ref
,

z

L ref

)
; τ = t

tref
; (U, W ) =

(
u

Vref
,

w

Vref

)
;

Π = P − P0

Pref
; θ = T − Tc

ΔTref
; C = c − cc

Δcref
; θw = Tw − Tc

ΔTref
(1)

with: L ref = L ; tref = L
Vref

; Pref = αμf
Kx

; Vref = α
L ;ΔTref = Th − Tc;Δcref = ch − cc

The basic dimensionless macroscopic equations governing unsteady double-diffusive nat-
ural convection in Cartesian coordinates system (X, Z) can be written as (Harzallah et al.
2010; Jbara et al. 2013)

Mass conservation equation
∂U

∂ X
+ ∂W

∂ Z
= 0 (2)

Momentum conservation equation

U = −∂Π

∂ X
(3)

W = −Rp

[
∂Π

∂ Z
− Ra (θf + NC)

]
(4)
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Substituting Eqs. (3) and (4) into Eq. (2) leads to Poisson equation for pressure.

∂2Π

∂ X2 + Rp
∂2Π

∂ Z2 − Rp Ra

(
∂θf

∂ Z
+ N

∂C

∂ Z

)
= 0 (5)

Transport equation for fluid phase

ε
∂θf

∂τ
+ U

∂θf

∂ X
+ W

∂θf

∂ Z
=

[
εRc

(1 − ε) + εRc

] (
∂2θf

∂ X2 + ∂2θf

∂ Z2

)
+ H (θs − θf ) (6)

Transport equation for solid phase

(1 − ε) γ
∂θs

∂τ
=

[
(1 − ε) Rc

(1 − ε) + εRc

](
∂2θs

∂ X2 + ∂2θs

∂ Z2

)
+ H (θf − θs) (7)

Transport equation for the wall

∂θw

∂τ
= Rw

(
∂2θw

∂ X2 + ∂2θw

∂ Z2

)
(8)

Concentration conservation equation

ε
∂C

∂τ
+ U

∂C

∂ X
+ W

∂C

∂ Z
= 1

Le

(
∂2C

∂ X2 + ∂2C

∂ Z2

)
(9)

Thus, the controlling parameters for the problem under consideration are the modified

Rayleigh number Ra
(
= Kx gβT LΔT

αν f

)
, the interphase heat transfer coefficient H

(
= hfsafs L2

λ

)
,

the Lewis number Le
(
= α

Dc

)
, the buoyancy ratio N

(
= βCΔc

βTΔT

)
, the anisotropic permeabil-

ity ratio Rp

(
= Kz

Kx

)
, the wall-to-porous medium thermal diffusivity ratio Rw

(= αw
α

)
, the

fluid-to-solid thermal conductivity ratio Rc

(
= λf

λs

)
, and the solid-to-fluid heat capacity ratio

γ
[
= (ρcp)s

(ρcp)f

]
.

2.3 Initial and Boundary Conditions

Initially, the porous medium is in hydrostatic equilibrium state and kept at cold uniform
temperature Tc. Relying on that, we get the following boundary conditions:

t = 0 : P = θf,s = θw = 0 at 0 ≤ X ≤ 1 and 0 ≤ Z ≤ A (10)

t = 0 : C = 0 at D ≤ X ≤ 1 − D and 0 ≤ Z ≤ A (11)

The bounding vertical walls of the enclosure (i. e., at X = 0, 1) are impermeable and
maintained at uniform hot and cold temperatures, respectively. This leads to:

t > 0 : ∂�

∂ X

)

X=D,Z
= ∂�

∂ X

)

X=1−D,Z
= 0 and θw (0, Z , τ ) = 1 and θw (1, Z , τ ) = 0

(12)

The bounding interfaces between vertical walls and the PM (i.e., at X = D, 1 − D) are
impermeable and maintained at uniform high and low concentrations, respectively. This
leads to:

t > 0 : C (D, Z , τ ) = 1 and C (1 − D, Z , τ ) = 0 (13)
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The bounding horizontal walls of the enclosure (i.e., at Z = 0, A) are impermeable and insu-
lated. Relying on that, the hydrodynamic and thermal boundary conditions can be expressed
as follows:

∂Π

∂ Z

)

X;Z=0,A
= Ra [θf (X; Z = 0, A) + NC (X; Z = 0, A)] (14a)

∂θw

∂ Z

)

X;Z=0,A
= 0 for 0 ≤ X ≤ D and 1 − D ≤ X ≤ 1 (14b)

∂θf,s

∂ Z

)

X;Z=0,A
= 0 for D ≤ X ≤ 1 − D (14c)

∂C

∂ Z

)

X;Z=0,A
= 0 for D ≤ X ≤ 1 − D (14d)

The continuity of the thermal field at the two interfaces located at X = D and X = 1 − D
can be expressed as follows:

θw (D, Z , τ ) = θf,s (D, Z , τ ) ; θw (1 − D, Z , τ ) = θf,s (1 − D, Z , τ ) (15)

The continuity of the conduction heat flux density across the two interfaces can be written
as follows (Nield 2012):

∂θw

∂ X

)

X=D,1−D;Z
= ε

∂θf

∂ X

)

X=D,1−D;Z
(16a)

∂θw

∂ X

)

X=D,1−D;Z
= (1 − ε)

∂θs

∂ X

)

X=D,1−D;Z
(16b)

3 Numerical Procedure

Equations (2)–(9) along with the associated initial and boundary conditions (10)–(16) have
been numerically solved by the classical finite volume approach (Patankar 1980).

The calculated domain is discretized by a uniform rectangular grid of Nx × Nz control
volumes of dimension Δx × Δz. A fully implicit discretization scheme is used for temporal
derivative terms in energy and concentration equations, while a power law scheme is used
for convection–diffusion terms and a central scheme is used for diffusive terms.

The resulting discretized two-energy conservation equations and that of the wall, and
concentration equation as well as the Poisson equation for pressure were solved by the
alternating direction implicit (ADI) method. ADI leads to a tridiagonal matrix, which was
solved with the tridiagonal matrix algorithm (TDMA).

After initializing all the variables (i.e., the wall as well as fluid and solid phase tempera-
tures, respectively, θw and θf,s, concentration C , and the pressure, Π) and choosing arbitrary
values of these variables, the pressure field is determined by resolving Eq. (5). The velocity
field is then deduced from Eqs. (3) and (4). The updated velocity field is then used to update
the thermal fields by resolving the transport Eqs. (6)–(8) and the concentration conservation
Eq. (9).

The numerical iterations were advanced in time until the satisfaction of the following
convergence criteria:

Max

∣∣∣∣∣
Φ i+1

m,n − Φ i
m,n

Φ i
m,n

∣∣∣∣∣
< 10−5 (17)
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Table 1 Variations of Nuf , Nus, and Sh at X = D for various grid sizes, with: ε = 0.4, A = 1, D =
0.1,H = 1, Ra = 250, Le = 1, N = 1, Rc = 3.83, Rw = 3.5, Rp = 1, and t → ∞
Grid sizes Nuf Nus Sh ENuf

(%) ENus
(%) ESh(%)

Nx Nz

41 × 41 6.549 1.489 7.737
81 × 81 7.712 1.436 8.737 15 3.6 11.4
161 × 161 8.274 1.406 9.096 6.7 2.1 3.9

where Φ stands for Π, θw, θf,s, and C at point (m, n), and i is the iteration level.
Various grid sizes and time steps have been tested in order to determine the sensitivity of the

numerical code to spatial mesh and time step as well. A calculation of the relative variations
of the average Nusselt and Sherwood numbers, Nu and Sh, between two consecutive grids
has been performed for different combination of Nx × Nz . Nu and Sh are, respectively,
written as follows:

Nu = 1

A

A∫

0

NudZ with Nu = ∂θ

∂ X

∣∣∣∣
X=D,1−D

(18)

Sh = 1

A

A∫

0

ShdZ with Sh = ∂C

∂ X

∣∣∣∣
X=D,1−D

(19)

According to Table 1, a grid of 81×81 nodes and a constant time step Δτ = 1.38×10−7 were
selected as a tradeoff between numerical accuracy, stability, and reasonable computational
time in all the calculations performed in the present study.

The validation of the present numerical code has been done by comparing our results with
the most available related published results (Harzallah et al. 2010; Al-Farhany and Turan
2011) in the case of pure natural convection problem driven only by thermal buoyancy force
(i.e., for N = 0) and also for higher interphase heat transfer coefficient when dealing with
LTNE model. The obtained isotherm contours (Fig. 2) are in good agreement with those
given by Harzallah et al. (2010) and Al-Farhany and Turan (2011).

4 Results and Discussion

4.1 Time–Space Variations of Thermal Fields

In this section, the results are presented in terms of time–space variations for fluid and
solid phase temperatures, iso-concentration, and velocity fields for ε = 0.4, Rp = 1, Ra =
250, D = 0.1, A = 1, H = 1, Le = 1, and N = 1.

Figure 3a delineates the evolution of isotherm curves of the fluid phase in response to
time. It can be concluded that the temperature gradients in the vicinity of the enclosure walls
continue to increase as time goes on and that the isotherms are almost parallel near the left
wall and increase near the left upper corner of the cold interface of the enclosure as a result
of the fluid rising due to the influence of buoyancy forces. For solid isotherm curves, it can
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Present results

2,588=fNu  ; 2,720=wNu

(b)
Harzallah et al. (2010)

2,835=pNu  ; 2,569=wNu

Fig. 2 Comparison of present results of isotherms at steady state with Harzallah et al. (2010) and Al-Farhany
and Turan (2011) for Darcy model N = 0) with: Ra = 1000, H = 1000 a (Rc = 1, Rp = 1, D = 0.1, Rw =
10) and b (Rc = 1, Rp = 1, D = 0.2, Rw = 1)

be deduced from Fig. 3b that they are almost parallel in the bulk of the enclosure and as time
progresses the heat transfer increases from hot to cold wall’s interface.

Figure 3c gives the absolute difference isotherms curves between fluid and solid phase
temperatures for different time values. As observed by these plots, the temperature difference
|θf − θs| is more significant near the cavity boundaries at the beginning of the process and
higher values are depicted at first near the bottom left corner as well as the upper right one.
As time goes on, this difference decreases mainly in the bulk region.

4.2 Sensitivity Study

4.2.1 Effect of the Lewis Number Le

To examine the effect of Lewis number Le, on thermal fields, we have varied this number
between 0.5 and 10 in order to cover the two-limiting cases: porous media with relatively
low thermal diffusivity and high diffusivity coefficient and vice versa.

Figure 4a, b illustrate the effects of Lewis number, Le, on the fluid temperature profiles
at X = 0.5 and Z = 0.5, respectively. It can be observed that for a given value of Le
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τ = 4,14x10-5 τ = 5,28x10-5 τ = ∞
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Fig. 3 Time–space variations of the a fluid temperature, b solid temperature, and c absolute difference
isotherms |Δθ | with: ε = 0.4, A = 1, D = 0.1,H = 1, Le = 1, N = 1, Ra = 250, Rp = 1

number, the fluid temperature increases and reaches a maximum value near the top of the
enclosure. In addition, one can depict a sharp decrease of this temperature at the horizontal
adiabatic wall. Moreover, the fluid temperature decreases when Le increases at the bottom and
increases at the top of the porous enclosure. Furthermore, for Le < 1, the fluid temperature
decreases asymptotically to a constant value. However, for Le > 1, a sharply decrease of
fluid temperature can be depicted inside the porous medium.

Figure 5a, b display the effect of Le number on solid temperature profiles at X = 0.5 and
Z = 0.5, respectively. As demonstrated by these figures, Le has no significant effect on solid
temperature profiles at the centerline as well as on mid-height of the porous enclosure. In
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Fig. 4 Effect of Lewis number Le on fluid temperature profiles for a X = 0.5 and b Z = A/2 with:
ε = 0.4, A = 1, D = 0.1,H = 1, N = 1, Ra = 250, Rp = 1, and t → ∞

addition, for a given value of Le, the solid temperature increases with Z -coordinate to reach
a highest value near the top of the enclosure. Moreover, it resorts that the solid temperature
at mid-height decreases with X .
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Fig. 5 Effect of Lewis number Le on solid temperature profiles for a X = 0.5 and b Z = A/2 with:
ε = 0.4, A = 1, D = 0.1,H = 1, N = 1, Ra = 250, Rp = 1, and t → ∞
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4.2.2 Effect of the Buoyancy Ratio N

The exam of the influence of the buoyancy ratio N on fluid and solid temperature fields is
carried out by varying this number between 0.1 and 5 in order to cover the two-limiting cases:
thermal buoyancy force dominates mass buoyancy force and vice-versa.

The variations of the fluid temperature at the centreline (i. e., at X = 0.5) and at mid-
height (i. e., at Z = 0.5) of the enclosure for different values of the buoyancy ratio N , are
drawn, respectively, in Fig. 6a, b. It can be concluded from Fig. 6a that, for a given value of
N , the fluid temperature increases with the longitudinal coordinate Z , and is at its maximum
near the top of the enclosure. In addition, one can depict a sharp decrease at the horizontal
adiabatic walls. Moreover, the temperature increases at the bottom with the increase of N
and will tend to approximately constant value in the porous medium for higher values of N .

Figure 6b shows that, for a given value of N , the fluid temperature decreases with the
transverse coordinate X . Furthermore, the fluid temperature is insensitive to higher values of
N .

Solid temperature variations at the mid-height and the centreline of the porous enclosure
as a function of the buoyancy ratio, N , have been displayed in Fig. 7a, b. It is deduced from
Fig. 7a that for a given value of N , the solid temperature increases with the longitudinal
coordinate Z . In addition, as N increases, the solid temperature decreases at the lower and
the upper parts of the porous enclosure as well.

Figure 7b shows that for a given value of buoyancy ratio N , the solid temperature decreases
along the transverse distance at the mid-height of the porous medium. As N increases, the
solid temperature profiles remain unchanged except near the two-wall porous interfaces.
However, the solid temperature decreases at the hot wall-porous interface and increases at
the cold one.

4.3 Validity Domain of the LTE Assumption

In this section, we aim to determine the validity domain of the well-known LTE assumption.
To this end, we have made different comparisons between:

• Local absolute difference between fluid and solid temperature values, |Δθ |
• Computed values of the relative difference in dimensionless temperatures between fluid

and solid phases θLTNE defined as:

θLTNE = 1

Nx × Nz

∑

i, j

∣∣∣∣
θf (i, j) − θs (i, j)

θf (i, j)

∣∣∣∣ (20)

where Nx and Nz are the total number of nodes along X-axis and Z-axis, respectively; (i, j)
denote spatial indexes according to X and Z-direction, respectively.

The average relative error difference in dimensionless temperature between solid and fluid
phases can lead to the validity of LTE assumption when θLTNE approaching zero.

Figure 8 illustrates the effect of buoyancy ratio N on the temperature difference |θf − θs|
for different wall thickness D values. For a given value of N , it is observed that at the bottom
left and upper corners, |θf − θs| is important in vicinity of wall’s interface-porous cavity and
decreases when approaching the central zone.

This figure indicates also that |θf − θs| decreases as D increases. Besides, a maximum
value is depicted for natural convection induced only by temperature difference (i.e., for
N = 0) and minimum value is recorded for thick walls.
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Fig. 6 Effect of Buoyancy ratio Non fluid temperature profiles for a X = 0.5 and b Z = A/2 with:
ε = 0.4, A = 1, D = 0.1,H = 1, Le = 1, Ra = 250, Rp = 1, and t → ∞

Effects of Lewis number Le and wall thickness D on |θf − θs| are presented in Fig. 9. As it is
deduced from this figure, for a given value of D, |θf − θs| increases at the bottom left and upper
corners when Le increases. A smaller temperature difference for thick walls can also be seen.
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Fig. 7 Effect of Buoyancy ratio N on solid temperature profiles for a X = 0.5 and b Z = A/2 with:
ε = 0.4, A = 1, D = 0.1,H = 1, Le = 1, Ra = 250, Rp = 1, and t → ∞
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Fig. 8 Effect of wall thickness D on local |θf − θs| values for different values of Buoyancy ratio N for a
D = 0.1, b D = 0.2 and c D = 0.4 with: ε = 0.4, A = 1, Ra = 250,H = 1, N = 1, Rp = 1, and t → ∞
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Fig. 9 Effect of wall thickness D on local |θf − θs| values for different values of Lewis number Le for a
D = 0.1, b D = 0.2 and c D = 0.4 with: ε = 0.4, A = 1, Ra = 250,H = 1, N = 1, Rp = 1, and t → ∞

Figure 10 displays the effects of anisotropic permeability ratio Rp as well as wall thickness
D, on |θf − θs|. It can be concluded from this figure that, for a given value of Rp, |θf − θs| is
important near the two-wall’s interface-porous cavity and decreases when approaching the
bulk region of the cavity while the wall thickness D increases.
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Fig. 10 Effect of wall thickness D on local |θf − θs| values for different values of the anisotropic permeability
ratio Rp for a D = 0.1, b D = 0.2 and c D = 0.4 with: ε = 0.4, A = 1, Ra = 250, H = 1, N = 1, Le = 1,
and t → ∞

Figure 11a presents the anisotropic permeability ratio Rp effects on temporal variation of
θLTNE. As observed, θLTNE decreases as time goes on increasing and tends asymptotically to
a constant value when Rp gets higher, which indicates that the two phases are in local thermal
equilibrium.
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Fig. 11 Time-evolution of the error relative difference θLTNE for different values of a anisotropic permeability
ratio Rp for: D = 0.1, Le = 1, N = 1,H = 1; b wall thickness D for: N = 1, Le = 1, Rp = 1, H = 1;
c Buoyancy Number N for: D = 0.1, Le = 1, Rp = 1, H = 1; d Lewis Number Le for: D = 0.1, N =
1, Rp = 1,H = 1; e Interphase heat transfer coefficient H for: D = 0.1, N = 1, Rp = 1; f Wall-to-porous
medium thermal diffusivity ratio Rw for: D = 0.1, N = 1, Rp = 1,H = 1; g Thermal conductivity ratio Rc
for: D = 0.1, N = 1, Rp = 1,H = 1 and h Solid-to-fluid heat capacity ratio γ for: D = 0.1, N = 1, Rp =
1, H = 1: with: ε = 0.4, Ra = 250, A = 1
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Figure 11b illustrates the time progresses of θLTNE with the variation of the wall thickness
D. These curves demonstrate that the declination of θLTNE with time is as rapid as D is
higher. Furthermore, for higher D values (i.e., for thick walls), θLTNE tends asymptotically
to a lower constant value when steady-state regime is reached. Consequently, for thick walls,
the LTE assumption is valid.

The effect of the buoyancy ratio N on θLTNE has been examined (Fig. 11c). For a given
value of N , θLTNE decreases as time goes on. As illustrated, the higher the N values are, the
lower is θLTNE.

Figure 11d shows the effects of the Lewis number Le on temporal variations of θLTNE. It
comes out from this figure that increasing Le leads to an increase in θLTNE values. In addition,
θLTNE tends asymptotically to a constant value as Le gets lower indicating that the two phases
tend toward LTE for small Le values.

Figure 11e displays the effects of the interphase heat transfer coefficient H on temporal
variations of θLTNE . As expected, θLTNE decreases with the increasing of H. The steady-state
regime is reached as rapidly as H value is higher. Consequently, the fluid and solid phases
are in LTE for higher values of H.

Figure 11f depicts the effect of the wall-to-porous medium thermal diffusivity ratio Rw on
time variations of θLTNE. Obviously, higher wall thermal diffusivity compared to that of the
porous medium leads to a substantial decrease in θLTNE values. Hence, LTNE tends toward
LTE for higher Rw values.

Figure 11g presents the effects of the fluid-to-solid thermal conductivity ratio Rc on
temporal variations of θLTNE. Similarly, it can be illustrated from this figure that the steady-
state regime is reached as rapidly as Rc is higher. Consequently, the higher the Rc values are,
the lower is θLTNE.

Figure 11h displays the time progress of θLTNE with different values of solid-to-fluid heat
capacity ratio γ . It comes out from this figure that the steady-state regime is reached as
rapidly as γ gets higher. It can also be observed from this figure that θLTNE is small as γ is
lower.

Computations of θLTNE for different values of the anisotropic permeability ratio Rp, the
buoyancy ratio N , the Lewis number Le, the interphase heat transfer coefficient H, the
wall thickness D, and the solid-to-fluid thermal conductivity ratio Rc, have been done and
summarized in Tables 2, 3, 4, 5, 6, 7, 8, 9.

As provided by Table 2, increasing Le, or decreasing Rp, leads to an increase in θLTNE

value. Therefore, it can be concluded that LTE assumption is not valid for higher values of Le
and/or lower values of Rp. For a lower given value of Le, θLTNE decreases as Rp gets higher.

Table 3 illustrates the effects of the buoyancy ratio N and the anisotropy permeability
Rp on LTNE approach. For a given value of N , θLTNE decreases with the increasing of Rp.
Besides, for a given value of Rp, an increase in the buoyancy ratio N values decreases θLTNE.

Table 4 shows that θLTNE decreases with the increasing of H and Rp. Therefore, LTNE
approaches LTE assumption between solid and fluid phases.

Table 2 Computed average
relative error difference θLTNE
for different values of Le and Rp,
with: ε = 0.4, A = 1, D =
0.1,H = 1, Ra = 250, N =
1, Rc = 3.83, Rw = 3.5, and
t → ∞

Rp = 0.5 Rp = 1 Rp = 1.5

Le
0.5 0.8290 0.6033 0.5343

1 0.9606 0.6353 0.5395

5 1.3143 0.9982 0.8219
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Table 3 Computed average
relative error difference θLTNE
for different values of N and Rp,
with: ε = 0.4, A = 1, D =
0.1,H = 1, Ra = 250, Le =
1, Rc = 3.83, Rw = 3.5, and
t → ∞

Rp = 0.5 Rp = 1 Rp = 1.5

N
0 1.8384 1.2387 1.0118

0.1 1.7233 1.1408 0.9276

1 0.9606 0.6353 0.5395

5 0.4982 0.4137 0.3707

Table 4 Computed average
relative error difference θLTNE
for different values of H and Rp,
with: ε = 0.4, A = 1, D =
0.1, Ra = 250, Le = 1, N =
1, Rc = 3.83, Rw = 3.5, and
t → ∞

Rp = 0.1 Rp = 1 Rp = 1.5

H
0.1 2.9874 0.6878 0.5749

1 2.1263 0.6353 0.5392

100 0.0741 0.1173 0.1154

Table 5 Computed average
relative error difference θLTNE
for different values of D and Rp,
with: ε = 0.4, A = 1,H =
1, Ra = 250, Le = 1, N =
1, Rc = 3.83, Rw = 3.5, and
t → ∞

Rp = 0.5 Rp = 1 Rp = 1.5

D
0.1 0.9606 0.6353 0.5395

0.2 0.6005 0.4250 0.3737

0.4 0.1154 0.1248 0.1212

Table 6 Computed average
relative error difference θLTNE
for different values of D and H,
with: ε = 0.4, A = 1, Ra =
250, Le = 1, N = 1, Rc =
3.83, Rw = 3.5, Rp = 1, and
t → ∞

H = 0.1 H = 1 H = 100

D
0.1 0.6878 0.6353 0.1173

0.2 0.4500 0.4250 0.1052

0.4 0.1259 0.1248 0.0718

Table 7 Computed average
relative error difference θLTNE
for different values of Le and Rc,
with: ε = 0.4, A = 1, D =
0.1,H = 1, Ra = 250, N =
1, Rw = 3.5, Rp = 1, and
t → ∞

Rc = 0.75 Rc = 3.83 Rc = 5

Le
0.5 2.1980 0.6033 0.5347

1 1.8998 0.6353 0.5621

5 5.7991 0.9982 0.7464

Table 8 Computed average
relative error difference θLTNE
for different values of N and Rc,
with: ε = 0.4, A = 1, D =
0.1,H = 1, Ra = 250, Le =
1, Rw = 3.5, Rp = 1, and
t → ∞

Rc = 0.75 Rc = 3.83 Rc = 5

N
0.1 11.529 1.1408 0.8176

1 1.8998 0.6353 0.5621

5 1.0210 0.4137 0.3810
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Table 9 Computed average
relative error difference θLTNE
for different values of D and Rc,
with: ε = 0.4, A = 1,H =
1, Ra = 250, Le = 1, N =
1, Rw = 3.5, Rp = 1 and t → ∞

Rc = 0.75 Rc = 3.83 Rc = 5

D
0.1 1.8998 0.6353 0.5621

0.2 1.4419 0.4250 0.3677

0.4 0.3798 0.1248 0.1004

As expected, with higher values of H, there is significant heat transfer between the fluid
and solid phases leading to classical LTE assumption limit. Table 4 indicates also a sharply
decrease of θLTNE for higher values of Rp. Consequently, LTNE tends to LTE assumption
even for small value of H.

The effects of Rp and D on θLTNE are computed in Table 5. The increase of D and Rp

reduces the value of θLTNE. Therefore, for higher values of Rp and for thick walls, the solid
and fluid phases can be considered as in LTE. For that reason, LTE assumption can be assumed
to be valid for higher D and Rp values.

Results presented in Table 6 show the effects of D and H on θLTNE. As D increases or for
high values of H, the error in using the LTNE model decreases and consequently the LTE
assumption is valid.

In Table 7, the effects of both Rc and Le on θLTNE are computed. For a given value of
Rc ≤ 1, it comes out that θLTNE gets lower for Le = 1 and sharply increases for Le > 1 or
Le < 1. On the other hand, θLTNE increases with the increasing of Le for higher values of
Rc > 1. For a given value of Le, θLTNE decreases with the increase of Rc. Consequently, the
LTE approach is valid for large values of Rc and lower values of Le.

The effects of N and Rc on θLTNE are illustrated in Table 8. From this table, it comes out
that θLTNE is higher for small values of N and sharply decreases with the increasing of N .

For a given value of N , θLTNE decreases with the increase of Rc. This implies that for
small values of N and Rc, the LTE assumption is not valid.

The influence of D and Rc on θLTNE is depicted in Table 9. As expected, for a given value
of D, θLTNE decreases with the increase of Rc. Furthermore, for a given value of Rc, θLTNE

decreases when D increases.

5 Concluding Remarks

In the present study, a two-dimensional unsteady double-diffusive natural convection in a
fluid-saturated porous medium sandwiched between two-finite equal-thickness walls has
been numerically investigated using a two-energy equations model (or the LTNE model) and
the Darcy model. The porous medium was assumed to be hydrodynamically anisotropic. The
vertical walls of the porous enclosure are thick, impermeable, and maintained at different
temperatures. The wall’s interfaces to porous medium are kept at different concentration
while the horizontal walls are adiabatic and impermeable.

The main obtained results can be summarized as follows:

1. The Lewis number, Le, has an unperceived effect on the solid temperature profiles and
significant effect on the fluid temperature profiles for high values of Le.

2. An increase in the buoyancy ratio N leads to an increasing heat and mass transfer’s rates.
3. The temperature difference between fluid and solid phases is important in vicinity of

wall’s interface-porous cavity and decreases when approaching the central zone.
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4. The average relative error difference in dimensionless temperatures θLTNE decreases as
time goes on increasing and tends asymptotically to a lower constant value. The steady-
state regime is reached as rapidly as the anisotropic permeability ratio Rp, the buoyancy
ratio N , the interphase heat transfer coefficient H, fluid-to-solid thermal conductivity ratio
Rc, the solid-to-fluid heat capacity ratio γ, the wall-to-porous medium thermal diffusivity
ratio Rw, and the dimensionless walls thickness D get higher or for lower Lewis number
Le values which indicates that the two phases are in LTE.

5. The solid and fluid phases tend toward LTE assumption even for small value of the
interphase heat transfer coefficient H, with higher values of the anisotropy permeability
Rp.

6. For higher fluid-to-solid thermal conductivity ratio Rc, the fluid conduction dominates
and the system behaves like in the case when LTE assumption is valid for lower values
of Le or higher values of D.
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