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Abstract Using an analogy to the classical Stefan problem, we construct evolution equations
for the fluid pore pressure on both sides of a propagating stress-induced damage front. Closed
form expressions are derived for the position of the damage front as a function of time for
the cases of thermally-induced damage as well as damage induced by over-pressure. We
derive expressions for the flow rate during constant pressure fluid injection from the surface
corresponding to a spherically shaped subsurface damage front. Finally, our model results
suggest an interpretation of field data obtained during constant pressure fluid injection over
the course of 16 days at an injection site near Desert Peak, NV.

Keywords Permeability enhancement · Subsurface fracturing · Injection flow rate ·
Analytic fluid flow · Damage front

1 Introduction

The formation and propagation of subsurface stress-induced damage zones is of great prac-
tical interest for oil extraction, geothermal energy, and CO2 sequestration (e.g., Dusseault
2011; Kohl et al. 1995; Rutqvist and Stephansson 2003; Yow and Hunt 2002). For all three
applications, it is desirable to understand how human activities may affect permeability in
the subsurface. In order to achieve this goal, it is important to understand a complex array of
interrelated factors including local geological features, the in situ stress state, and which of
several modes of stress-induced failure are most likely to dominate in a given scenario.
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18 K. C. Lewis et al.

Two commonly employed mechanical failure criteria are the tensile and Mohr–Coulomb
criteria. The type of rock failure likely to occur is governed by the conditions of in situ stress
and the pressure of the fluid being injected. If the injection pressure is high enough to exceed
the minimum principle in situ stress, a tensile “hydraulic fracture” is created. Walls of the
fracture are pushed open by the fluid pressure creating a high permeability pathway through
which the injected fluid can flow along the hydraulic fracture. The permeability of such an
open fracture is commonly represented by a cubic law, where the permeability at any point
in the fracture varies as the cube of the local fracture aperture and an empirically determined
friction factor. Published results (Lee and Cho 2002) show that the aperture, and hence the
permeability, of such a hydraulic fracture varies smoothly over the majority of the fracture
length, dropping sharply to a very small value near the crack tip. For examples of analytic
studies of tensile fracture propagation, see Geertsma and de Klerk (1969), Gordeyev and
Zazovsky (1992), and Wijesinghe (1986).

Rock failure can also occur at fluid pressures below the minimum principle earth stress
through the mechanism of shearing. Such failure is often described using the Mohr–Coulomb
criterion (for more detail, see Jaeger et al. 2007). The determining quantity in this case is
the relative magnitude of the shear stress and the effective normal stress in the rock. The
effective normal stress decreases as the fluid pressure increases. When the rock fails in shear,
the fractures can dilate but do not display large aperture widening as in the case of hydraulic
fractures, although a significant increase in permeability does take place in the plane of failure
(Lockner et al. 2009; Mitchell and Faulkner 2012). The situation is more complex than that
of a fracture open in tension, and there are no simple analytical expressions relating fracture
geometry to permeability that are widely applicable. Published results (Lee and Cho 2002)
show an increase in permeability by factors up to 100 or so under shear failure.

1.1 Main Contributions

A complete analysis of the problem requires solving the coupled nonlinear equations of
fluid flow, heat transfer, and mechanical deformation of the rock mass, necessitating the
use of numerical models. However, useful insight into the behavior of the system can be
obtained using simplified conceptual models that allow the system of governing equations
to be decoupled. We solve the fluid flow problem, while incorporating the influence of the
mechanical deformation and rock failure aspects implicitly through a prescribed step change
in the permeability, with a low permeability for rock in an undamaged state and a higher
permeability for rock that is in a fully damaged state. That is, we conceptualize the system as
comprised of two zones—a zone containing the rock at pre-failure conditions and a second
zone with post-failure conditions in the rock. Simplification is introduced by treating rock
permeability and porosity as constant within each zone, with an abrupt change in the transition
zone, which we approximate as infinitely thin. Furthermore, we take the ratio of the post-
failure to pre-failure permeability to be an empirically determined constant. We study two
modes of failure. In the first, rock failure is driven by high fluid pressure, with a fixed
specified pressure above which rock failure occurs and below which no damage occurs. We
take this threshold pressure to be constant, which assumes an isothermal environment as well
as an approximately uniform initial stress field. In the second case, rock failure is driven
thermally due to a large temperature difference between fluid and the surrounding medium
(see, e.g., Aharonov and Anders 2006; Voight and Elsworth 1997). While in this case there is
no assumed threshold pressure, our analysis does assume that differences in stress between
one side of a propagating damage front and the other are approximately constant in time as
the front propagates.
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A Model for Tracking Fronts of Stress-Induced Permeability Enhancement 19

Using these assumptions we derive approximate expressions for the position of the inter-
face between damaged and undamaged regions during failure of a porous matrix induced by
fluid injection. Afterward, we show how to relate these expressions to the mass flow rate dur-
ing constant pressure injection, which is a commonly employed observable quantity. Finally,
we show how our model leads to one plausible interpretation of flow rate data obtained during
constant pressure injection at a site near Desert Peak, Nevada. The following are the main
contributions of this paper:

(1) The model we present can be used to predict the position of the damage front without
explicitly solving the coupled equations governing stress and fluid flow.

(2) The model relates subsurface damage to mass flow rates during constant pressure fluid
injection.

(3) The model includes no assumption regarding whether failure occurs as a result of tension
or shear.

(4) The model is a new application of the Stefan-type solution method.

1.2 Outline

In Sect. 2.1 we first draw an analogy with the Stefan problem and present the governing
equations. Then we present an analytical expression for the position of, and pore pressures on
either side of, a vertical damage front; we then derive an approximate closed-form expression
for the position of the front in Sect. 2.4. Next, in Sect. 2.5, we show that the effect of gravity
is small for sufficiently small times. We then adapt our model to calculate the approximate
damage front position in the case of thermally driven failure. Expressions for flow rates
under constant pressure injection for spherical damage front geometry are derived in Sect. 3
followed by comparison of the closed-form solutions from our model with the field data from
Desert Peak, Nevada in Sect. 4.

2 Analytical Model

2.1 Analogy with the Stefan Problem

Consider a semi-infinite horizontal slab of fully saturated porous material with a high pore
pressure, pH, maintained at the left end and such that, at all times, the pressure approaches a
much lower pressure pL as x approaches infinity. The initial pressure is pL everywhere, and
material properties are initially uniform. Following the discussion of last section, we assume
that there is a sharp boundary separating damaged and undamaged material. At times t > 0 a
damage front will travel in the positive x direction, and all positions to the left of the front will
be in the “damage” zone. On the other hand, all points to right of this point will have their initial
permeabilities and porosities. The permeability is clearly a function of pressure, being a higher
value on the left side of the damage front than on the right side; this pressure dependence
causes the mass balance equation (see below) to become nonlinear. However, the constancy
of material properties on either side of the damage front motivates the idea of splitting the
solution domain into two halves, solving linear mass balance equations on each half, and
pasting the resulting solutions together at the damage front. This situation is exactly analogous
to that in the classical Stefan problem (see Carslaw and Jaeger 1959; Rubinstein 1971).

In one version of the classical Stefan problem, the half plane corresponding to x ≤ 0
is filled with ice while that corresponding to x > 0 is filled with liquid water. As time
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progresses, an ice front propagates toward positive values of x as the ice phase removes
heat from the liquid. The problem is to solve for both the temperature as a function of time
and space for all x > 0 and the position of the ice-water interface as a function of time.
Mathematical problems of a similar type arise in the study of systems that have moving
boundaries separating regions with distinct physical properties (for many such examples, see
Rubinstein 1971).

2.2 Governing Equation

On each side of the damage front the permeability and porosity are taken as constants, but
such that each displays a discrete jump in crossing from one side of the front to the other.
The fluid on each side of the damage front therefore obeys a mass conservation equation

∂(ρφi )

∂t
+ ∇ · (ρvi ) = 0, (2.1)

where ρ is the fluid density, φ is the porosity, v is the volumetric flux, and the subscript
i = 1, 2, represents the damaged or undamaged side of the front. The volumetric flux is
given by Darcy’s law

vi = −ki

μ
(∇ pi + ρg∇z) , (2.2)

where k is the permeability, μ is the dynamic viscosity, p is the pressure, g is the gravitational
acceleration, and z is the vertical coordinate taken as positive upward. We include variations
in the fluid density only in the unsteady term and neglect the gradient of the fluid density
(see the Appendix for a detailed justification of this assumption). On each side of the front,
the porosity and the density are related to the pressure via

φi = φi0 + α(pi − p0), (2.3)

and

ρ = ρ0[1 + β(pi − p0)], (2.4)

where α is a constant, β is the fluid compressibility, and the subscript zero refers to initial
values. The reasoning leading to (2.3) can be found in Lewis et al. (2012). The increase in
φ in crossing from the undamaged to the damaged side of the front is assumed constant and
equal to �φ ≡ φ1 − φ2. Combining (2.1) through (2.4), we obtain

∂pi

∂t
− ai∇2 pi = 0, (2.5)

where

ai ≡ ki

μ(φiβ + α)
≡ ki

μγi
, (2.6)

and where γi is the total compressibility (liquid plus porous medium) in region i . We impose
the boundary conditions

p1(r = 0, t) = pH,

p2(r → ∞, t) = pL,

p1(r = R, t) = p2(r = R, t) = pD,

(2.7)
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A Model for Tracking Fronts of Stress-Induced Permeability Enhancement 21

Fig. 1 Representation of the mass balance condition (2.8). The mass of fluid flowing toward the damage front
from the side of the damaged material equals the mass of fluid flowing away from the front into the undamaged
material, plus the fluid taken up due to an increase in porosity as the front traverses a volume �V in time �t

where R(t) is the position of the damage zone at time t, p2(r → ∞, t) is an abbreviation for
the value of p2 as |r| approaches infinity, and pD is defined as the pore pressure at the damage
front. For uniqueness of the solution, one more boundary condition must be imposed at the
damage front. Over an increment of time, the fluid mass into the interior (damaged) side of
the damage front must equal that out of the exterior (undamaged) side minus the amount of
fluid taken up by an increase in pore volume due to progression of the front. Requiring mass
conservation across an element of area A of damage front over a time �t thus yields the
boundary condition

A�tρv

∣
∣
∣
∣
r=R−

· n̂ = A�tρv

∣
∣
∣
∣
r=R+

· n̂ + ρ�φ�V, (2.8)

where �V is the total volume traversed by the front over �t, �φ ≡ φ1 − φ2 > 0, and n̂ is
the unit normal to A (see Fig. 1). In (2.8) we have neglected variations in fluid density due
to progression of the damage front; this we justify in Sect. (4.2). Substituting (2.2) into (2.8)
gives the final boundary condition as

k1 (∇ p1 + ρg∇z) · n̂ = k2 (∇ p2 + ρg∇z) · n̂ − μ�φ
1

A

dV

dt
. (2.9)

2.3 Solution for a Vertical Planar Damage Front

If the damage front is assumed to be a vertical plane, and if the fluid flux parallel to the plane
of the front is negligible compared to the flux normal to the plane of damage, then (2.5)
becomes

∂pi

∂t
− ai

∂2 pi

∂x2 = 0, (2.10)

and Eq. (2.9) becomes

k1
∂p1

∂x

∣
∣
∣
∣
x=X

= k2
∂p2

∂x

∣
∣
∣
∣
x=X

− μ�φ
dX

dt
, (2.11)

where the damage front is located at x = X . The partial differential equation plus boundary
and initial conditions given above can be solved exactly as in Carslaw and Jaeger (1959,
p. 285), with the substitutions p �→ v, pH �→ 0, pD �→ T1, pL �→ V, a �→ κ, k �→ K ,
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and μ�φ �→ Lρ; however, for the convenience of the reader we now briefly recapitulate the
argument leading to a solution.

Scale analysis suggests that the solution to (2.10) depends only on the dimensionless
combination x/

√
ai t (see Barenblatt 1996). Substituting p as a function of x/

√
ai t into

(2.10) results in an ordinary differential equation that can be easily integrated to give the
solution

pi (x, t) = 2Ci√
π

x/
√

t∫

0

e−ζ 2/4ai dζ + Di = Ci erf

(
x

2
√

ai t

)

+ Di , (2.12)

where erf is the error function, defined as

erf(x) ≡ 2√
π

x∫

0

e−z2
dz. (2.13)

The first two boundary conditions from (2.7) yield

D1 = pH,

D2 = pL − C2,
(2.14)

so that it only remains to find the constants C1 and C2. The third of Eq. (2.7) yields

C1erf

(
X

2
√

a1t

)

+ pH = C2

[

erf

(
X

2
√

a2t

)

− 1

]

+ pL = pD. (2.15)

The first and middle expressions can only be equal to the constant on the right if X = λ
√

t
for some constant λ. Substituting this expression for X into (2.15) allows one to solve for
both C1 and C2 as functions of the undetermined constant λ. Application of condition (2.11)
then results in the equation

k1C1(λ)e
−λ2
4a1√

a1
= k2C2(λ)e

−λ2
4a2√

a2
− μ�φλ

√
π

2
, (2.16)

which determines λ implicitly. In general, Eq. (2.16) can be solved for λ only numerically in
combination with the constraints on C1 and C2 from Eq. (2.15); however, in the next section
we show how to obtain an approximate closed-form expression for X = λ

√
t .

2.4 Approximate Expression for the Damage Front Position

In the absence of any damage, i.e., a1 = a2 ≡ a, the effect of the high pressure at x = 0
is governed by (2.10) and will travel a distance L in time t given approximately by the
characteristic diffusive length scale

L = √
at . (2.17)

In fact, the form of this length scale does not depend on the problem geometry—it depends
only on the fact that the relevant process is one of diffusion (Barenblatt 1996; Carslaw and
Jaeger 1959). In the case of a propagating damage front, the pressure at the x = 0 boundary
has influenced that at the damage front, by definition, enough to raise the pressure there to
pD. Furthermore, the speed at which an effect from the high pressure boundary can propagate
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Fig. 2 Representative pressure profiles calculated from (2.12) using μ = 10−4 Pa s, �φ = 0.01, γ =
10−10 Pa−1, k1 = 10−13 m2, k2 = 10−14 m2, pH = 10 MPa, pL = 5 MPa, and pD = 7 MPa. The profiles
correspond to times of 1, 2, . . . , 10 days. Red dashed lines indicate the distance of the damage front from
the injection well. Green dashed lines show the approximate pressures used to estimate the derivative of the
pressure directly adjacent to the damage front on each side. These lines lie directly on the top of the exact
solution in the zone of failed material

is limited by the lower permeability of the undamaged region as well as by increased fluid
storage due to the porosity increase upon damage. Therefore, the diffusive time scale for
region one is short compared to that governing the movement of the damage front; this fact
implies that the pressure in region one at all times assumes approximately a linear steady-state
profile with gradient

∂p1

∂x
≈ pD − pH

X
≡ −�p1

X
. (2.18)

This approximation improves as pD approaches pH. In region two, the pressure effect from the
damage front propagates to roughly the distance

√
a2t in time t . Therefore, an approximation

similar to (2.18), using the distance
√

a2t instead of X , can be used to estimate ∂p2/∂x ; the
approximate pressure gradient in region two is given as

∂p2

∂x
≈ pL − pD√

a2t
≡ − �p2√

a2t
. (2.19)

See Fig. 2 for a comparison between (2.18) and (2.19) and the exact solution slopes given by
(2.12). Putting (2.18) and (2.19) into (2.11) leads to

k1�p1

X
= k2�p2√

a2t
+ μ�φ

dX

dt
. (2.20)

We search for a solution of the form X = λtn for some undetermined n. Putting this expression
into (2.20) yields

k1�p1

λ
t−n − k2�p2√

a2
t−1/2 − μ�φλntn−1 = 0. (2.21)

123



24 K. C. Lewis et al.

Table 1 Comparison of closed form and numerical values of λ

k1(m2) k2(m2) φ1 φ2 Closed form
λ (ms−1/2)

Numerical
λ (ms−1/2)

Rel. error %

10−12 10−14 0.101 0.1 2.116 2.109 0.3

10−12 10−14 0.2 0.1 0.213 0.213 2 × 10−2

10−13 10−14 0.1001 0.1 1.979 1.929 2.6

10−13 10−14 0.3 0.1 4.759 × 10−2 4.763 × 10−2 6.8 × 10−2

10−14 10−16 0.15 0.1 3.012 × 10−2 3.013 × 10−2 3.2 × 10−2

10−15 10−16 0.152 0.15 4.671 × 10−2 4.691 × 10−2 0.4

10−12 10−13 0.152 0.15 1.477 1.484 0.4

The only way that this equation can be satisfied for all times is for the powers of t to equal
one another; the only value of n for which such is the case is n = 1/2. X therefore takes the
form λ

√
t and (2.20) becomes

λ2 +
(

2k2�p2

μ�φ
√

a2

)

λ − 2k1�p1

μ�φ
= 0. (2.22)

There is only one positive root of this equation, leading to the approximate damage front
position

X =
⎛

⎝− k2�p2

μ�φ
√

a2
+

√

k2
2�p2

2

μ2�φ2a2
+ 2k1�p1

μ�φ

⎞

⎠
√

t . (2.23)

Table 1 shows values of λ calculated from (2.23) and values computed numerically from
Eq. (2.16) via the bisection method for a wide range of permeabilities and porosities for
the damaged and undamaged zones. Every row in the table corresponds to pH = 3 MPa,
pL = 0.1 MPa, pD = 1.5 MPa, μ = 10−3 Pa s, and γ = 10−10 Pa−1, but the results
are not very sensitive to changes in these parameters. We note that the relative error with
respect to the computationally derived value of λ does not exceed three percent. The largest
relative errors occur when flow on the exterior side of the damage front is largest, because
approximation (2.19) is not as good an approximation as (2.18).

The expression for λ can be further simplified if there is a large contrast in the porosity
and permeability on crossing from one side of the damage front to the other. To affect the
simplification, we first re-write the approximate expression for λ as

λ ≈ − k2�p2

μ�φ
√

a2
+

√

2k1�p1

μ�φ

√

k2
2�p2

2

2k1�p1μ�φa2
+ 1. (2.24)

The second-term on the right side is greater than
√

2k1�p1

μ�φ
, (2.25)

so if the absolute value of the first-term on the right side of (2.24) is much less than this
quantity, it may be neglected. This condition may be written as

k2
2�p2

2

μ2�φ2a2

 2k1�p1

μ�φ
, (2.26)
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which is completely equivalent to

k2
2�p2

2

2k1�p1μ�φa2

 1. (2.27)

Therefore, if (2.27) holds, the first-term on the right side of (2.24) may be neglected. But
(2.27) is also the condition that the factor multiplying (2.25) in Eq. (2.24) is approximately
equal to unity. Satisfaction of condition (2.27) therefore results in

λ ≈
√

2k1�p1

μ�φ
. (2.28)

Condition (2.27) can be made more transparent by using (2.6) to eliminate a2 and assuming
that �p2 ≈ �p1. Then (2.27) takes the form

γ2k2�p1

2k1�φ

 1. (2.29)

Hence, if the contrast in material properties between regions one and two is large enough
to satisfy (2.29), Eq. (2.28) may be employed to estimate the position of the damage front
as X ≈ λ

√
t . Equation (2.28) is the same expression that would have been obtained if flow

across the damage front had been neglected in Eq. (2.20), i.e., if the term involving ∂p2/∂x
had been neglected. Therefore, condition (2.29) is also the condition that flow across the
damage front toward the lower permeability region may be neglected in determining the
position of the front. As an example, if γ2 = 10−10 Pa−1, k2 = 10−16 m2, �p1 = 106 Pa,
k1 = 10−14 m2, and �φ = 0.1, the quantity on the left hand side of (2.29) is equal to
0.5 × 10−5.

2.5 Effect of Gravity on the Damage Front Position

In the previous section we assumed that the damage front is a vertical planar surface; gravity
did not appear in the boundary or initial conditions because fluid flow in the vertical direction
was assumed negligible compared to that in the horizontal direction. We now consider the case
such that the damage front is a horizontal planar surface and vertical fluid flow dominates. The
presence of gravity in the volumetric flux gives rise to a boundary condition that prevents the
method of solution employed Sect. 2.3; however, it is still possible to derive an approximate
formula for the position of the damage front.

In the present case, Eq. (2.9) becomes

k1

(
∂p1

∂z
+ ρg

)

= k2

(
∂p2

∂z
+ ρg

)

− μ�φ
dZ

dt
. (2.30)

If condition (2.29) holds, we may neglect flow across the damage front. Then, using (2.18),
Eq. (2.30) may be written in the form

�p1

�p2
≈ �φ

(
μZ

k1�p2

dZ

dt

)

+ ρgZ

�p2
. (2.31)

This equation cannot be easily integrated, but a useful solution can still be obtained by noting
that the second-term on the right hand side is small relative to unity when

ρg

�p2

 1

Z
. (2.32)
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For typical orders of magnitude of the quantities on the left hand side, this inequality becomes
Z 
 100 m. When this condition holds, we may take ε ≡ ρg/�p2 as a small parameter.
The solution may then be represented as a perturbative series

Z(t) =
∞
∑

n=0

Zn(t)εn . (2.33)

Substituting (2.33) into (2.31), setting coefficients of differing powers of ε equal to zero, and
neglecting powers of ε greater than unity yields the equations

�φμ

k1�p1
Z0

dZ0

dt
= 1, (2.34)

and

dZ1

dt
+ Z1

2t
= −k1�p1

�φμ
. (2.35)

This equation is dimensionally homogeneous because Z1 has dimensions of length squared,
due to ε having dimensions of 1/length. The initial condition for these equations is Z0,1(0)

= 0. Equation (2.34) has the solution

Z0 =
√

2k1�p1

μ�φ
t . (2.36)

Equation (2.35) can be easily integrated to give

Z1 = −2k1ρgt

3�φμ
, (2.37)

so that the perturbed solution to first-order is

Z(t) ≈
√

2k1�p1

μ�φ
t − 2k1ρgt

3�φμ
. (2.38)

The ratio of the second-term on the right hand side to the first is

ρg

3

√

2k1t

μ�p1
, (2.39)

and this term is small compared to unity for sufficiently small times. For example, if k1 =
10−13 m2, the correction is small for times that are small compared to ten days. The effect
of gravity is to slow the progression of an upward moving front, and this effect is more
pronounced as t , or equivalently Z , increases (“equivalently” because Z is monotonically
increasing in t).

2.6 Damage for Spherical Geometry

In spherical coordinates, the steady-state solution to (2.5) does not have the simple linear
profile employed above; therefore, we separately derive a formula for the approximate damage
front position in spherical geometry. In the steady state and in spherical coordinates with radial
symmetry, Eq. (2.5) becomes

d2(r pi )

dr2 = 0. (2.40)
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The solution to this equation is readily found to be

pi (r) = C1 + C2

r
, (2.41)

where C1 and C2 are constants. The pressure profiles in the damaged and undamaged zones
are then approximately (using reasoning similar to that in Sect. 2.4)

p1(r) = pH − R�p1

R − r0

(

1 − r0

r

)

, (2.42)

and

p2(r) = pD − �p2
√

a2t√
a2t − R

(

1 − R

r

)

, (2.43)

where r0 is the radius of the injection well, i.e., p1(r0) = pH. Using these expressions,
condition (2.9) becomes

k1�p1r0

R(R − r0)
= k2�p2

√
a2t

R(
√

a2t − R)
+ μ�φ

dR

dt
. (2.44)

To affect a solution, we consider the case where k2/k1 
 1 and r0/R 
 1. Then (2.44)
becomes

k1�p1r0

μ�φ
= R2 dR

dt
, (2.45)

which is separable and has the solution

R =
(

r3
0 + 3k1�p1r0t

μ�φ

) 1
3

. (2.46)

2.7 Thermally-Induced Damage

When damage is driven by thermal effects rather than over-pressure, it is no longer reasonable
to assume that the pressure at the damage front is approximately constant. We will now explore
the consequences of letting pD vary, from pD = pH when the front is at the injection source
to pD = pL as the front approaches infinity. The simplest assumption consistent with this
behavior is that pH − pD increases linearly with R − r0. That is,

�p1 = �p(R − r0)

Rmax − r0
≡ D(R − r0), (2.47)

where Rmax is the distance at which �p1 = pH − pL ≡ �p. In the following, we will only
consider the system behavior for r0 < Rmax. In the case of spherical geometry, we substitute
(2.47) into (2.44) and again assume that k2/k1 
 1, obtaining

k1 Dr0

μ�φ
= R

dR

dt
, (2.48)

which has the solution

R =
√

r2
0 + 2k1�pr0t

μ�φ(Rmax − r0)
. (2.49)
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Fig. 3 Comparison between the positions of spherical damage fronts due to over-pressure (blue) and due to
thermal effects (black)

Table 2 Parameters used to
match the analytic solution to
field data

Parameter Value Parameter Value

k1 (m2) 1.2 × 10−13 pH (MPa) 13.1

k2 (m2) 10−14 pL (MPa) 9

ρ (kg/m3) 980 r0 (m) 0.23

μ (Pa s) 0.25 × 10−3 b (days−1) 1

tshf (days) 5 �t (days) 3

tmax (days) 40

If tmax is the time at which R = Rmax, we may solve for Rmax in terms of this time as

Rmax =
(

2k1�pr0tmax

μ�φ

) 1
3

, (2.50)

where we have assumed that r0/Rmax 
 1. Figure 3 shows a comparison between front
positions predicted via (2.49) versus (2.46), using the parameters shown in Table 2 and
�φ = 10−2.

According to this model, then, the damage front progresses much faster in the case of
thermally-driven damage than in the case of pressure-driven damage. This behavior results
from the fact that, when �p1 increases with time, the mass flow on the damage-side of the
damage front increases with time, and this increased flow drives the front forward much more
quickly than when �p1 is constant, as in the pressure driven case.

3 Surface Flow Rate for Constant Pressure Injection

The fluid mass flow rate measured at the ground surface as a function of time is a commonly
measured quantity in applications. We first derive an expression for the flow rate in the
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absence of damage. Afterward, we show how to obtain predicted flow rate for a spherical
subsurface failure front geometry.

3.1 Flow Rate for the Case of no Damage

Consider the case of fluid injection at constant pressure pH into a homogeneous medium of
pressure pL < pH, and with no ensuing damage front. In this case, a pressure pulse spreads
out radially from the injection point to approximately the radius

√
at after a passage of time t .

Using (2.41), we approximate the pressure profile as

p(r) ≈ pH − �p
√

at√
at − r0

(

1 − r0

r

)

. (3.1)

The pressure gradient near the injection point is thus

d p

dr
≈ − �p

√
at

r0(
√

at − r0)
. (3.2)

Neglecting gravitational effects and integrating the volumetric fluid flux over the surface of
a sphere of fixed radius r0 yields the flow rate

F0 ≈ 4πρkr0�p
√

at

μ(
√

at − r0)
. (3.3)

Therefore, the flow rate is expected to approach the constant

4πρkr0�p

μ
, (3.4)

as t → ∞. This formula also describes the flow rate for the case of “full damage,” i.e., the
situation that prevails after a damage front has progressed as far as possible and damage has
ceased.

3.2 Flow rate for the Case of a Spherical Damage Front

We now consider the case of an over-pressure-induced spherically shaped propagating dam-
age front. Using Eq. (2.42) to calculate the volumetric flux at the injection well and integrating
this flux over the surface of a sphere with radius r0 yields

Fsph = 4πρk1�p1r0 R

μ(R − r0)
, (3.5)

where R is given by Eq. (2.46). This flow rate approaches (3.4) as R → ∞, regardless of the
particular form that R takes.

In the case of thermally-induced damage, substituting (2.47) into (3.5) yields

Fsph = 4πρk1�pr0 R

μ(Rmax − r0)
, (3.6)

where R is now given by (2.49). In this case we note that

∂Fsph

∂�φ
≈ 4πρk1�pr0

μ

(
1

Rmax

∂ R

∂�φ
− R

R2
max

∂ Rmax

∂�φ

)

. (3.7)
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However, if R � r0 and Rmax � r0 then

1

Rmax

∂ R

∂�φ
≈ − R

3Rmax�φ
, (3.8)

and

R

R2
max

∂ Rmax

∂�φ
= − R

3Rmax�φ
, (3.9)

so that these terms in (3.7) exactly cancel one another. Hence, even though the position of the
damage front depends on �φ, in the case of thermally driven damage the flow rate does not.

4 Discussion

4.1 The Limit �φ → 0

Up until now we have assumed that, upon mechanical failure, the porosity increases. However,
in some cases it is possible for the permeability to change by a large amount while the change
in porosity is very small. It makes sense, then, to inquire into the possibility that the increase
in porosity is zero or near zero; however, our formalism must be slightly altered in this case.
For example, Eq. (2.24) can be written

�φλ2 + 2k2�p2

μ
√

a2
λ − 2k1�p1

μ
= 0, (4.1)

and in the limit �φ → 0 the quadratic term vanishes. Hence, the correct formula in this case
is not (2.24) but

λ ≈
√

a2k1�p1

k2�p2
. (4.2)

In the case of zero damage, i.e., when pD = pH, the above equation gives λ = 0 as expected.

4.2 Variation in Density due to Movement of the Front

We have neglected variations in fluid density resulting from movement of the damage front,
but we now show that these variations are negligible. For the same case as in Sect. 2.3,
suppose that the damage front moves from position x1 to x2 over a small interval of time.
Then, the pressure at x1 during this interval will have increased by amount

�p ≈ −∂p1

∂x

∣
∣
∣
∣

X
�X, (4.3)

where �X ≡ x2 − x1. This pressure increase, by (2.4), leads to an increase in density

�ρ ≈ −∂p1

∂x

∣
∣
∣
∣

X
�Xβρ0. (4.4)

Hence, the discrete form of condition (2.11), when modified to include this density variation,
is

− k1

μ

∂p1

∂x

∣
∣
∣
∣
x=X

= −k2

μ

∂p2

∂x

∣
∣
∣
∣
x=X

+ �φ
�X

�t

(

1 − ∂p1

∂x

∣
∣
∣
∣

X
β�X

)

. (4.5)

In the limit as �t → 0, Eq. (4.5) reduces to (2.11).
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Fig. 4 Flow rates obtained by Chabora et al. (2012) during constant pressure injection of fluid at T ≈ 100 ◦C
into rock at T ≈ 190 ◦C (red circles); data past 11 days shifted 3 days backward, and points overlapping with
the earlier data removed (blue circles)

4.3 Field Data Comparison

Chabora et al. (2012) have reported surface flow rate data during constant pressure subsurface
injection over the course of 100 days for a site near Desert Peak, NV (see Fig. 4, red circles).
Most of the data were gathered within the first 16 days, with one data point at 100 days.
There is an interruption in data for about 3 days starting at day 12 due to pump failure.
Because the resumed flow rate curve strongly resembles a continuation of the initial curve at
a later time, and because the time during cessation of pumping is small relative to the thermal
relaxation time of the reservoir, we align the resumed curve with the initial one as shown also
in Fig. 4 (a “continuous” curve is depicted with red circles at earlier times and blue ones at
later times). The resulting curve would likely have resulted if the pump had not failed. The
temperature of the injected fluid was approximately 100 ◦C at the subsurface injection point,
while the in situ temperature was approximately 190 ◦C. On the other hand, the injection
pressure was 13.1 MPa, compared to an in situ pressure of about 9 MPa; therefore, rock
failure was likely dominated by effects of thermal contraction. Consequently, we employ
formula (3.6) above to calculate flow rates associated with the rock failure. Because we are
ignoring the effect of gravity, we attempt to match only the data from the first 16 days. The
flow rate is approximately constant for the first several days, and according to the formulae we
have developed above, such a curve suggests that damage has not yet been initiated. We use a
weight function to interpolate between the damage-free and spherical-damage-front solutions
in the region where one regime begins to transition to the other. The weight function is taken
as

w = 1 − 1

1 + exp[−b(t − tshf − �t)] , (4.6)

where b is a constant with dimensions of inverse time, tshf is the time at which the failure
geometry begins to transition from lack of damage to a spherical damage mode, and �t is
the width of the region of overlap between these modes of failure. The total flow rate is thus
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Fig. 5 Comparison between the model solution (4.7, blue), flow rates expected in the case of no damage
(black), flow rates expected from an expanding spherical damage front starting at 5 days (green), and the
Desert Peak field data (red dots)

F = wF0 + (1 − w)Fsph. (4.7)

Table 2 gives the values of the parameters used to fit the field data. Figure 5 shows the com-
parison between our model solution and the data. The blue curve is given by (4.7), the black
curve is the predicted flow rate in the case of no damage, and the green curve shows the pre-
dicted flow rates for a spherical damage front only, all of these curves being calculated using
the same model parameters. From Eq. (3.7), the choice of �φ does not influence the flow rate.

When all observations are taken into account, the variables in our model are all constrained.
The parameter �t is determined by noting that the observed flow rates transition from constant
to non-constant flow rates over a span of a few days. The transition time, tshf , occurs at about
five days after injection begins. If tshf and �t are expressed in units of days, b is then one
inverse day, because it is a normalization factor converting time into the dimensionless time
that is appropriate for the argument of an exponential function. The injection and in situ far-
field pressures are constrained from observation and from the hydrostatic pressure profile,
respectively. The fluid viscosity and density are determined from the average fluid pressure
and temperature together with standard equations of state for pure water. The radius of the
injection well-bore is known to be about r0 ≈ 0.23 m. For the pre-damage curve to match
the flow rates at times less than five days, k2 must be set equal to 10−14 m2. For the flow
rates corresponding to rock failure, Rmax is determined from Eq. (2.50) and noting that the
observed flow rate curve appears to level off starting at about forty days, giving tmax ≈ 40 days
(we are here assuming that the flattening of the curve starting at around this time corresponds
to a transition to cessation of damage). We also note that, as Rmax ∝ t1/3

max, the resulting flow
rate is not very sensitive to the time chosen for tmax. The predicted curve corresponding to a
spherical damage front (using (3.6)) can only match the observed flow rates past five days if
k2 is set to about 1.2 × 10−13 m2—about twelve times the pre-damage permeability.

If we assume that the damage front coincides at all times with some isotherm—regardless
of whether the temperature transitions smoothly from one side of the damage front to the
other or whether, like the damage front, it has a sharp transition—then the velocity of the
damage front can be used to estimate the relative strengths of diffusive versus total (advective
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plus diffusive) heat transfer. Assuming that the damage front is far from r0 and differentiating
Eq. (2.49) with respect to time gives

dR

dt
≈ 1

2

√

2k1�pr0

μ�φRmt
. (4.8)

The velocity of a purely diffusive temperature front is roughly

d

dt

√
κt = 1

2

√
κ

t
, (4.9)

where κ is the thermal diffusivity. Dividing (4.8) by (4.9) yields the dimensionless number

χ ≡
√

2k1�pr0

μ�φRmκ
. (4.10)

Assuming that 10−2 ≤ �φ ≤ 10−1 and using the values in Table 2, we obtain the result
that 16 ≤ χ ≤ 36. Hence, the model predicts that advection is very significant compared to
diffusion for this system.

Finally we note that, although we have not included the effects of thermal expansion on
the density in Eq. (2.40), the error committed is small as long as the fractional change in
density is small. This is because the second-term on the left side of the steady-state mass
balance equation

∇2 p + ∇ρ

ρ
· ∇ p = 0, (4.11)

is small compared to the first if �ρ/ρ0 is small compared to unity. Even in the present case
of thermally-driven damage, the fractional change in density is only on the order of ten
percent; therefore, the error committed in neglecting the density variation is acceptable for
the purposes of this study.

5 Conclusion

Damage induced by fluid injection modifies subsurface permeabilities and porosities, causing
both to be functions of pore pressure. Even though this dependence on pressure renders the
mass balance equation nonlinear, we have been able to obtain a global analytic solution for
the pore pressure in the case of a vertical propagating damage front via an analogy with the
classical Stefan problem, where a moving surface of discontinuous material properties splits
the solution domain into two parts. A formula was derived stating that gravitational effects
may be ignored for sufficiently small times. We have also derived approximate expressions for
the position of the damage front as a function of time, which are valid for the cases of planar
and spherical propagation front geometries. These expressions show that a thermally-induced
damage front propagates much faster than one induced by over-pressure, for the same values
assigned to the model parameters. Finally, using these expressions, we derived approximate
formulae for the surface flow rates under constant pressure injection for the case of spherical
damage front geometry. When compared to recorded flow rate data from a particular site near
Desert Peak, NV, our model suggests one possible interpretation of the data is that subsurface
failure began at about five days after commencement of fluid injection, transitioning from the
pre-damage regime to one of spherical damage front geometry over the course of 16 days.
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Appendix: Justification for Neglecting ∇ρ

Substituting (2.2), (2.3), and (2.4) into (2.1) yields

β̃
∂p

∂t
− k

μ

ρ

ρ0
∇2 p − 2kgρβ

μ
∇z · ∇ p − βk

μ
(∇ p)2 = 0, (6.1)

with

β̃ ≡ φβ + ρ

ρ0
α. (6.2)

Dividing (6.1) by the term proportional to ∇2 p leads to the dimensionless equation

ρ0

ρ

(
β̃μ

k∇2 p

∂p

∂t

)

− 1 − 2βρ0g
∇z · ∇ p

∇2 p
− ρ0

ρ
β

(∇ p)2

∇2 p
= 0. (6.3)

Now consider a small vertical section of porous material of height �z over which the pressure
varies by amount �p, and suppose the time variation of p over an interval of time �t is equal
to ξ�p for some constant ξ . Then the first term on the left hand side is in order of magnitude

ξ β̃μ�z2

k�t
, (6.4)

where we have assumed that ρ0/ρ ≈ 1 and that the order of ∇2 p is �p/�z2. Term (6.4) is
not in general small compared to unity. The third term has order of magnitude

2βρ0g�z, (6.5)

and due to the smallness of β, only approaches unity for very large values of �z. The fourth
term varies as

β�p, (6.6)

and is small compared to unity except for very large values of �p. Therefore, for the parameter
regime of interest in this study, the dominant balance in Eq. (6.1) is between the first and
second terms on the left hand side.
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