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Abstract This study focuses analytically on the local thermal non-equilibrium (LTNE)
effects in the developed region of forced convection in a saturated porous medium bounded
by isothermal parallel-plates. The flow in the channel is described by the Brinkman–
Forchheimer-extended Darcy equation and the LTNE effects are accounted by utilizing the
two-equation model. Profiles describing the velocity field obtained by perturbation tech-
niques are used to find the temperature distributions by the successive approximation method.
A fundamental relation for the temperature difference between the fluid and solid phases
(the LTNE intensity) is established based on a perturbation analysis. It is found that the
LTNE intensity (�NE) is proportional to the product of the normalized velocity and the
dimensionless temperature at LTE condition. Also, it depends on the conductivity ratio, Da
number, and the porosity of the medium. The intensity of LTNE condition (�NE) is max-
imum at the middle of the channel and decreases smoothly to zero by moving to the wall.
Finally, the established relation for the intensity of LTNE condition is simple and fundamen-
tal for estimating the importance of LTNE condition and validation of numerical simulation
results.
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List of Symbols

Variables

asf Specific surface area
cp Specific heat at constant pressure
CF Inertial constant (Eq. 12)
dp Particle diameter
Da Darcy number (K/H2)
F Forchheimer number
G Negative of the applied pressure gradient in flow direction
H Half of the channel gap
hsf Fluid-solid heat transfer coefficient
K Permeability of the medium
k Conductivity ratio
kf Conductivity of fluid phase
kf,eff Effective conductivity of fluid phase
km Effective conductivity of the medium (kf,eff + ks,eff )

ks Conductivity of solid phase
ks,eff Effective conductivity of solid phase
M Viscosity ratio
Nu Nusselt number
O Order of magnitude
Pr Prandtl number
q ′′

w Heat flux at the wall
s Porous media shape parameter
T Temperature
Tm Bulk mean temperature
Tw Wall temperature
u Dimensionless velocity
u∗ Velocity
�
u Normalized velocity
u∗

m Mean velocity
x∗, y∗ Dimensional coordinates
y Dimensionless coordinate

Greek Letters

�NE Complex representing the intensity of LTNE condition
ε Small parameter (1/hsf asf )

θ Dimensionless temperature
μ Fluid viscosity
μeff Effective viscosity in the Brinkman term
ρ Fluid density
φ Porosity of the medium
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Subscripts

0,1,2 Coordinate identifier
f Fluid phase
s Solid phase

1 Introduction

In recent years, the study of local thermal non-equilibrium (LTNE) has been more important
due to its engineering applications such as electronic-cooling systems, heat pipes, nuclear
reactors, drying technology, and multiphase catalytic reactors. There are several industrial
applications where the high local speed of the fluid in a porous medium, high heat flux, or
high boundary temperature compared to the fluid temperature, and chemical reactions lead
to a significant degree of LTNE condition. An example is the thermal storage of solar energy
conversion system, where a heated fluid flows from the solar collectors into a porous bed and
energy is recovered by reversing the flow in the bed (White and Korpela 1979; Spiga and
Spiga 1981; Nield and Kuznetsov 1999; Alazmi and Vafai 2002).

Analytical study of Schumann (1929) was a step forward in dealing with the local thermal
non-equilibrium phenomenon. After him, many other researchers investigated analytically
the LTNE phenomenon, but all of them used the Darcy model for the flow field. Kuznetsov
(1996, 1997a) studied analytically the LTNE effects in Cartesian frame work for the 2-D and
3-D convection in saturated porous beds based on the Darcy’s law (uniform velocity across
the medium). Nield (1998) analyzed the LTNE situation in both conduction and convection in
saturated porous channels. He assumed the Darcy’s law to clarify situations in which the LTNE
could be important. Kuznetsov (1997b) concentrated on the study of thermal non-equilibrium
effects in a channel filled with a fluid-saturated porous medium based on a perturbation
analysis. He used the results of previous studies (Vafai and Kim 1989, 1995; Nield et al.
1996) for the flow field and a two-energy-equation model for the temperature field. It was
the first time that the LTNE phenomenon was treated analytically based on the Brinkman–
Forchheimer-extended Darcy model. Kuznetsov (1997b) proposed a simplified equation for
measuring the LTNE intensity at constant heat flux condition imposed to a porous-saturated
channel. Later, Nield and Kuznetsov (1999) studied analytically the conjugate problem of
LNTE condition in a saturated porous channel with including the thermal resistance of the
channel wall based on the Darcy model. Alazmi and Vafai (2002) investigated the heat
transfer in a fluid saturated porous medium under the local thermal non-equilibrium condition
numerically. The geometry in their study was flow between parallel-plates and the thermal
boundary condition was constant heat flux at the wall.

Forced convection in a channel filled with a porous medium, consisting of two layers with
the same porosity and permeability but with different solid conductivity, and saturated by a
single fluid, was analyzed at the LTNE condition by Nield and Kuznetsov (2001). They used
the Darcy’s law and found that the effect of local thermal nonequilibrium is significant when
the solid conductivity in each layer is greater than the fluid conductivity. After that, Nield
et al. (2002) applied the classical Graetz methodology to study the effect of LTNE on the
developing forced convection in a parallel-plate channel filled by a saturated porous medium.
Hooman and Merrikh (2006) studied the flow and heat transfer in fluid-saturated porous ducts
analytically based on the Fourier series. They proposed analytical expression for Nusselt
number and temperature field for the case of constant heat flux thermal boundary condition.
Hooman (2008) proposed expressions for the velocity and temperature distributions for the
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flow between infinite parallel-plates under a constant heat flux imposed at the walls based
on perturbation techniques in two limiting cases, large and small Darcy numbers. Hung and
Tso (2009) investigated the heat transfer in a fluid-saturated porous channel under a constant
heat flux condition. They proposed a closed-form solution for the temperature field including
the frictional heating effects. All of the mentioned works in the present paragraph were on
the basis of the local thermal equilibrium assumption. Results of them can be used as a start
point to study of LTNE condition in future studies similar to this work.

Mahmoudi and Maerefat (2011) investigated analytically the forced convection through
a channel partially filled with a porous medium under the constant heat flux at the walls.
They assumed thermally developed condition and the local thermal non-equilibrium model
to obtain the exact solutions of both fluid and solid temperature fields for flow inside the
porous region as well as for flow in the clear region. Khandelwal and Bera (2012) studied
the influence of thermal non-equilibrium state on the fully developed mixed convection in
a vertical channel filled with a porous medium. They showed that an increase in the inter-
phase heat transfer coefficient decreases the amount of LTNE. Qu et al. (2012) proposed an
analytical solution using modified Bessel functions for fully developed forced convective
heat transfer in an annulus partially filled with a metallic foam. The inner surface attached
with the annular metallic foam layer was exposed to a constant heat flux while the outer
one was adiabatic. In the porous medium region, the Brinkman–Darcy equation was used to
describe the fluid flow and the thermal non-equilibrium model was employed to establish the
heat transfer equations.

Most of analytical studies have used constant heat flux for the thermal boundary condition,
because it simplifies the energy equation. There are few investigations that have assumed
iso-thermal boundary condition, like Nield and Kuznetsov (1999) and Nield and Kuznetsov
(2004). But, they consider basic models, especially the Darcy model. Also, a number of
attempts for studying the iso-thermal boundary condition assumed a simplifier assumption
which questions the fact of the fully developed condition. They neglected the axial change
of temperature at fully developed region and added a viscous dissipation term to balance the
energy equation (Mahmud and Fraser 2005a,b; Hooman and Gurgenci 2007). On the other
hand, the Nu number is the ratio of convected heat to the conducted heat by the medium.
So, if the axial temperature variation (the convective term in the energy balance equation) be
neglected, the Nu number would become meaningless.

In this study, a fluid-saturated porous medium bounded by two iso-thermal infinite parallel-
plates has been investigated based on the perturbation technique. The flow field has been
modeled using the Brinkman–Forchheimer-extended Darcy equation. The situation of local
thermal non-equilibrium has been assumed for the temperature. The energy equation has
been solved by the successive approximation method. A simple expression representing the
intensity of the local thermal non-equilibrium condition has been proposed based on the scale
analysis and perturbation technique. To our knowledge, such a simple equation representing
the intensity of the LTNE condition subjected to the iso-thermal boundary condition has been
rarely proposed in previous works.

2 Mathematical Modeling

The schematic diagram of the problem is shown in Fig. 1. The following assumptions are
invoked in the formulation of the model:

• The flow in the porous media is incompressible.
• The steady-state fully developed forced convection is desired.
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Fig. 1 Schematic diagram of the
porous-saturated channel

• The natural convection and the radiation heat transfer are neglected.
• The medium is assumed to have constant, isotropic, and homogenous characteristics and

properties (permeability, porosity, viscosity, and conductivity).
• The walls are kept at a constant temperature.
• Walls are impermeable parallel-plates which have infinite dimension perpendicular to

the plane of view. As a result, the problem could be treated as a two-dimensional transfer
of heat and flow.

• It is allowed that the temperature of solid and fluid phases be different (LTNE condition).

According to the stated assumptions, the governing equations can be presented as following
(Kuznetsov 1997a,b; Nield and Bejan 2006; Hooman 2008):

μeff
d2u∗

dy∗2 − μ

K
u∗ − CFρu∗2

√
K

+ G = 0 (1)

Equation (1) is the momentum equation (the Brinkman–Forchheimer-extended Darcy equa-
tion) where y∗ is the perpendicular axis to the flow direction, u∗ is the fluid velocity, μ is the
fluid viscosity, K is the permeability of the medium, ρ is the fluid density, CF is the inertial
coefficient, G is the negative of the applied pressure gradient in the flow direction (x∗), and
μeff is the effective viscosity which is equal to μ/φ (Kuznetsov 1997a,b; Vafai and Kim
1989). φ is the porosity of the medium.

The steady state energy equations of the solid and fluid phases are (Kuznetsov 1997a,b;
Nield and Bejan 2006):

ρcpu∗ ∂Tf

∂x∗ = kf,eff
∂2Tf

∂y∗2 + hsf asf (Ts − Tf ) (2)

0 = ks,eff
∂2Ts

∂y∗2 − hsf asf (Ts − Tf ) (3)

Equations (2) and (3) are the energy equations for the fluid and solid phases, respectively. In
Eqs. (2) and (3) it is assumed that the axial heat conduction is negligible. In these equations
the subscripts “s” and “f” denote solid and fluid phases, respectively. T is temperature, cp is
the specific heat of the fluid phase, ks,eff and kf,eff are effective thermal conductivities of the
solid and fluid phases given by:

ks,eff = (1 − φ) ks (4)

kf,eff = φkf (5)
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hsf and asf are the fluid–solid heat transfer coefficient and specific surface area (surface per
unit volume) given by (Alazmi and Vafai 2002; Nield and Bejan 2006):

asf = 6 (1 − φ)
/

dp (6)

hsf = kf

dp

[

2 + 1.1Pr1/3
(

ρu∗dp

μ

)0.6
]

(7)

dp is particle diameter and Pr is the Prandtl number. Equations (1–3) are subjected to the
no-slip and no-jump boundary conditions. Also, the symmetry is imposed by the geometry
of the problem. Consequently, the boundary conditions of Eqs. (1–3) are as following:

du∗

dy∗

∣
∣
∣
∣
y∗=0

= 0, u∗ (
y∗ = H

) = 0 (8)

∂Tf
∂y∗ = ∂Ts

∂y∗ = 0 at y∗ = 0
Tf = Ts = Tw at y∗ = H

(9)

3 Analysis and Solution

Dimensionless form of the momentum Eq. (1) and the boundary conditions (8) are:

d2u

dy2 − s2u − Fsu2 + 1

M
= 0 (10)

du

dy

∣∣∣∣
y=0

= 0, u (y = 1) = 0 (11)

where y is non-dimensional axis perpendicular to the flow direction, u is non-dimensional
velocity, M is viscosity ratio, and s is the porous media shape parameter and they are defined
as:

y = y∗

H
, u = μu∗

G H2 , M = μeff

μ
Da = K

H2 , F = CFρG H3

μeffμ
(12)

s = 1√
DaM

=
√

φ

Da
(13)

here, Da and F are the Darcy and Forchheimer numbers, respectively. The normalized veloc-

ity (
�
u ) is defined as:

�
u = u∗

u∗
m

(14)

u∗
m is the mean velocity and is given by:

u∗
m = 1

H

H∫

0

u∗dy∗ (15)

According to Hooman (2008) the velocity field of the present problem can be obtained using
the perturbation technique in two limiting cases: small and large values of the porous media
shape parameter (s). The normalized velocity for the case of s < 1 using the asymptotic
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expansion method is (Hooman 2008):

�
u = 3

2

(
1 − y2) + Fs

280M

(
7y6 − 35y4 + 33y2 − 5

) + O
(
s2) ; s < 1 (16)

For s > 1 the momentum Eq. (10) is a singular perturbation differential equation having two
boundary layers at each boundary (Nayfeh 1981). This type of equation should be solved by
the method of multiple scales or the method of matched asymptotic expansions. In a brief
view, the solution procedure could be stated as following:

The method of multiple scales needs at least three scales: y0 = y, y1 = s(1 − y), and
y2 = sy. The method of matched asymptotic expansion needs defining two inner layers at
each boundary and one outer layer far from the boundaries. But, Eq. (10) and its boundary
conditions (11) are an especial case in which the boundary condition could be ensured at y=0
by the outer solution. So, it can be solved with only one inner layer at y = 1. The stretched
coordinate at y = 1 is: y1 = s(1 − y). After some mathematical operations, one could show
that the solution of momentum Eq. (10) subjected to the boundary conditions (11) would be
as:

�
u = 1 − exp {s (y − 1)}

1 − 1/s + exp (−s)/s
+ O

(
1

s3

)
; s > 1 (17)

At this point, the velocity field of the problem has been defined by Eqs. (16) and (17). For the
temperature field, analysis will be started with Eq. (3). Using the scale analysis and noting
that the product of hsf asf is a large value, one could show the following result from Eq. (3)
(Kuznetsov 1997a,b):

Ts = Tf + O

(
ε = 1

hsf asf

)
(18)

where ε is a small value. Combining Eqs. (3) and (18) yields:

(Ts − Tf ) = 1

hsf asf

ks,eff

km
km

∂2Tf

∂y∗2 + O (ε) (19)

km is the effective thermal conductivity of the medium and equals to ks,eff + kf,eff . To define
the temperature difference (or the intensity of LTNE condition), the value of ∂2Tf/∂y∗2

should be defined. From Eqs. (2), (3), and (18) it can be shown that:

ρcpu∗ ∂Tf

∂x∗ = km
∂2Tf

∂y∗2 + O (ε). (20)

So, the solution reduces to solving a fluid-saturated porous medium under the LTE condition
subjected to isothermal boundary condition. To solve Eq. (20), some definitions are given as
following:

θ = T − Tw

Tm − Tw
(21)

Tm = 1

Hum

H∫

0

u∗T dy∗ (22)

where θ and Tm are dimensionless temperature and the bulk mean temperature, respectively.
Combining Eqs. (21) and (22) results in:

∂Tf

∂x∗ = θf
dTm

dx∗ + O(ε). (23)
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Writing the first law of thermodynamics over a differential control volume containing the
channel and using Eq. (23), one can obtain:

∂Tf

∂x∗ = θf
q ′′

w (x∗)
ρcpum H

+ O(ε), (24)

q ′′
w(x∗) is the heat flux at section x∗ of the channel which is a function of x∗. Combining

Eqs. (19), (20), and (24) yields:

(Ts − Tf ) = 1

hsf asf

ks,eff

km

�
u θf

qw (x∗)
H

+ O (ε) (25)

Dividing Eq. (25) by (Tm − Tw), using the Nusselt number definition, and rearranging the
Eq. (25) give:

�NE = ks,eff

km

�
u θf + O(ε) (26)

�NE is a complex representing the intensity of LTNE condition and is equal to:

�NE =
∣
∣∣∣
(θs − θf ) hsf asf 4H2

km Nu

∣
∣∣∣ (27)

Nu in Eq. (27) is the Nusselt number based on the hydraulic diameter:

Nu = q ′′
w (x∗) × 4H

(Tw − Tm) km
. (28)

Equation (26) only needs the normalized velocity (
�
u ) and non-dimensional temperature (θ )

distributions in a porous medium under the assumption of LTE condition. The normalized
velocity distribution is given by Eqs. (16) and (17). The non-dimensional temperature distri-
bution under LTE condition could be estimated by the successive approximation method. At
first, Eq. (20) should be non-dimensionalized as following:

− Nu
�
u

4
θf = d2θf

dy2 . (29)

And the non-dimensional boundary conditions would be as:

dθf

dy

∣∣∣∣
y=0

= 0, θf (1) = 0. (30)

For the sake of brevity, the subscript “f” will be dropped. At the first step, a profile for θ(y)

should be guessed. In this study, a flat profile (θ(y) = 1) is used for the first step. This profile
is substituted to the LHS of Eq. (29) and then is integrated two times. Equation (30) will be
used to define the constants of the integrals. The perturbation integration method should be
used in integrating and the dominant terms should be held. Then, from the definition of the
Nu number, the Nusselt number of the step could be evaluated:

Nu = −4
dθ

dy

∣∣∣∣
y=1.

(31)

The new profile should be substituted into the LHS of Eq. (29) and the process could be
repeated until the difference of the Nu of the nth-step and available Nu numbers of other
researchers falls below a coast-profit determined percentage. In this study, this percentage is
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adopted 5 %. The dominant terms of obtained temperature distribution (θ(y)) for s <1 after
four steps will be as:

θ (y) = Nu3{−1.23 × 10−5 y10 + 9.02 × 10−5 y8 − 5.00 × 10−4 y6 + 1.574 × 10−3 y4

−3.952 × 10−3 y2 + 2.800 × 10−3 + s F
M

(−1.12 × 10−5 y10 + 1.92 × 10−4 y8

−5.84 × 10−4 y6 + 6.35 × 10−4 y4−2.22 × 10−5 y2−2.105 × 10−4
)} + O

(
s2

)
. (32)

The Nusselt number at this step is 7.90 as s → 0. The Nusselt number of the numerical
simulation is 7.54 (Kaviany 1985). So, the non-dimensional difference is 4.8 %. Nu number
of the next step is 7.78 and is 3.2 % rough. The Nu number at this step is:

Nu = 7.78 (1 + 0.029s) , s < 1 (33)

Equation (33) has been used to draw the non-dimensional temperature profile and to evaluate
the �NE. For the case of s > 1, after seven steps the dominant terms of non-dimensional
temperature profile would be as:

θ (y) =
(

Nu
1−1/s+exp(−s)/s

)6 (
0.01261y8 − 0.2673y6 + 3.2943y4

−16.755y2 + 13.676
) × 10−7 +

(
Nu

1−1/s+exp(−s)/s

)5 (
−25.92 × ( 1

s

)2

+41.37
( 1

s

)2
y2 − 8.477

( 1
s

)2
y4

)
× 10−6 + O

( 1
s

)3
(34)

The Nusselt number at this step is 10.24 as s → ∞ and the numerical simulation based
Nusselt number is 9.87 (Kaviany 1985). So, the non-dimensional difference is 3.7 %:

Nu = 10.24 (1 − 1.2/s) , s > 1 (35)

In a brief view, an equation proposing the importance of LTNE condition has been obtained
based on the analytical approach. Equation (26) is a simple and general relation that can be
used for the estimation of LTNE condition and for numerical simulation validations. The
obtained results based on Eqs. (26) and (32–35) will be presented in the next section.

4 Results and Discussions

At first, the obtained non-dimensional temperature distributions are compared with numerical
results of Kaviany (1985). Results of Eqs. (32) and (34) are plotted in Fig. 2. It can be seen
that the results of successive approximation method (Eqs. 32 and 34) are in good agreement
with the numerical results of Kaviany (1985) in both cases (s < 1 and s > 1).

After investigating the accuracy of obtained non-dimensional temperature profile, the
results of LTNE condition based on Eq. (26) are discussed. Figure 3 shows effects of porosity
on the intensity of LTNE condition. From Fig. 3a, b, it can be seen that the intensity of LTNE
condition (�NE) reaches its maximum value at the middle of the channel and decreases
smoothly to zero by moving to the wall. Also, the intensity of LTNE condition decreases
with increasing the porosity (φ). At higher porosities, the occupying solid phase has less
thermal inertia and would follow the fluid phase stronger (Mirzaei and Dehghan 2013). This
trend can be seen for all Da numbers in Fig. 4. Another matter is that there is local thermal
equilibrium (LTE) at the boundary. This was expected because of the thermal boundary
condition at the channel wall. Also, the value of �NE reaches zero smoothly. This happens

because in Eq. (26) both
�
u and θ are zero at the wall (y = 1). So, �NE has a root of order

two at the wall.
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Fig. 2 Non-dimensional temperature distribution

Fig. 3 Effects of porosity on the intensity of LTNE condition: a Da= 0.01, b Da= 0.0001

In Figs. 3 and 4 the conductivity ratio (k = kf/ks) is equal to one. To see effects of the
conductivity ratio, Figs. 5 and 6 are plotted. The intensity of LTNE condition decreases by
increasing the conductivity ratio (k). It is not surprising since the ability of fluid in the heat
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Fig. 4 Effects of Da number on the intensity of LTNE condition; a φ = 0.4, b φ = 0.8

transfer increases in comparison with the solid phase. As a result, the solid phase would
obey the fluid phase closer and vice versa. Another matter than can be obtained from Figs. 5
and 6 is that although the intensity of LTNE condition decreases at higher porosities, but
the difference between different conductivity ratios increases. For example, at φ = 0.2 the
profile of k = 0.2 is about two times greater than the profile of k = 5, but at φ = 0.8 the
profile of k = 0.2 is about 10 times greater than the profile of k = 5 at the middle of the
channel (y = 0).

The other is that the intensity of LTNE condition (�NE) is higher at higher Da numbers
at the middle of the channel as it can be seen in Fig. 6. But by moving to the wall, the lower
Da number would have higher values of �NE. This occurs because of the redistribution of
velocity field by the Da number. The Da number has a little influence on the temperature field
in comparison with its influence on the velocity field. At low Da numbers (high s values),
the velocity profile is more uniform. Also, increasing the porosity decreases this difference
between profiles of different Da numbers.

5 Conclusion

The situation of local thermal non-equilibrium (LTNE) in a saturated porous medium bounded
by isothermal parallel plates in a fully developed region has been discussed. The velocity and
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Fig. 5 Effects of conductivity ratio (k) on the intensity of LTNE condition at Da=0.01: a φ = 0.2 and b
φ = 0.8

the temperature fields have been found using the perturbation techniques and the successive
approximation method, respectively. The profile for the non-dimensional temperature distri-
bution has been proposed at two limiting values of porous media shape parameter: small and
large s. Other major results of this study are highlighted as following:

• A fundamental relation for the temperature difference between the fluid and solid phases
(the thermal nonequilibrium intensity) has been established based on a perturbation analy-
sis.

• It is found that the LTNE intensity (�NE) is proportional to the product of the normalized
velocity and the non-dimensional temperature at LTE condition. Also, it depends on the
conductivity ratio and porosity of the medium.

• The maximum intensity of LTNE condition occurs at the middle of the channel where the
normalized velocity and the non-dimensional temperature have their maximum values.

• There is LTE condition at the walls because of the no-slip and no-jump conditions at the
walls of channel.

• Increasing the conductivity ratio (k = kf/ks) and porosity of the medium results in
decreasing �NE.

• The trend is similar for all Da numbers. Also, the Da number has the least effects on the
�NE in comparison with the effects of porosity and conductivity ratio.
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Fig. 6 Effects of conductivity ratio (k) and Da number on the intensity of LTNE condition: a φ = 0.2 and b
φ = 0.8

• Finally, the proposed relation for the intensity of LTNE condition (Eq. 26) is simple
and fundamental for estimating the importance of LTNE condition and validation of
numerical simulation results.
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