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Abstract Thermo-rheological effect of temperature-dependent viscous fluid saturating a
porous medium has been studied in the presence of imposed time periodic gravity field
and internal heat source. Weak nonlinear stability analysis has been performed by using the
power series expansion in terms of the amplitude of gravity modulation, which is considered
to be small. Nusselt number is calculated numerically using Ginzburg–Landau equation.
The nonlinear effects of thermo-mechanical anisotropies, internal heat source parameter,
Vadász number, thermo-rheological parameter and amplitude of gravity modulation have
been obtained and depicted graphically. Streamlines and isotherms have been drawn for
different times. Comparisons have been made between various physical systems.
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List of Symbols

Latin Symbols

A Amplitude of convection
a1 Amplitude of gravity modulation
d Depth of the fluid layer
g Acceleration due to gravity
kc Critical wave number
Kx Permeability in x-direction
Kz Permeability in z-direction
Nu Nusselt number
p Reduced pressure

Ri Internal heat source parameter Ri = Qd2

κT z

RaT Thermal Rayleigh number, RaT = βTg0�T d Kz
νκT z

R0c Critical Rayleigh number
T Temperature

V a Vadász number V a = νd2

KzκT z
V Thermo-rheological parameter V = δ0�T
�T Temperature difference across the porous layer
t Time
(x, z) horizontal and vertical coordinates

Greek Symbols

βT Coefficient of thermal expansion
δ0 Small parameter indicating variation of viscosity with temperature
δ2 Horizontal wave number δ2 = k2

c + π2

ε Perturbation parameter
γ Heat capacity ratio γ = (ρc)m

(ρc)f
η Thermal anisotropy parameter κT x/κT z

ξ Mechanical anisotropy parameter Kx/Kz

Ω Frequency of modulation
κT κT x (i i + j j)+ κT z(kk)
κT x Effective thermal diffusivity in x-direction
κT z Effective thermal diffusivity in z-direction
μ Dynamic viscosity of the fluid
φ Porosity

ν Kinematic viscosity,
(
μ
ρ0

)

ρ Fluid density
ψ Stream function
τ Slow time τ = ε2t
Θ Perturbed temperature

Other Symbols

∇2
1

∂2

∂x2 + ∂2

∂y2
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∇2 ∇2
1 + ∂2

∂z2

Subscripts

b Basic state
c Critical
0 Reference value

Superscripts

′ Perturbed quantity
∗ Dimensionless quantity
st Stationary

1 Introduction

Rayleigh–Bénard convection in porous media commonly known as Horton–Rogers–
Lapwood convection has attracted many researchers and become a major part of research
in fluid dynamics in recent times. The study finds its applications in wide range of science
and engineering problems such as in geophysics, metallurgy, solidification of polymeric liq-
uids, geothermal energy extraction, oil recovery process, nuclear waste disposal and earth’s
mantle convection. Documented work in this area are well collected and reviewed by Nield
and Bejan (2012), Kaviany (1995), Vafai (2000, 2005), Straughan (2004), Ingham and Pop
(2005) and Vadász (2008).

Temperature-dependent viscosity fluid gives rise to variation in top and bottom structures
and referred as a non-Boussinesq effect. Nonlinear energy stability theory has been derived by
Richardson and Straughan (1993) for the problem of convection in porous medium when the
viscosity depends on the temperature for vanishingly small initial data thresholds. Payne et
al. (1999) derived unconditional nonlinear stability for temperature-sensitive fluid in porous
media. Qin and Chadam (1996), Nield (1996), Holzbecher (1998), Rees et al. (2002), Sid-
dheshwar and Chan (2004), Vanishree and Siddheshwar (2010) and Siddheshwar and Van-
ishree (2012) studied the effects of variable viscosity on convection problems in a porous
medium.

There are large number of practical situations in which convection is driven by internal
heat source. Due to internal heating of earth there is a temperature gradient between the
interior and the exterior of the earth’s crust which causes convection in earth crust. Further
the applications of internal heat source may be found in radioactive decay of unstable isotopes,
metal waste form development for spent nuclear fuel and weak exothermic reaction which can
take place within porous materials. Moreover, internal heat source is the main energy source
of celestial bodies which is generated by radioactive decay and nuclear reaction. Research
article related to internal heat source in porous media are given by Tveitereid (1977), Bejan
(1978), Haajizadeh et al. (1984), Rionero and Straughan (1990), Rao and Wang (1991),
Parthiban and Patil (1997), Herron (2001), Khalili and Huettel (2002), Joshi et al. (2006),
Gaikwad et al. (2009), Bhadauria et al. (2011, 2013a,b), Bhadauria (2012) and Altawallbeh
et al. (2013).

The gravity modulation of the system leads to the variable coefficients in the govern-
ing equations of thermal instability in porous media and involves the vertical time-periodic
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vibrations of the system. This leads to the appearance of a modified gravity, collinear with
actual gravity, in the form of a time-periodic gravity field perturbation and is known as
gravity modulation or g-jitter in literature. Research article related to gravity modulation
are provided by Malashetty and Padmavathi (1997), Rees and Pop (2000, 2001, 2003),
Malashetty and Basavaraj (2002), Govender (2004, 2005a,b), Kuznetsov (2005, 2006a,b),
Siddhavaram and Homsy (2006), Strong (2008a,b), Razi et al. (2009), Saravanan and Puru-
sothaman (2009), Siddheshwar and Vanishree (2012a), Saravanan and Arunkumar (2010),
Saravanan and Sivakumar (2010, 2011); Siddheshwar and Bhadauria (2012b) and Bhadauria
et al. (2012a,b, 2013a).

In most of the investigations, porous medium is assumed to be isotropic; however, for geo-
logical and pedological process rarely it forms isotropic media, as is usually assumed in trans-
port studies. Processes such as sedimentation, compaction, frost action and reorientation of the
solid matrix are responsible for the creation of anisotropic natural porous media. Anisotropic
can also be a characteristic of artificial porous like pelleting used in chemical engineer-
ing process and fibre materials used in insulating purposes. Some of the articles related
to anisotropic porous media are: Epherre (1975), Kvernvold and Tyvand (1979), Nisen and
Storesletten (1990), Tyvand and Storesletten (1991), Degan et al. (1995), Nield and Kuznetsov
(2003, 2007), Govender (2006, 2007), Malashetty and Heera (2006), Malashetty and Swamy
(2007), Simmons et al. (2010), Bhadauria et al. (2013a,b) and Altawallbeh et al. (2013).

Thus anisotropy in porous media, which may be due to the preferential orientation or
asymmetric geometry of porous matrix or fibres, is encountered in many systems in industry
and nature. In context of the present problem, it is of particular interest in the study of
extraction of metals from ores wherein a mushy layer is formed during solidification of a
metallic alloy. The quality and structure of the resulting solid can be controlled by influencing
the transport process. Since internal heating or gravity modulation or a combination of both
is an effective mechanism of suppressing or advancing the thermoconvective flow, these
mechanisms individually or collectively can be used as effective means of influencing the
quality and structure of the resulting solid. It can be noticed from the literature for variable
viscosity above, the works on thermal instability discussed earlier address only the onset of
convection or deal with heat transport in the absence of internal heat generation or gravity
modulation. To the best of authors’ knowledge, till date no nonlinear study is available
that investigates the combined effect of internal heating of fluid/porous layer and gravity
modulation under variable viscosity. It is with these motives that a weakly nonlinear analysis
of thermal instability in a variable viscosity fluid-saturated anisotropic porous medium has
been made under gravity modulation and the effects of internal heating and variable viscosity
parameters have been investigated.

2 Governing Equations

We consider an infinitely extended horizontal anisotropic porous layer saturated by variable
viscosity Newtonian fluid with temperature-dependent viscosity confined between the planes
z = 0 and z = d , which is heated from below. We choose Cartesian frame of reference as,
origin at the lower boundary and the z-axis vertically upward direction. The gravity force is
acting in vertically downward direction, we consider only free–free boundaries. It is assumed
that the mechanical properties and thermal properties in x and y-directions are same. A
uniform adverse temperature gradient�T/d is maintained between the surfaces. Further the
density variation is considered under Boussinesq approximation. The governing Eqs. under
above considerations are given by
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∇.q = 0, (1)
ρ0

φ

∂q
∂t

= −∇ p + ρg(t)− μK .q, (2)

γ
∂T

∂t
+ (q.∇)T = ∇. (κT .∇T )+ Q (T − T0) , (3)

ρ = ρ0 [1 − βT (T − T0)] , (4)

g(t) = g0
[
1 + ε2a1Cos(Ω0t)

]
k̂, (5)

μ(T ) = μ0

1 + ε2δ0 (T − T0)
, (6)

where q is velocity, φ is porosity of the matrix, p is the pressure, g is the acceleration
due to gravity, μ is viscosity, ρ is density and T represent temperature. K = K −1

x i i +
K −1

x j j + K −1
z kk is the inverse of the permeability tensor, κT = κT x ii + κT x j j + κT zkk

is the thermal diffusivity tensor, ρ0 is reference density, g0 is mean gravity, a1 is amplitude
of gravity modulation, Ω0 is the frequency and ε is the quantity that indicates smallness in
order of magnitude of modulation and t is time. Furthermore βT is thermal volume expansion
coefficient and γ = (ρc)m

(ρc)f
is the heat capacity ratio. Introducing the stream function ψ and

eliminating the pressure term and then nondimensionalizing the resultant equations using the
substitution

(x, y, z) = (
x∗, y∗, z∗) d, t = t∗

(
γ d2/κT z

)
, ψ = (κTz)ψ

∗ and T = (�T)T ∗, (7)

the nondimensionlized Eqs. 2 and 3 are:

1

V a

∂
(∇2ψ

)

∂t
= −RaT

(
1 + ε2a1Cos(Ω0t)

) ∂T

∂x
− μ̄(T )

(
∂2

∂x2 + 1

ξ

∂2

∂z2

)
ψ

−
(
∂μ̄

∂x

∂ψ

∂x
+ 1

ξ

∂μ̄

∂z

∂ψ

∂z

)
, (8)

∂T

∂t
−

(
η
∂2

∂x2 + ∂2

∂z2 + Ri

)
T = ∂(ψ, T )

∂(x, z)
, (9)

where μ̄(T ) = 1
1+ε2V (T −T0)

and the appearance of ε2 indicates that the viscosity variation

is weak as ε is small quantity. V a = νd2

KzκT z
Vadász number or Darcy–Prandtl number,

RaT = βTg0�T d Kz
νκT z

is thermal Rayleigh number, ξ = Kx
Kz

is mechanical anisotropy parameter,

η = κT x
κT z

is thermal anisotropy parameter, Ri = Qd2

κT z
is internal heat source parameter and

V = δ0�T thermo-rheological parameter. For simplicity γ and φ are taken unity in the
present problem. The boundary condition for solving Eqs. 8 and 9 are

ψ = 0 and T = 1 at z = 0 (10)

ψ = 0 and T = 0 at z = 1 (11)

The conduction profile is given by

ψb = 0 and Tb(z) = Sin
√

Ri(1 − z)

Sin
√

Ri
(12)
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Using μ̄ = μ̄ (Tb) Eq. 8 reduces to

1

V a

∂
(∇2ψ

)

∂t
= −RaT

(
1 + ε2a1Cos(Ω0t)

) ∂T

∂x
− μ̄(T )

(
∂2

∂x2 + 1

ξ

∂2

∂z2

)
ψ − 1

ξ

∂μ̄

∂z

∂ψ

∂z
,

(13)

where μ̄ (Tb) = μ′
μ0

= Sin
√

Ri
Sin

√
Ri+ε2V Sin

√
Ri(1−z)

and Ω∗
0 = Ω0d2

κT z
.

We impose finite amplitude perturbations on the basic quiescent state given by Eq. 12 as

ψ = Ψ and T = Sin
√

Ri(1 − z)

Sin
√

Ri
+Θ. (14)

Substituting the above expressions 14 in Eqs. 13 and 9 we have

1

V a

∂
(∇2Ψ

)

∂t
= −RaT

(
1 + ε2a1Cos

(
Ω∗

0 t
)) ∂Θ
∂x

− Sin
√

Ri

Sin
√

Ri + ε2V Sin
√

Ri(1 − z)

.

(
∂2

∂x2 + 1

ξ

∂2

∂z2

)
Ψ − ε2V

√
RiCos

√
Ri(1 − z)Sin

√
Ri

ξ
(
Sin

√
Ri + ε2V Sin

√
Ri(1 − z)

)2

∂Ψ

∂z
, (15)

− dTb

dz

∂Ψ

∂x
+ ∂Θ

∂t
−

(
η
∂2

∂x2 + ∂2

∂z2 + Ri

)
Θ = ∂(Ψ,Θ)

∂(x, z)
(16)

Boundary conditions to solve Eqs. 15 and 16 are

Ψ = 0 and Θ = 0 at z = 0, (17)

Ψ = 0 and Θ = 0 at z = 1. (18)

We now introduce the following asymptotic expansion

RaT = R0c + ε2 R2 + ε4 R4 + ..., (19)

Ψ = εΨ1 + ε2Ψ2 + ε3Ψ3 + ..., (20)

Θ = εΘ1 + ε2Θ2 + ε3Θ3 + ..., (21)

where R0c is the critical value of the Rayleigh number at which the onset of convection takes
place in the absence of gravity modulation.

We now assume the variation of time only at the slow time scale τ = ε2t and arranging
the systems at different order of ε.

At the lowest order, we have
⎛
⎝

(
∂2

∂x2 + 1
ξ
∂2

∂z2

)
R0c

∂
∂x

− dTb
dz

∂
∂x −

(
η ∂2

∂x2 + ∂2

∂z2 + Ri

)
⎞
⎠

(
Ψ1

Θ1

)
= 0, (22)

Solution at the lowest order is given by

Ψ1 = A[τ ]Sin (kcx)Sin(π z), (23)

Θ1 = 4π2kc(
δ2

2 − Ri
) (

Ri − 4π2
) A[τ ] Cos (kcx) Sin(π z), (24)

where δ2 = k2
c + π2, δ2

1 = k2
c + π2

ξ
and δ2

2 = ηk2
c + π2.
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The critical value of the Rayleigh number and the corresponding wave number for the
onset of stationary convection is calculated numerically and the expression for Rayleigh
number is given by:

R0c = δ2
1

(
δ2

2 − Ri
) (

4π2 − Ri
)

4π2k2
c

, (25)

kc =
(
π2

(
π2 − Ri

)

ξη

) 1
4

. (26)

3 Amplitude Equation and Heat Transport for Stationary Instability

At the second order, we have
⎛
⎝

(
∂2

∂x2 + 1
ξ
∂2

∂z2

)
R0c

∂
∂x

− dTb
dz

∂
∂x −

(
η ∂2

∂x2 + ∂2

∂z2 + Ri

)
⎞
⎠

(
Ψ2

Θ2

)
=

(
R21

R22

)
, (27)

where

R21 = 0, (28)

R22 = 2π3k2
c(

δ2
2 − Ri

) (
Ri − 4π2

) A[τ ]2 Sin(2π z). (29)

The second order solution subject to the boundary conditions (17 and 18) is given by

Ψ2 = 0, (30)

Θ2 = − 2π3k2
c(

δ2
2 − Ri

) (
4π2 − Ri

)2 A[τ ]2 Sin(2π z). (31)

The horizontally averaged Nusselt number, Nu, for stationary mode of convection (the mode
considered in this problem) is given by :

Nu(τ ) = 1 +

[
kc
2π

∫ 2π
kc

0

(
∂Θ2
∂z

)
dx

]

z=0[
kc
2π

∫ 2π
kc

0

(
∂Tb
∂z

)
dx

]

z=0

(32)

One can notice here that the gravity modulation is effective at O(ε2) and affects Nu(τ )
through A[τ ] as shown next. Substituting expression ofΘ2 in the above expression (Eq. 32)
and simplifying, we get

Nu(τ ) = 1 +
(
4π4k2

c Sin
√

Ri
)

(√
Ri Cos

√
Ri

(
δ2

2 − Ri
) (

Ri − 4π2
)2

) (A[τ ])2. (33)

At the third order, we have
⎛
⎝

(
∂2

∂x2 + 1
ξ
∂2

∂z2

)
R0c

∂
∂x

− dTb
dz

∂
∂x −

(
η ∂2

∂x2 + ∂2

∂z2 + Ri

)
⎞
⎠

(
Ψ3

Θ3

)
=

(
R31

R32

)
, (34)
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where

R31 = −Sin2
√

Ri
1

V a

∂

∂τ

(∇2Ψ1
) − V Sin

√
Ri Sin

√
Ri(1 − z)

(
∂2

∂x2 + 1

ξ

∂2

∂z2

)
Ψ1

−√
Ri Sin

√
Ri Cos

√
Ri(1 − z)

V

ξ

∂Ψ1

∂z

−
(

R0c

(
2V Sin

√
Ri Sin

√
Ri(1−z)+a1Cos(Ωτ)Sin2

√
Ri

)
+R2 Sin2

√
Ri

) ∂Θ1

∂x
,

(35)

R32 = ∂Ψ1

∂x

∂Θ2

∂z
− ∂Θ1

∂τ
(36)

and Ω = Ω∗
0
ε2 = Ω0d2

ε2κT z
.

Substitute the value of Ψ1,Θ1 and Θ2 in the above equations to get the expressions of
R31, R32.

Applying the solvability condition for the existence of third order solution, we get the
non-autonomous Ginzburg–Landau equation with time periodic coefficients in the form

A1 A′[τ ] + A2 A[τ ] + A3(A[τ ])3 = 0, (37)

where

A1 =
(
δ2Sin2√Ri

V a δ2
1

+ 1(
δ2

2 − Ri
)
)
,

A2 = −
(

R2

R0c
+ a1Cos(Ωτ)

)
Sin2

√
Ri − V

(
4π2

(−1 + Cos
√

Ri
)

√
Ri

(
Ri − 4π2

)
)

Sin
√

Ri

−2π2V
(−1 + Cos

√
Ri

)

ξ
(
4π2 − Ri

)
δ2

1

√
Ri Sin

√
Ri

and A3 = π2 k2
c

2
(
δ2

2 − Ri
) (

4π2 − Ri
) .

The Ginzburg–Landau equation given by (37) is a Bernoulli equation and obtaining the
analytical solution is difficult due to its non-autonomous nature. Therefore, it has been solved
numerically by the in-built function NDSolve of Mathematica 7.0, subject to the initial con-
dition A[0] = a0, where a0 is the chosen initial amplitude of convection. In our calculations,
we may assume R2 = R0 to keep the parameters to the minimum.

In case of unmodulated porous medium, the above Ginzburg–Landau equation takes the
form:

A1 A′
u[τ ] − K1 Au[τ ] + A3(Au[τ ])3 = 0, (38)

where Au[τ ] is amplitude of convection for unmodulated case and

K1 =
(

R2

R0c

)
Sin2

√
Ri + V

(
4π2

(−1 + Cos
√

Ri
)

√
Ri

(
Ri − 4π2

)
)

Sin
√

Ri

+2π2V
(−1 + Cos

√
Ri

)

ξ
(
4π2 − Ri

)
δ2

1

√
Ri Sin

√
Ri.
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Solution of Eq. 38 is given by

Au[τ ] = 1√(
A3

2K1
+ C1Exp

[
− 2K1

A1
τ
]) , (39)

where C1 is a parameter that can be found by using suitable initial condition. The Nusselt
number in this case can be calculated from Eq. 33 using Au[τ ] in place of A[τ ].

4 Results and Discussions

We perform weak nonlinear analysis in the presence of internal heat source and gravity
modulation for temperature-dependent viscosity fluid-saturated anisotropic porous media,
considering Darcy model. The work of Nield (1996) has been used for the thermo-rheological
relationship of temperature-dependent viscosity of the fluid. We investigated the effects of
internal heat source, gravity modulation and thermo-rheological parameter on heat transport.
The effect of gravity modulation is considered to be of order O(ε2) so as to provide us
only small amplitude vibrations. Such an assumption will help us in obtaining the amplitude
equation of convection in a rather simple and elegant manner and is much easier to obtain
than in the case of the Lorenz model.

Before writing the discussion of the results, we enlighten some features of the following
aspects of the problem:

1. The need for nonlinear stability analysis,
2. The relation of the problem to a real application and
3. The selection of all dimensionless parameters used in computations.

If one wants to quantify heat transfer, which linear stability analysis is unable to do, this
problem needs to perform the nonlinear analysis and hence the importance.

External regulation of convection is important in the study of convection in porous media.
The objective of this article is to consider internal heat source, gravity modulation and
temperature-dependent viscosity variation for either enhancing or inhibiting the convective
heat transport as is required by a real application.

The parameters that appeared in this article and affect heat transfer are ξ, η, V, V a, Ri,

Ω, a1. The first four parameters are related to the fluid and the structure of the porous medium,
and the last three concern external mechanisms of controlling convection.

Vadász (1998) pointed out that there are some modern porous medium applications, such
as mushy layer in solidification of binary alloys and fractured porous medium, where the
value of V a may be considered to be of unity order; therefore, the time-derivative term in
the present study has been retained. Further this is the reason that we have kept the values of
V a around one in our calculations, and retained the local acceleration term 1

V a
∂q
∂t .

The values of Ri are considered to be moderate so that it will not affect the effect of gravity
modulation on the system by dominating it otherwise. The values of a1 are considered to be
between 0 and 0.5, since we are studying the effect of small amplitude modulation on heat
transport. Further, as the effect of low frequencies on the onset of convection as well as on
the heat transport is maximum, the modulation of gravity is assumed to be of low frequency.
Further the value of thermo-rheological parameter, V is also considered to be small. (Fig. 1)

The values of Nu(τ ) are obtained numerically from the expressions of Nu(τ ) (Eq. 33) by
using the numerical value of amplitude of convection obtained from the Ginzburg–Landau
equation. We used the values to plot the curve for Nu(τ ) versus slow time variation τ and
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z=0

z=d

Variable viscosity Newtonian fluid with internal heat source

x
T T0 T

T T0

y
z

g t g0 1 2 a1 Cos 0 t k

Fig. 1 Physical configuration of the problem

presented in the Figs. 2, 3, 4, 5, 6, 7 and 8. A close observation of Eq. 33 in conjunction
with Eq. 37 reveals that Nu(τ ) depends on thermal and mechanical anisotropy, internal heat
source parameter Ri, Vadász number V a, thermo-rheological parameter V and the amplitude
of g-jitter a1.

From the Figs. 2, 3, 4, 5, 6, 7 and 8, it is observed that when τ is very small, the value of
Nu(τ ) is 1 thus showing that initially heat transport is due to conduction only. However, as
time passes, heat transport across the porous medium increases, which shows that convective
regime is in place. The convective regime remains oscillatory for further elapse of time. As
particular cases of the present study, we have drawn graphs for isotropic cases also. Following
results have been found from Figs. 2, 3, 4, 5, 6, 7 and 8 for heat transport:

1. [Nu]V =0 < [Nu]V �=0

2. [Nu]Ri=1 < [Nu]Ri=1.2 < [Nu]Ri=1.4

3. [Nu]ξ=1.5 < [Nu]ξ=1.0 < [Nu]ξ=0.5
4. [Nu]η=0.5 < [Nu]η=1.0 < [Nu]η=1.5
5. [Nu]V a=0.5 < [Nu]V a=1.0 < [Nu]V a=1.5
6. [Nu]a1=0.3 < [Nu]a1=0.4 < [Nu]a1=0.5

From Fig. 2 we find that the effect of variable viscosity parameter V on thermal instability
is to destabilize the system as heat transport increases on increasing the value of V . From
Fig. 3, we find that the effect of internal heating on thermal instability is destabilizing, as
heat transport increases on increasing Ri . The heat transport is more at higher values of
Ri . This confirms the results obtained most recently by Bhadauria et al. (2011, 2013a,b),
Bhadauria (2012) and Altawallbeh et al. (2013). In Fig. 4, we observe that an increment in
ξ decreases heat transport, thus suppresses the convection. When ξ increases, then either
Kx increases or Kz decreases, and so in both the cases fluid flow through porous medium
decreases in vertical direction in comparison to the flow in horizontal direction. This delays
the convection, and thus decreases the heat transport across the porous media. However,
from Fig. 5, the effect of thermal anisotropy η is found to be opposite to that of mechanical
anisotropy ξ , compatible with the results of Epherre (1975), Kuznetsov and Nield (2008) and
Bhadauria (2012), obtained for unmodulated case.

From Fig. 6, the effect of Vadász number V a on the system is destabilizing as heat transport
increases on increasing its value. This result is compatible with the result of Vadász (1998)
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Fig. 3 Variation of Nusselt number with time for different values of Ri

0.5, 1, 1.5

0.5, a1 0.3, Va 1, V 0.1, 2, Ri 1

Isotropic Case

0 5 10 15 20

1.0

1.5

2.0

2.5

3.0

3.5

4.0

τ

N
u

Fig. 4 Variation of Nusselt number with time for different values of ξ

obtained for rotating porous medium. The effect of amplitude of modulation a1 on Nu is
depicted in Fig. 7. From the figure, we find that the effect of increasing the amplitude of gravity
modulation is to increase the heat transport, thus advancing the convection. In Fig. 8, we

123



370 A. Srivastava et al.

1.5, 1.0, 0.5

0.5, a1 0.3, Va 1, V 0.1, 2, Ri 1

Isotropic Case

0 5 10 15 20

1.0

1.5

2.0

2.5

3.0

3.5

4.0

τ

N
u

Fig. 5 Variation of Nusselt number with time for different values of η
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Fig. 6 Variation of Nusselt number with time for different values of Va
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Fig. 7 Variation of Nusselt number with time for different values of a1

observe that an increment inΩ decreases the magnitude of Nu, and shortens the wavelength
of oscillations. As the frequency of modulation increases from 2 to 10, the magnitude of
Nu decreases, and so is the modulation effect. When the value of Ω is increased further,
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Fig. 8 Variation of Nusselt number with time for different values of Ω
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Fig. 9 With g-jitter and without g-jitter

we find that at Ω = 50, the effect of gravity modulation on thermal instability disappears
altogether. This result agrees with that of linear studies of Wen-Mei (1997), Malashetty and
Padmavathi (1997) and Malashetty and Basavaraja (2005), where at higher frequencies, the
shift in critical Rayleigh number due to gravity modulation becomes almost zero.

In Fig. 9, we have shown comparison between the analytical solution of unmodulated
case and the numerical solution of the problem at hand. We observe that the value of Nusselt
number for unmodulated case is qualitatively similar to that of Bhadauria (2012), however,
more than in the modulated case.

Variation of stream lines and isotherms at different instants of time is shown graphically
in Figs. 10 and 11, respectively. From the Figs. 10a–f, it is clear that the magnitudes of stream
lines increase as time increase. Figure 11a–f shows the variation of isotherms at different
instants of time. It is found from the graphs that initially isotherms are flat and parallel,
thus heat transport is due to conduction only. However, as time increases, isotherms form
contours, showing convective regime is in place. Further, it is also clear from the Figs. 10
and 11 that after reaching certain instant there is no change in the magnitude of stream lines
and isotherms, thus showing the steady state.
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Fig. 10 Variation of stream lines with time a τ = 0.1 b τ = 1.0 c τ = 2.0 d τ = 3.0 e τ = 4.0 f τ = 6.0
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5 Conclusions

We perform a weak nonlinear stability analysis to study the combined effect of internal
heat source, gravity modulation and temperature-dependent viscosity on the heat transfer in
an infinite horizontal anisotropic porous medium saturated with temperature sensitive fluid
using the Ginzburg–Landau equation. The porous medium is closely packed, and heated from
below. The following conclusions have been made from our analysis, for increasing values
of parameter:

1. On increasing the value of thermo-rheological parameter V , the heat transfer increases.
2. An increment in internal heat source parameter Ri increases the heat transport across the

porous medium, thus destabilizes the system.
3. Mechanical anisotropic parameter ξ has stabilizing effect on the system as heat transport

decreases on increasing the value of ξ .
4. Thermal anisotropic parameter η has opposite effect on heat transport in comparison of
ξ .

5. An increment in Vadász number V a increases the heat transport, thus having destabilizing
effect on the system.

6. On increasing the amplitude of modulation a1, heat transport in porous medium increases.
7. On increasing the value of frequency of gravity modulationΩ , the amplitude of modula-

tion of heat transfer decreases. Effect of gravity modulation becomes negligible at higher
values of Ω .

8. Magnitude of streamlines increases with passes of time.
9. Initially isotherms are flat due to conduction state, become contour showing convective

regime.
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