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Abstract Generalized flow equations developed for two-phase flow through porous media
contain a second term that enables proper account to be taken of capillary coupling between
the two flowing phases. In this study, a partition concept, together with a novel capillary pres-
sure equation for countercurrent flow, have been introduced into Kalaydjian’s generalized
flow equations to construct modified flow equations which enable a better understanding of
the role of capillary coupling in horizontal, two-phase flow. With the help of these equations
it is demonstrated that the reduced flux observed in countercurrent flow, as compared to
cocurrent flow, can be explained by the reduction in the driving force per unit volume which
comes about because of capillary coupling. Also, it is shown experimentally that, because
fluids flow through a void space reduced in magnitude due to the presence of immobile irre-
ducible and residual saturations, the capillary coupling parameter should be defined in terms
of a reduced porosity, rather than in terms of porosity. Moreover, it is shown statistically
that the countercurrent relative permeability curve is proportional to the cocurrent relative
permeability curve, the constant of proportionality being the capillary coupling parameter.
Finally it is suggested that one can eliminate the need to determine experimentally counter-
current relative permeability curves by making use of an equation constructed for predicting
the magnitude of the capillary coupling parameter.
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List of symbols

Variables

a Parameter in defining equation for R12 which must be determined experimentally
b Parameter in pressure equation
c Parameter in pressure equation
d Parameter in pressure equation
ki Effective permeability for phase i, i = 1, 2
ki j Generalized effective permeability for phase i, i, j = 1, 2
krw Relative permeability to water
krwc Corrected relative permeability to water
krwin Interpolated value of relative permeability to water
L Length of porous medium
pi Pressure for phase i, i = 1, 2
P̃c p2 − p1 = macroscopic capillary pressure
R12 1 − a(1 − S) = function relating the pressure gradient in phase 1 to that in phase 2
S Normalized saturation in the wetting phase
Sor Residual oil saturation
Swi Irreducible water saturation
vi Darcy velocity of phase i, i = 1, 2
x Horizontal distance in the direction of flow
z Vertical distance in direction of flow

Greek Letters

α Capillary coupling parameter
αc Capillary coupling parameter defined in terms of porosity
αcr Capillary coupling parameter defined in terms of reduced porosity
αi Capillary coupling parameter for phase i, i = 1, 2
αi j Generalized partition coefficient for phase i, i, j = 1, 2
φ Porosity
φr Reduced porosity
δi j Relative difference for phase i, i, j = 1, 2
λi Effective mobility of phase i, i = 1, 2
λi j Generalized effective mobility of phase i, i, j = 1, 2
μi Viscosity of phase i, i = 1, 2
ψi pi + ρi gz = flow potential of phase i, i = 1, 2

Subscripts

co Cocurrent flow
cn Countercurrent flow

Superscripts

◦ Steady-state, cocurrent flow
* Steady-state, countercurrent flow
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1 Introduction

One-dimensional, immiscible, horizontal, two-phase flow may be cocurrent or countercur-
rent. The type of flow which takes place depends upon the relative magnitude of the viscous
and capillary forces acting on the two phases. Usually the balance of forces acting on the two
phases is such that they both flow in the same direction (cocurrent flow). However, situations
can arise where the balance of forces is such that the two-phases flow in opposite directions
(countercurrent flow). In the early investigations of Buckley and Leverett (1942) and Leverett
et al. (1942), the importance of such countercurrent flow in porous media was recognized
and described.

When water-flooding water-wet, fractured matrix reservoirs (Blair 1964; Bourbiaux and
Kalaydjian 1990), countercurrent flows also play a significant role. In such a water flood,
the water imbibed from a fracture into the matrix results in the countercurrent expulsion
of oil into the fractures surrounding the block (Blair 1964). The reservoir produces its oil
almost independently from each neighboring block due to the combined effects of gravity
and capillarity. Both cocurrent and countercurrent flow are involved in spontaneous imbi-
bition of this kind. The ratio of the gravity to the capillary forces, and the conditions at
the boundaries of each block, dictates the relative amount of each type of flow that takes
place.

It is of interest to reservoir engineers to be able to predict immiscible, two-phase displace-
ments in which spontaneous imbibition plays a significant role (Blair 1964; Bourbiaux and
Kalaydjian 1990). In order to be able to make such predictions, one must be able to specify the
relative permeability curves that pertain to countercurrent flow. One approach to specifying
such curves is to assume that the steady-state curves that apply to cocurrent flow also apply
to countercurrent flow. The validity of taking such an approach is doubtful (Lelièvre 1966;
Lefebvre du Prey 1978; Bourbiaux and Kalaydjian 1990; Bentsen and Manai 1991; Bentsen
2001, 2005a,b).

Countercurrent relative permeability curves may also be determined in the laboratory
(Lelièvre 1966; Bourbiaux and Kalaydjian 1990; Bentsen and Manai 1991; Bentsen 2005a,b).
The laboratory approach for determining such curves is not easily implemented because the
techniques used to measure such curves are fraught with both experimental and computational
difficulties. Consequently, very few experimental determinations of countercurrent relative
permeabilities, as compared to cocurrent relative permeabilities, have been reported in the
literature.

The experiments needed to measure countercurrent relative permeability are difficult to
design and carry out. Such is the case because it is usual to use vertical displacements so that
use can be made of the gravitational potential gradients that occur in such displacements.
Consequently, two problems arise. First, countercurrent flow can take place only over a
limited range of rates (Lelièvre 1966). Second, the total potential drop across the length of
the core is small, typically being of the order of 1 kPa, because the gravitational potential
difference across the length of the core depends on �ρgL . As a consequence, difficulties in
accurately measuring the flow rates and potential gradients needed to calculate the associated
relative permeabilities using Darcy’s law can arise.

The problems associated with using vertical, countercurrent flow to determine countercur-
rent relative permeabilities can be mitigated, provided it is possible to use a countercurrent,
horizontal flow experiment to determine these relative permeabilities. Bentsen and Manai
(1991) have carried out a set of experiments in which both cocurrent and countercurrent
relative permeabilities were determined using a horizontal core holder. However, questions
have arisen concerning the validity of the set of equations used to interpret the data. This
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was particularly the case with respect to how capillary pressure should be defined for hori-
zontal, countercurrent flow. Thus the purpose of this article is to construct a set of equations,
which is consistent with the experimental data acquired by Bentsen and Manai (1991), which
can be used to determine both cocurrent and countercurrent relative permeabilities. A fur-
ther goal is to show how the data acquired in a steady-state, cocurrent flow experiment can
be used to determine the relative permeabilities which pertain to countercurrent flow, thus
eliminating the need to undertake difficult countercurrent flow experiments to determine
them.

2 Theory

2.1 Introduction

On the basis of experimental results presented in the literature (Lelièvre 1966; Bourbiaux and
Kalaydjian 1990; Bentsen and Manai 1991, 1993), it appears that the mobilities determined
in a countercurrent flow experiment are less than those determined for the same sand fluid
system, in a cocurrent flow experiment. Such a result cannot be explained, if one assumes that
the conventional flow equations (Muskat 1982) describe correctly two-phase flow through
porous media. That is, one must resort to more sophisticated flow equations, such as those
constructed by Kalaydjian (1987), or others (de la Cruz and Spanos 1983; Whitaker 1986)
to explain such a result.

In Muskat’s flow equations (Muskat 1982), the flux is taken to be proportional to one
driving force, the pressure gradient (or potential gradient in vertical flow) acting across
the phase. On the other hand, in the more sophisticated flow equations, Muskat’s equation is
modified to include a cross, or coupling term, that is proportional to the pressure (or potential)
gradient of the other phase. The need for such a modification is argued usually on the basis
of symmetry, or results arising out of irreversible thermodynamics (Katchalsky and Curran
1975). Moreover, it is postulated usually that the coupling effect arises from the interfacial
contact between the wetting and non-wetting fluids.

The following analysis is confined to the stable, collinear, horizontal flow of two immisci-
ble, incompressible fluids through a water-wet, isotropic, and homogeneous porous medium
where phase 1 is the wetting phase and phase 2 is the non-wetting phase. Moreover, it
is assumed that that any viscous coupling, if it exists, is negligibly small (Bentsen 2001).
Finally, it is assumed that the flow equations are linear. While there is experimental evi-
dence in the petroleum literature to support such a contention (Fulcher et al. 1985), more
recent experimental results (Sinha et al. 2013; Sinha and Hansen 2012; Rassi et al. 2011;
Tallakstad et al. 2009a,b; Avraam and Payatakes 1995) suggest that the flow equations are
highly nonlinear. When the flow equations are nonlinear, the effective permeabilities, rather
than being functions of saturation only, are also dependent on the capillary number (ratio
of the viscous forces to the capillary forces), which, in turn, depends on the velocity of the
flowing fluids. While, the fact that the flow equations are nonlinear does not appear to have
a significant impact on the form of the equations constructed in this article, at least for high
values of the capillary number (Sinha and Hansen 2012), it is expected that the nonlinearity
of the flow equations has resulted in the introduction of an unknown amount error into the
experimentally determined relative permeability curves used in Sect. 2.5.2 to test the theory
developed in the article.
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2.2 Basic Equations

2.2.1 Flow Equations

Kalaydjian (1987) has shown that, consistent with the assumptions made above, the gener-
alized flow equations for the flow of two continuous phases may be written as

v1 = −λ11
∂p1

∂x
− λ12

∂p2

∂x
, (1)

and

v2 = −λ21
∂p1

∂x
− λ22

∂p2

∂x
, (2)

where λi j = ki j/μi , i = 1, 2.
Moreover, the conventional flow equations, again consistent with the same assumptions

made above, may be written as

vi = −λi
∂pi

∂x
, i = 1, 2, (3)

where λi = ki/μi , i = 1, 2.

2.2.2 Capillary Pressure Equations

In the cocurrent flow experiments carried out by Bentsen and Manai (1991), it was determined
that, once steady-state flow was achieved, pressures were distributed linearly along the length
of the core, and that saturation was invariant with distance, except for minor perturbations due
to local heterogeneities in porosity and/or permeability. Moreover, it was found that, when the
experiments were conducted in an approximately meter long core holder, the measured plots
of pressure versus distance for the two flowing phases were not quite parallel. Such a result
arises because, in long core experiments, the pressure of the non-wetting phase, measured at
the inlet end of the core holder is due to two factors: the capillarity of the porous medium
and the hydrodynamic effects (Bentsen 1994). As a consequence, the difference in pressure
between the non-wetting and wetting phases varies along the length of the core holder, which
is inconsistent with the fact the saturation measured was invariant with distance. The size
of this problem is illustrated by calculating the difference in pressure, measured at the inlet
end of the core holder, p2 − R12 p2 = a(1 − S)p2. For a = 0.05 and p2 = 40 kPa, values
used by Manai (1991), this pressure difference varies from 2 kPa at S = 0 to 0 kPa at
S = 1. This problem can be overcome by removing the contribution of the hydrodynamic
effects to the non-wetting pressure measured at the inlet end of the core holder. This was
achieved by multiplying p2 by R12, where R12 is a weak function of normalized saturation
that corrects for the impact of the hydrodynamic effects on the non-wetting pressure profile.
As a consequence, the two linear plots of pressure versus distance became parallel. A plot of
the resulting pressure profiles is shown in Fig. 1. The equations for the two pressure profiles
are, respectively,

R12 p2 = b + c − (b − d)

L
x (4)

and

p1 = b − (b − d)

L
x . (5)
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Fig. 2 Plot of pressure versus distance for countercurrent flow

Subtracting Eq. (5) from Eq. (4) yields

R12 p2 − p1 = c(S) = Pc. (6)

Note that multiplying p2 by R12 removes the contribution of the hydrodynamic effects from
the difference in pressures, leaving only the contribution of the capillarity of the porous
medium. Consequently, Pc, as defined by Eq. (6), is the conventionally defined macroscopic
pressure. Taking the partial derivative of Eq. (6), with respect to x , one obtains

R12
∂p2

∂x
− ∂p1

∂x
= ∂Pc

∂x
. (7)

In the steady-state countercurrent flow experiments carried out by Bentsen and Manai (1991),
it was found again that the pressures were distributed linearly along the length of the core, and
that saturation was invariant with distance. Moreover, it was found that it was again necessary
to multiply the non-wetting pressures by R12. However, it was found that the non-wetting
and wetting pressure profiles were orthogonal to one another, rather than being parallel, as
was the case for cocurrent flow. A plot of the pressure profiles for countercurrent flow is
depicted in Fig. 2. The countercurrent equation for the non-wetting pressure profile is the
same as it was for cocurrent flow (see Eq. 4). However, the equation for the wetting pressure
profile differs and may be written as
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p1 = d + (b − d)

L
x . (8)

In the countercurrent flow experiments carried out by Bentsen and Manai (1991), it was
found that the sum of the pressures, rather the difference in pressures, was constant along the
length of the core. Thus, adding Eq. (4) to Eq. (8) leads to

R12 p2 + p1 = b + c + d. (9)

In the countercurrent flow experiments, the non-wetting phase was injected at x = 0, while
the wetting phase was injected at x = L . Moreover, it was found that, when the difference in
the inlet pressures between the two flowing fluids was plotted versus saturation, the counter-
current data fell, within experimental error, on the same capillary pressure curve as did the
cocurrent data. Thus, if one subtracts Eq. (8), evaluated at x = L , from Eq. (4), evaluated at
x = 0, there results

R12 p2(0)− p1(L) = c(S) = Pc. (10)

Thus, in view of Eq. (10), Eq. (9) may be written as

R12 p2 + p1 = b + d + Pc. (11)

Taking the partial derivative of Eq. (11) with respect to x leads to

R12
∂p2

∂x
+ ∂p1

∂x
= ∂P∗

c

∂x
, (12)

where it has been assumed that the parameters b and d are independent of x , and where
the superscript * indicates that the capillary pressure gradient applies to countercurrent flow.
In the study by Bentsen (2005b), it was determined that, when two fluids are flowing in
opposite directions, the effect of capillary coupling is to reduce the magnitude of the capillary
pressure gradient by the factor αc; that is, ∂P∗

c /∂x = αc∂Pc/∂x . Hence, upon introducing
this relationship into Eq. (12), one obtains

R12
∂p2

∂x
+ ∂p1

∂x
= αc

∂Pc

∂x
. (13)

2.3 Modified Flow Equations

The introduction of Eq. (7) into Eqs. (1) and (2) yields, respectively,

v1 = −
(
λ11 + λ12

R12

)
∂p1

∂x
− λ12

R12

∂Pc

∂x
(14)

and

v2 = − (λ22 + R12λ21)
∂p2

∂x
+ λ21

∂Pc

∂x
. (15)

Based on the experimental results presented by Bentsen and Manai (1991, 1993), it can be
inferred that (Bentsen 1998b)

λi j = αi jλ
0
i , i = 1, 2, (16)

where the αi j are generalized partition coefficients for phase i, i, j = 1, 2, and where the
λ0

i , i = 1, 2 are the mobilities determined in a horizontal, steady-state, cocurrent flow exper-
iment. Note that, in view of Eq. (16), and the definition for mobility, the generalized effective
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permeabilities are proportional to the conventional effective permeabilities, the constant of
proportionality being the partition coefficients. Upon introducing Eq. (16) into Eqs. (14) and
(15), one obtains, respectively,

v1 = −λ0
1

[(
α11 + α12

R12

)
∂p1

∂x
+ α12

R12

∂Pc

∂x

]
(17)

and

v2 = −λ0
2

[
(α22 + R12α21)

∂p2

∂x
− α21

∂Pc

∂x

]
. (18)

In countercurrent flow, the pressure gradients act in opposite directions. Hence, upon intro-
ducing Eqs. (13) and (16) into Eqs. (1) and (2), one obtains, respectively,

v∗
1 = −λ0

1

[(
α11 − α12

R12

)
∂p1

∂x
+ αc

α12

R12

∂Pc

∂x

]
(19)

and

v∗
2 = −λ0

2

[
(α22 − R12α21)

∂p2

∂x
+ αcα21

∂Pc

∂x

]
. (20)

Moreover, the conventional flow equations for countercurrent flow may be written as

v∗
i = −λ∗

i
∂pi

∂x
, i = 1, 2, (21)

where the λ∗
i , i = 1, 2 are the mobilities measured in a steady-state countercurrent flow

experiment. Based on the experimental results presented by Bentsen and Manai (1991, 1993),
it is postulated that

λ∗
i = αiλ

0
i , i = 1, 2 (22)

where the αi are the capillary coupling parameters for phase i, i = 1, 2 which can be deter-
mined experimentally provided cocurrent and countercurrent mobilities have been measured.
Note that, while, in general, the αi may be functions of saturation, the experimental results
presented in Sect. 2.5.2 indicate that the αi are constants which are independent of saturation.

2.4 Determination of Partition Coefficients

On the basis of Eq. (17), it appears that the total pressure force per unit volume available to
act on a unit volume of phase 1, ∂p1/∂x, may be partitioned into two components: a phase
component, α11∂p1/∂x, and a coupling (capillary) component, α12/R12∂p1/∂x, that arises
because of the introduction of the capillary pressure equation (Eq. 7) into Eq. (1). Because
the pressure forces per unit volume, ∂p1/∂x and ∂p2/∂x, act in the same direction, the phase
and coupling components of the total pressure force per unit volume must also act in the
same direction. Similar comments also can be made with respect to Eq. (18), the equation
that determines the flux of phase 2. Moreover, the partition coefficients αi j may be viewed
(see Eqs. 27, 28) as being the fraction of the pressure force per unit volume of phase j that is
available to act on a unit volume of phase i, i, j = 1, 2.

The capillary pressure gradient, ∂Pc/∂x, under conditions of steady-state flow, is identi-
cally equal to zero. Moreover, the flux of a given phase may be defined by Kalaydjian’s flow
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equations or by the conventional flow equations. Hence, for steady-state, cocurrent flows,
Eqs. (17) and (18) may be combined with Eq. (3) to obtain

α11 + α12

R12
= 1 (23)

and

α22 + R12α21 = 1. (24)

Under conditions of steady-state, countercurrent flow, the capillary pressure gradient, ∂Pc
∂x , is

identically equal to zero. Moreover, the flux of a given phase may be defined by Kalaydjian’s
flow equations or by the conventional countercurrent flow equations. Hence, by combining
Eqs. (19) and (20) with Eq. (21), and by introducing Eq. (22) into the resulting equations, it
may be shown that, for steady-state countercurrent flow,

α11 − α12

R12
= α1 (25)

and

α22 − R12α2 = α2 (26)

To ensure that the capillary pressure gradient for countercurrent flow is consistent with that
for cocurrent flow, one more condition must be imposed. Introducing Eq. (16) into Eqs. (1)
and (2), and setting the resulting equations equal to Eq. (3), respectively, yields

α11
∂p1

∂x
+ α12

∂p2

∂x
= ∂p1

∂x
(27)

and

α21
∂p1

∂x
+ α22

∂p2

∂x
= ∂p2

∂x
. (28)

Multiplying Eq. (28) through by R12, adding the resulting equation to Eq. (27), and collecting
like terms, one obtains

R12
∂p2

∂x
+ ∂p1

∂x
= (α12 + R12α22)

∂p2

∂x
+ (α11 + R12α21)

∂p1

∂x
. (29)

Equating the coefficients of like terms yields

α11 + R12α21 = 1 (30)

and

α12 + R12α22 = R12. (31)

Note that only one of Eqs. (30) and (31) is needed; that is use of either of these two equations
leads to the same result.

Equations (23), (24), (25), (26) and either Eq. (30) or (31) comprise a system of five
equations involving six unknowns: α11, α12, α21, α22, α1, and α2. This system of equations
may be solved for five of the unknowns in terms of the sixth unknown (Bentsen 2001) to
obtain

α11 = α22 = 1 + α

2
, (32)

α12 = R12(1 − α)

2
, (33)
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and

α21 = 1 − α

2R12
, (34)

where

α1 = α2 = α. (35)

The introduction of Eqs. (32)–(34) into Eqs. (17) and (18) leads, for one-dimensional, hori-
zontal, cocurrent flow, to

v1 = −λ0
1

(
∂p1

∂x
+ 1 − α

2

∂Pc

∂x

)
(36)

and

v2 = −λ0
2

(
∂p2

∂x
− 1 − α

2R12

∂Pc

∂x

)
. (37)

Note that, if α = 1 (no interfacial coupling), and/or if ∂Pc/∂x = 0, the conventional
equations for one-dimensional, horizontal, cocurrent, two-phase flow, are obtained.

The introduction of Eqs. (32)–(34) into Eqs. (19) and (20) yields, for one-dimensional,
horizontal, countercurrent flow

v∗
1 = −λ0

1

(
α
∂p∗

1

∂x
+ αc

1 − α

2

∂Pc

∂x

)
(38)

and

v∗
2 = −λ0

2

(
α
∂p∗

2

∂x
+ αc

1 − α

2R12

∂Pc

∂x

)
. (39)

Assuming that αc = α enables Eqs. (38) and (39) to be written as

v∗
1 = −λ∗

1

(
∂p∗

1

∂x
+ 1 − α

2

∂Pc

∂x

)
(40)

and

v∗
2 = −λ∗

2

(
∂p∗

2

∂x
+ 1 − α

2R12

∂Pc

∂x

)
. (41)

where λ∗
i , i = 1, 2 is defined by Eq. (22). Again note that if α = 1 (no interfacial cou-

pling) and/or if ∂Pc/∂x = 0, the conventional equations for one-dimensional, horizontal,
countercurrent flow are obtained.

2.5 Determination of Capillary Coupling Parameter

Two methods are available for estimating the magnitude of the capillary coupling parameter
αc: a theoretical method and an experimental method.

2.5.1 Theoretical Method

By replacing the multiphase porous medium with three overlapping continua, and by under-
taking the analysis within the confines of a representative elementary volume (Bear 1972),
Bentsen (2005b) was able to show that the capillary coupling parameter is defined by

αc = 1 − φ. (42)
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Fig. 3 Countercurrent and cocurrent wetting phase relative permeabilities for dataset 1

Equation (42) was constructed (Bentsen 2005b) under the assumption that the entire pore
volume was available for fluid flow. Strictly speaking such is not the case because the portion
of the pore volume occupied by the residual oil saturation and the irreducible water saturation
is not available for the fluid flow purposes. Hence, it may be preferable to define capillary
coupling in terms of a reduced porosity, φr. Thus, it is postulated that

αcr = 1 − φr, (43)

where φr = (1 − Swi − Sor)φ.

2.5.2 Experimental Method

Implementing the experimental method for estimating the magnitude of the capillary coupling
parameter requires experimental data. Two different sets of data are available for this purpose:
the data taken by Manai (1991) and the data collected by Lelièvre (1966).

Manai’s Data Manai (1991) undertook two sets of steady-state experiments in a long (1 m),
horizontal core holder in which both cocurrent and countercurrent flow took place. In situ
measurements of saturation, and of both the wetting and the non-wetting phase pressures,
were taken along the length of the core. This data, together with the use of Darcy’s law,
enabled the determination of the relative permeability curves which pertain to both cocurrent
and countercurrent flow. A typical set of cocurrent (krw(S)) and countercurrent (k∗

rw(S
∗))

relative permeability curves, for the wetting phase, is shown in Fig. 3.

Lelièvre’s Data Lelièvre (1966) undertook a series of steady-state experiments in a long
(1.2 m) vertical core holder in which both cocurrent and countercurrent flow took place.
In situ measurements of saturation, and of the wetting phase potential gradient, were taken
along the length of the core. Knowing the densities of both flowing phases, and the potential
gradient of the wetting phase, enabled the non-wetting potential gradient to be calculated.
This data, together with the use of Darcy’s law, permitted the determination of the relative
permeability curves which pertain to both cocurrent and countercurrent flow. A summary
of the equipment, materials, and techniques used, estimated errors in the measured data,
experimental procedure, and some of Lelièvre’s results are available in the literature (Bentsen
2005a).
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Fig. 4 Cocurrent and countercurrent wetting phase relative permeabilities for dataset 3
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Fig. 5 Comparison of interpolated data with original data for countercurrent relative permeability for
dataset 1

Lelièvre (1966) used the classical form of Darcy’s law, rather than modified generalized
flow equations (Bentsen 2005a), to calculate the relative permeabilities. Consequently, a cor-
rection must be made to the experimentally determined relative permeability curves to remove
the model error incurred by failing to account properly for the effect of interfacial coupling on
the total driving force acting on the flowing phases. Equations constructed by Bentsen (2005a)
were used to correct the relative permeability curves measured by Lelièvre (1966). A typical
set of corrected wetting phase cocurrent relative permeability curves is shown in Fig. 4.

Experimental Procedure Based on Eq. (22), the countercurrent curve in Fig. 3 (or in Fig.
4) should be proportional to the cocurrent curve, the constant of proportionality being α1.

Because the experimental points for the two curves were not measured at the same saturation,
linear interpolation was used to obtain estimates of data points on the countercurrent curve
which pertained to the same saturation as those on the cocurrent curve. A comparison of the
interpolated data points (k∗

rwin(S)) on the countercurrent curve with those measured (k∗
rw(S))

is depicted in Fig. 5.
A trial value for α1 was now estimated. Then each of the interpolated data points was

divided by α1 and the result subtracted from the appropriate cocurrent data point. Finally,
these differences were squared and then summed over the number of data points on the curve.
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Fig. 6 Comparison of cocurrent relative permeability and countercurrent relative permeability divided by α1

Table 1 Summary of parameters

aEstimated

Parameter Dataset 1 Dataset 2 Dataset 3

K, darcies 20.5 20.4 230

Swi 0.09 0.095 0.0

(Sor)co 0.18 0.175 0.051

(Sor)cn 0.18a 0.175a 0.03a

φ 0.358 0.3536 0.43

α1 0.734 0.706 0.569

α2 0.753 0.756 0.611

αc 0.642 0.646 0.57

(αcr)co 0.739 0.742 0.592

(αcr)cn 0.739 0.742 0.583

δr1, % 0.68 4.85 2.4

δr2, % −1.89 −1.89 −4.8

Successive values for α1 were selected until the value of α1 which minimized the sum of
squares was found. This was deemed to be the best estimate for α1. A comparison of krw(S)
and k∗

rw(S
∗)/α1 is shown in Fig. 6. The same procedure was used to estimate αi , i = 1, 2,

for the remaining three datasets measured by Manai (1991), and for the dataset (Dataset
3) measured by Lelièvre. A summary of the results obtained is presented in Table 1. Also
presented in Table 1 are the calculated values for αc and αcr, together with the basic data
needed to calculate these parameters. It is important to note that, while the magnitude of the
αi varied slightly from experiment to experiment, the experimental evidence does not support
the idea that the capillary coupling parameter may be a function of saturation. In addition
the absolute permeabilities of the cores used in the three sets of experiments are reported in
Table 1. Moreover, the relative difference, δri , i = 1, 2, is reported in the table. The relative
difference is defined by

δri = αcr − αi

αcr
100 (44)
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3 Discussion

3.1 Capillary Pressure

In this study, the capillary pressure equations for both cocurrent and countercurrent flow were
constructed on the basis of the linear plots of pressure versus distance measured by Manai.
While Eq. (7) is consistent with the cocurrent, capillary pressure gradient equation used in
earlier studies (Bentsen 1992, 1994, 1997, 1998a), Eq. (13), the capillary pressure gradient
equation for horizontal, countercurrent flow, differs from the equation used in earlier studies
(Bentsen 1995, 2005b). This is because the earlier equation did not take proper account of the
fact that interfacial coupling acts to decrease the magnitude of the capillary pressure driving
force. It is important to note that Eq. (13) applies only to linear, horizontal, countercurrent
flow, and not to gravity driven countercurrent flow. In vertical, gravity driven countercurrent
flow, the driving forces are the potential gradients. As a consequence, in vertical, gravity
driven, countercurrent flow it is the potential gradients that are opposite in sign, while the
pressure gradients are not. Rather, a version of Eq. (7), derived using potential gradients, rather
than pressure gradients (Bentsen 2003), should be used for gravity driven countercurrent
flow.

3.2 Modified Flow Equations

Note that, while the capillary pressure terms in Eqs. (36) and (37) are similar to those
constructed in an earlier study (Bentsen 2001), those in Eqs. (38) and (39) are not. There are
two reasons for this. First, the form of the capillary pressure gradient equation used in the
earlier study was incorrect. Second, proper account was not taken, in the earlier study, of the
fact that capillary coupling acts to decrease the magnitude of the capillary pressure driving
force when countercurrent flow is taking place. Moreover, if the equations constructed in
another earlier study for vertical, cocurrent flow (Bentsen 2005b) are simplified, so that they
pertain to horizontal, cocurrent flow, they are also consistent with Eqs. (36) and (37). However,
when the countercurrent forms of these equations are simplified, they are inconsistent with
Eqs. (38) and (39). In particular, the sign preceding the capillary pressure gradient term in the
phase two equations differs. This is because, in the vertical, countercurrent flow study, where
the potential gradients were opposite in sign, the capillary pressure gradient was defined by
Eq. (7), while in the horizontal, countercurrent flow study; the capillary pressure gradient
was defined using Eq. (13). That is, one needs to be careful, when simplifying a vertical flow
equation to obtain a horizontal flow equation, if the introduction of error is to be avoided.

3.3 Capillary Coupling

3.3.1 Theoretical Method

In order to be able to estimate the magnitude of the capillary coupling parameter, it is con-
venient to suppose that it is permissible to replace a multiphase porous medium by three
overlapping continua, where each continuum is taken to represent one phase (solid, wetting,
and non-wetting phase) that fills the entire porous medium domain. Suppose, also, that at
every point in space, one may assign the properties (whether of the medium or of the fluids
filling the void space) of any of the continua. Finally suppose that interactions may take place
between any two of the continua. The taking of such an approach enables one to estimate an
average (or effective) potential for each fluid phase (Bentsen 2005b).
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To estimate the average potential for each phase, it is convenient to make use of a rep-
resentative elementary volume (Bear 1972). Note that, while the size of the REV used here
is consistent with the size of a standard REV, the way the fluids are distributed within the
REV is nonstandard. When a standard REV is used to construct a continuum, it is supposed
the relative amounts of fluids contained within the REV depend on the saturations of the
saturating fluids. Because we are not constructing a continuum, but rather a defining equa-
tion for the magnitude of the capillary coupling parameters, αi , i = 1, 2, it is supposed
that the fractional amounts of wetting and non-wetting fluid contained within the REV do
not depend on saturation, but rather on the number of fluids contained within the pore space
of the REV. It is supposed that the REV may be portioned into solid and fluid portions
and that the fluid portion of the REV may be partitioned into wetting and non-wetting por-
tions. As energy is an additive property, it is possible to add together the energy stored in
each portion of the REV, and then divide by the bulk volume of the REV to arrive at an
estimate of the average (or effective) energy per unit volume available to drive a particular
phase.

When these ideas were first formulated, it was supposed that the entire void space was
available for the flow of the two fluids. However, in reality, while the two fluids fill the entire
void space, because of the presence of an irreducible wetting phase saturation and a residual
non-wetting phase saturation, only a fraction of the total void space is available for the flow
of the two fluids. That is to say, it seems preferable to define the capillary coupling parameter
in terms of a reduced porosity, rather than in terms of the actual porosity.

As noted above, the total energy per unit volume available to act on a volume element
of a given phase, say phase 1, can be partitioned into three parts: the fraction (1 − φr) of
the energy per unit volume stored in the immobile (solid phase + irreducible and residual
saturations) portion of the REV; the fraction (φr/2) of the energy per unit volume stored in
the phase 1 portion of the REV; and the fraction (φr/2) of the energy per unit volume stored
in the phase 2 portion of the REV. Note that, for reasons of symmetry, it is desirable that the
amount of energy available to drive phase 1 that is stored in phase 2 is equal to the amount
of energy available to drive phase 2 that is stored in phase 1. This was achieved by making
the volumes of wetting and non-wetting fluid equal. The driving force per unit volume for
phase 1 can be found by taking the partial derivative of the total energy per unit volume
with respect to x . Because the total energy per unit volume has been portioned into three
parts, the magnitude of the driving force (a vector) can also be portioned into three parts. In
cocurrent flow, where the two pressure gradients are acting in the same direction, the three
fractions of the driving force per unit volume sum to one, indicating that, for such flow, the
average (or effective) pressure gradient is equal to the imposed pressure gradient. However,
in countercurrent flow, where the two pressure gradients are acting in opposite directions,
the two-phase fractions of the driving force per unit volume (φr/2) are equal in magnitude
and opposite in sign. Consequently, the three fractions of the driving force per unit volume
sum to 1 − φr . That is, for such flow, the average (or effective) driving force per unit volume
for phase 1 is reduced by the factor 1 − φr . Similar comments can be made with respect
to the phase 2 pressure gradient. Note that, as can be seen in Table 1, the use of a reduced
porosity, φr , to predict the magnitude of the capillary coupling parameter, results in much
better agreement between the experimental and predicted estimates of the magnitude of the
capillary coupling parameter.

The reduction in the magnitude of the driving force per unit volume, by the factor 1 −φr ,
provides a plausible explanation as to why, in countercurrent flow, the measured relative per-
meabilities for countercurrent flow are less than those measured for cocurrent flow (Lelièvre
1966; Bourbiaux and Kalaydjian 1990; Bentsen and Manai 1991, 1993). Hence, as sug-
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gested by Eqs. (31) and (32), conventional relative permeability curves should be able to
be used to predict countercurrent flow, provided the proper flow equations are used in the
prediction.

3.3.2 Experimental Method

Manai’s Data Three sources of error contribute to the differences between the experimen-
tally determined and the predicted estimates of the magnitude of the capillary coupling
parameter: those arising in the original experiments undertaken by Manai (1991) to deter-
mine experimentally the relative permeability curves, and those that arise as a consequence
of the procedures used to estimate αi , i = 1, 2. It is important to note that in order to deter-
mine the magnitude of the capillary coupling parameter, two distinct experiments must be
conducted, one to determine the cocurrent relative permeability curves, and one to deter-
mine the countercurrent relative permeability curves. Ideally, the properties of the core and
fluids used in these two experiments should be identical. Practically, for experimental rea-
sons, such a goal is very difficult to achieve. In order to ensure that the cores were as close
to being the same as possible, the same unconsolidated core and fluids were used for each
set of experiments. Moreover, the same irreducible saturation to the wetting phase was put
in place at the beginning of each experiment. However, while it was possible to measure
directly the end-point permeabilities in the cocurrent flow experiments, these permeabili-
ties were not measured in the countercurrent experiments. Consequently, it is not known
whether the residual saturations to the non-wetting phase were the same in the cocurrent
and countercurrent experiments. Moreover, it has been observed that over time the wetting
characteristics of a core can change. That is, as time goes on the initially water-wet sur-
faces in the core can become less water-wet because of hydrophobic material transferring
from the oil in the core to the sand surfaces. Because the countercurrent flow experiments
were conducted after the cocurrent flow experiments, such changes may have resulted in
slightly different cores being used in the two experiments. Consequently, for these and pos-
sibly other reasons the cores in the cocurrent flow and countercurrent flow experiments were
likely not identical. This is thought to be one of the major reasons underlying the differences
in magnitude of the experimentally determined capillary coupling parameters reported in
Table 1.

Another experimental source of error is the accuracy of the pressures upon which the
estimated values of relative permeability are based. It was noticed that the accuracy of the
pressure transducers used to measure pressure degraded over time because of changes in
the wetting characteristics of the fritted disks through which the pressures were measured.
This was a much more serious problem for the wetting phase pressures than it was for the
non-wetting phase pressures. Because the pressure in the non-wetting phase is higher than
that in the wetting phase, it is unlikely that wetting phase can pass through the non-wetting
fritted disk to compromise the accuracy of the non-wetting pressure measurements. Here it
is only necessary that the fritted disk have a high permeability so that, when the pressure
changes, a new equilibrium pressure is achieved rapidly. With respect to the transducers
sampling the wetting phase pressure, obtaining accurate pressures is much more difficult.
This is because the fritted disks through which the pressures are measured must meet two
criteria. First, in order that the transducer can respond quickly to a change in pressure, the
fritted disk must have a high permeability, as was the case for the non-wetting fritted disks.
However, because the pressure is higher in the non-wetting phase than it is in the wetting
phase, the fritted disk must also have a high displacement pressure, if the passing of non-
wetting fluid through the fritted disk, thus compromising the accuracy of the measurement, is
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to be avoided. A high displacement pressure implies a low porosity, while a high permeability
implies a high porosity. The finding of water-wet fritted disks which satisfy both requirements
has proven to be a very difficult problem, which has never been completely solved. In the
steady-state experiments conducted by Manai (1991), it took about half a day to reach steady-
state, after a change in rate took place. Consequently, the requirement that the pressure
transducer be able react quickly to a change in pressure is less critical than would be the case
for unsteady-state flow. Nevertheless, it is thought that the difficulty in obtaining accurate
wetting phase pressures is the likely explanation as to why there is much more variability
in the experimentally determined values (see Table 1) for α1 as compared to those obtained
for α2.

The second source of error arises out of the techniques used to estimate the capillary
coupling parameter. As can be seen in Fig. 3 it was not experimentally feasible to measure
the cocurrent and countercurrent relative permeabilities at the same saturation. Consequently,
linear interpolation was used to estimate countercurrent permeabilities at saturations which
corresponded to those on the cocurrent curve. The amount of error introduced into the analysis
because of the use of linear interpolation depends on the amount of scatter in the data points,
and upon the distance in saturation between the data points used for the interpolation. A
further difficulty arose because no data were available for extrapolation purposes in the
region beyond the last measured data point. As can be seen in Fig. 5, use of interpolation
to estimate data points on the countercurrent curve does not appear to have been a major
contributor to differences between the predicted and experimentally determined estimates of
the magnitude of α.

The third source of error arises because, when experimentally determining the effective
permeabilities, it was assumed that the flow equations were linear, which they are not. In
the experiments conducted by Manai, water-wet and oil-wet fritted porous plates were used
at the inlet and outlet ends of the core holder to ensure even distribution of fluids across
the entire inlet section of the core and to keep the production of oil and water separate at
the outlet end of the core. Because, in the countercurrent flow experiments, each end of the
core holder acts as both the inlet and the outlet, the use of such porous plates was critical to
the successful determination of the countercurrent relative permeabilities. Moreover, since it
was necessary not only to keep the pressure measurement errors as small as possible but also
to avoid exceeding the displacement pressure of the porous plates, all of the displacements
were conducted, as closely as possible, at the same pressure drop across the core, the pressure
drop used being just below the displacement pressure. As a consequence, each of the different
values of relative permeability measured was obtained at a different value of velocity, rather
than at the same velocity, as should have been the case. In as much as the same procedure was
used to measure both the steady-state cocurrent and countercurrent relative permeabilities,
approximately the same amount of error should have been introduced at each data point on
each curve. As a consequence, the non-wetting relative permeability curves were found to be
proportional to the wetting phase relative permeability curves, the proportionality constant
being the capillary coupling parameter.

Lelièvre’s Data Again three sources of error contribute to the differences between the exper-
imentally determined and predicted estimates of the magnitude of the capillary coupling
parameter: errors arising in the original experiments undertaken by Lelièvre (1966) to deter-
mine the relative permeability curves, and errors arising out of the techniques used to estimate
α1 and α2. Moreover, issues arising out of the need to conduct two distinct experiments in
identical cores are similar to those discussed with respect to the experiments conducted by
Manai (1991). For higher rates of flow, the relative error incurred in estimating the volumetric
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rates of flow was less, in Lelièvre’s (1966) experiments, than 1 %. However, for very small
rates of flow, the error could be as high as 10 %.

The potential gradients were determined by measuring the piezometric heights in a series
of manometers. For non-wetting saturations up to 70 %, the relative error in the measurement
of the gradient was of the order of 2 %. For non-wetting saturations ranging from 70 to 90 %,
some of the potentials were perturbed. Usually, however, there remained a sufficient number of
unperturbed potentials to determine the potential gradient of the wetting phase. No estimate
of the error incurred in determining the potential gradient was provided for this range of
saturations. In Lelièvre’s steady-state experiments, it took about 12 h to reach stabilization,
subsequent to a change in flow rate. Moreover, because the non-wetting potential gradients
in Lelièvre’s (1966) experiments (∼ 10,000 Pa/m) were about one quarter of the non-wetting
pressure gradients (∼ 40,000 Pa/m) in Manai’s (1991) experiments, maintaining the integrity
of the wetting phase semi-permeable disks was likely easier in the Lelièvre experiments.

The non-wetting saturation was deduced from the attenuation in light flux that took place
as a monochromatic beam of light passed through the core. The relative error in the mea-
surement of the non-wetting saturation was estimated to be of the order of 5 %. No esti-
mate of the residual saturation to the non-wetting phase was available for the countercurrent
run.

As before, a second source of error arises out of the methods used to determine the capillary
coupling parameter. The amount of error introduced into the analysis because of the use of
linear interpolation depends upon the amount of scatter in the data points, and upon the
distance in saturation between the data points used for the interpolation. As can be seen by
comparing Fig. 3 with Fig. 4 there was somewhat more scatter in the Lelièvre data (Fig. 4)
as compared to the Manai data (Fig. 3). This was particularly the case for the non-wetting
countercurrent flow data. This provides a possible explanation for why the relative error is
larger for α2 as compared to α1 in Dataset 3 in Table 1.

As was the case in Manai’s experiments, Lelièvre (1966), when determining his relative
permeability curves, assumed the flow equations were linear, which they are not. Because the
same procedure was followed when determining the cocurrent and countercurrent relative
permeability curves, it is again expected that approximately the same amount of error was
introduced at each data point on the two curves. Consequently, the non-wetting and wet-
ting curves were again found to be proportional, the constant of proportionality being the
capillarity coupling parameter.

It is of interest to know whether the functions k∗
rw(S) and k∗

rwin(S) are the same. To
determine whether such is the case, two approaches may be taken. First, one can plot the two
sets of data and visually determine whether they are the same (see Fig. 6). However, such
an approach is subjective in nature, and depends on the opinion of the analyst. Moreover,
it becomes increasingly unreliable as the amount of scatter in the data increases. Second,
one can undertake a statistical analysis of the data to decide whether the two curves are
the same. Such an approach is objective in nature, and does not depend on the opinion of
the analyst. In addition, it provides a quantitative estimate of the degree to which one is
justified in saying that the two datasets fall on the same curve. As a consequence, because the
authors believe the second approach is a superior way for ascertaining whether two datasets
fall on the same curve, a statistical analysis was used to decide whether the two functions
were the same. The first step in such an analysis is the demonstration that the population
correlation coefficients for the two relative permeability curves differ from zero. Because the
mean (μ) and standard deviation (σ ) for the relative permeability data was unknown, and
because of the small number of data points for each curve, Student’s t test was used to show
that, at the 0.05 level, the population coefficients of correlation for the relative permeability
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curves were different from zero. The next step is to test the hypothesis that the correlation
coefficients obtained from the two relative permeability datasets are the same. Because these
coefficients differed from zero, the sampling distributions of the correlation coefficient r for
the two curves are skewed, and use must be made of Fischer’s z transformation, when testing
whether the two sample correlation coefficients differ significantly from each other. First,
each correlation coefficient is converted into a z score using Fischer’s r-to-z transformation.
Then these z scores were combined, making use of the sample sizes for each curve, to obtain
the z statistic. Using the z statistic, it was found that, at the 0.05 level, there was no significant
difference between the sample correlation coefficients for k∗

rw(S) and k∗
rwin(S). In view of

the fact that the sample correlation coefficients, at the 0.05 level, did not differ significantly,
it can be inferred that k∗

rw(S) and k∗
rwin(S) are the same function. Similar statistical analyses

were used to show that krw(S) and k∗
rw(S

∗)/α1(see Fig. 5) are the same function.
The question now arises as to whether the capillary coupling parameters, α1 and α2 are

equal to each other (that is equal to α), and whether α = αcr. In an attempt to answer
this question, a statistical analysis, similar to that described in the previous paragraph, was
carried out for all of the remaining datasets. In each case the cocurrent relative permeability
curve, and the countercurrent relative permeability curve divided by the appropriate value
of α, was found to be the same function. Because the relative differences between αcr and
α1 (or α2) are all less than 5 % (see Table 1), and because the cocurrent relative curves
and the countercurrent relative permeability curves divided by the appropriate value of α
all appear to be the same function, it appears to be reasonable to suppose that differences
between the experimental and theoretical estimates of α arise, not because of problems with
the assumptions underlying Eqs. (26) and (34), but rather because of experimental errors
in the basic data used to determine the relative permeability curves, and because of error
introduced when using linear interpolation to estimate the data points needed to compare, at
the same saturation, the countercurrent curves with the cocurrent curves. That is it appears
to be reasonable to suppose that α1 = α2 = αcr, and that, as a consequence, one can avoid
the difficult problems of experimentally determining the magnitude of the capillary coupling
parameter by making use of Eq. (43) to predict its magnitude.

4 Concluding Remarks

In this article, a partitioning concept developed in an earlier article (Bentsen 1998b) was
introduced into Kalaydjian’s flow equations (Kalaydjian 1987) to construct modified flow
equations for linear, horizontal, two-phase cocurrent, and countercurrent flow through an
isotropic, homogeneous porous medium. In constructing these equations, a more appropriate,
experimentally based, capillary pressure gradient equation for countercurrent flow was used
rather than the one that had been used in an earlier study (Bentsen 2001). With the aid
of these equations, it is shown that the reduced flux observed in countercurrent flow, as
compared to cocurrent flow, can be explained by the reduction in the driving force per unit
volume brought about by capillary coupling. Moreover, it is demonstrated experimentally
that, because the fluids flow through a void space reduced in magnitude because of the
presence of immobile irreducible and residual saturations, the capillary coupling parameter
should to be defined in terms of a reduced porosity, rather than in terms of the porosity as
was done in an earlier study (Bentsen 2005b). In addition, it is demonstrated statistically
that the countercurrent relative permeability curves are proportional to the cocurrent relative
permeability curves, the constant of proportionally being the capillary coupling parameter.
Finally, it is argued that one can avoid the undertaking of difficult to design and undertake
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countercurrent flow experiments to obtain countercurrent relative permeability curves by
making use of an equation constructed for predicting the magnitude of the capillary coupling
parameter.
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