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Abstract We present an experimental investigation and modeling analysis of tracer trans-
port in two transparent fracture replicas. The original fractures used in this work are a Vosges
sandstone sample with nominal dimensions approximately 26 cm long and 15 cm wide, and
a granite sample with nominal dimensions approximately 33 cm long and 15.5 cm wide.
The aperture map and physical characteristics of the fractures reveal that the aperture map
of the granite fracture has a higher spatial variability than the Vosges sandstone one. A con-
servative methylene blue aqueous solution was injected uniformly along the fracture inlets,
and exited through free outlet boundaries. A series of images was recorded at known time
intervals during each experiment. Breakthrough curves were subsequently determined at the
fracture outlets and at different distances, using an image processing based on the attenuation
law of Beer–Lambert. These curves were then interpreted using a stratified medium model
that incorporates a permeability distribution to account for the fracture heterogeneity, and a
continuous time random walk (CTRW) model, as well as the classical advection–dispersion
equation (ADE). The stratified model provides generally satisfactory matches to the data,
while the CTRW model captures the full evolution of the long tailing displayed by the break-
through curves. The transport behavior is found to be non-Fickian, so that the ADE is not
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applicable. In both stratified and CTRW models, parameter values related to the aperture field
spatial variability indicate that the granite fracture is more heterogeneous than the Vosges
sandstone fracture.

Keywords Rough fractures · Heterogeneous media · Anomalous transport ·
Breakthrough curves · Equivalent-stratified porous medium · Continuous time random walk

List of Symbols

a Power law constant, Eq. (16)
α Dispersivity (m)
b Power law exponent, Eq. (16)
β Exponent, Eq. (8)
C Concentration (g/l)
C∗ Dimensionless concentration
C0 Injected concentration (g/l)
D Dispersion coefficient (m2/s)
Dm Molecular diffusion coefficient (m2/s)
Dψ Transport dispersion coefficient (m2/s)
ε Solute absorptivity (m2/g)
G(k) Probability distribution function of the permeability
γ (Semi)variogram (mm2)
H Heterogeneity factor
h Thickness or local aperture (mm)
〈h〉 Mean aperture (mm)
I Intensity
I0 Intensity at C = 0
k Permeability (k = h2/12) (m2)
〈k〉 Mean permeability (m2)
Lx Fractures length (m)
L y Fractures wide (m)
M Memory function
μ Dynamic viscosity (mPa s)
N Number of measured values, Eq. (15)
Nr Number of pairs, Eq. (11)
P Pressure (Pa)
p(s) Probability distribution of transition displacements
Pe Peclet number
Q Flow rate (ml/h)
RM SE Root-mean-square error
ρ Density (kg/m3)
σ Standard deviation
t Time (s)
t∗ Dimensionless time
t1 Median transition time in ψ (s)
t2 Cutoff time in ψ (s)
U Average fluid velocity (m/s)
uψ Transport velocity (m/s)
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Vp Pore volume (ml)
w Laplace variable
x Location in space (m)
x∗ Dimensionless distance
y Location in space (m)
ψ(t) Probability rate for a transition time t

1 Introduction

Quantifying solute transport in fractured media has been an important research topic in
hydrology over the last three decades. This has been motivated at least in part by consideration
of storage and disposal of radioactive waste and CO2 in fractured geological formations, and
by efforts to remediate contaminated, fractured groundwater reservoirs. A key foundation
of such studies has thus been analysis of fluid flow and solute transport in individual rock
fractures. While early studies considered simplified parallel plate or sinusoidal fracture wall
geometries, more realistic investigations examine tracer transport in natural, rough-walled
fractures.

Flow and transport in fractures are influenced significantly by the natural heterogeneity of
fractures, as a result of fracture wall roughness (Dronfield and Silliman 1993; Ippolito et al.
1993; Yeo 2001) and the resulting aperture distribution (Moreno et al. 1988; Tsang et al.
1991; Nordqvist et al. 1996; Detwiler et al. 2000). In general, the high degree of variability
in natural heterogeneities prevents acquisition of detailed knowledge of the pore space in
which tracer migrates.

The advection–dispersion equation (ADE) has been applied, traditionally, to model tracer
transport in fractures. However, several laboratory scale tracer tests in single fractures reported
significant deviations between measured breakthrough curves (BTCs) and curves obtained
using the ADE (e.g., Neretnieks et al. 1982; Becker and Shapiro 2000; Jiménez-Hornero et
al. 2005; Bauget and Fourar 2008). More specifically, in these analyses, the ADE did not
capture the non-Fickian (or anomalous) behavior exemplified in the early breakthrough times
(i.e., later than Fickian) and long-time tailing.

Modeling non-Fickian tracer transport in fractured and porous media has received con-
siderable attention in recent years. Fourar (2006) proposed the equivalent-stratified medium
approach to describe anomalous transport and applied it to solute transport in heteroge-
neous porous media (Fourar 2006; Fourar and Radilla 2009) and a single rough-walled rock
fracture (Bauget and Fourar 2008). The basic idea of this approach is to represent a hetero-
geneous medium by using an equivalent-stratified medium, for which the tracer transport
can be modeled in a consistent manner. This approach also assumes statistical homogeneity
of the medium (i.e., the permeability of the medium is a probability distribution function)
but introduces a “heterogeneity factor” as a parameter that evolves along the paths expe-
rienced by the tracer. Recently, Radilla et al. (2012) applied this approach to accurately
model field-scale tracer tests performed in the Soultz-sous-Forêts Enhanced Geothermal
System.

A powerful framework to describe non-Fickian transport in fractured and heterogeneous
porous media is offered by the continuous time random walk (CTRW) approach (Berkowitz et
al. 2006). CTRW is based on the conceptual picture of tracer particles undergoing a series of
transitions, characterized by a distribution of transition times. The physics and/or geochemical
mechanisms involved in the transport process, as well as the structure of the heterogeneous
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porous or fractured medium or nature of the flow regime, determine the relevant transition
time distribution and control the interpretation of its parameters. In the CTRW framework, a
solute particle undergoes a series of transitions of length s and time t . Together with a master
equation conserving solute mass, the random walk is developed into a transport equation in
partial differential equation form. The CTRW has been successfully applied for describing
the non-Fickian transport in heterogeneous porous media (Levy and Berkowitz 2003; Xiong
et al. 2006; Berkowitz and Scher 2008; Gao et al. 2009), single fractures (Berkowitz et al.
2001; Jiménez-Hornero et al. 2005; Bauget and Fourar 2008), and field tracer migration
(Berkowitz and Scher 1997; Kosakowski et al. 2001).

Laboratory scale single fractures have been applied successfully to examine aspects of non-
Fickian transport over the last two decades. For example, Neretnieks et al. (1982) examined
nonsorbing tracer transport in a single natural fissure in a granitic sample, and attributed the
BTC behavior to preferential channeling related to the aperture variations in the fracture plane.
Moreno et al. (1985) also examined nonsorbing tracer dispersion in a single fracture in granite
and concluded that BTCs can be modeled by both hydrodynamic and channeling diffusive
mechanisms. Jiménez-Hornero et al. (2005) analysed the experimental data of Moreno et al.
(1985) using CTRW, interpreting the moderately dispersive transport behavior to the presence
of small and intermediate scale heterogeneities. Bauget and Fourar (2008) focused on non-
Fickian dispersion in a transparent replica of a real Vosges sandstone fracture, studying
the ability of the ADE, equivalent-stratified medium, and CTRW approaches to describe
the non-Fickian behavior as well as possible correlations between model fitting parameters
and the spatial variability of the fracture aperture field. However, predictive modeling of
fracture transport remains limited and thus further laboratory-scale studies are needed both
to establish the transport characteristics of single fractures and to provide experimental data
sets for model testing.

Models of tracer transport are most frequently applied to measured breakthrough curves at
a porous medium column or fracture outlet, characterizing dispersion properties from overall
medium properties. Several studies have examined breakthrough curves measured at several
distances from the porous media inlet (e.g., Berkowitz et al. 2000; Gao et al. 2009; Fourar
and Radilla 2009). To our knowledge, though, less attention has been paid to measurement
and analysis of tracer transport in single fractures with high spatial variability in the aperture
fields, considering breakthrough curves at multiple distances (Bauget and Fourar 2008).
There are inherent difficulties in measuring the void geometry of individual rock fractures
at sufficient resolution. However, transparent resin or molten-glass replicas of rough-walled
rock fractures have been used successfully to study aperture fields (Detwiler et al. 1999; Wan
et al. 2000; Isakov et al. 2001), identify dispersive flow regimes (Brown et al. 1998; Detwiler
et al. 2000) and examine different approaches to describe the non-Fickian tracer transport
(Bauget and Fourar 2008).

The goal of this work is to study conservative tracer transport in two transparent replicas of
rough-walled rock fractures without the presence of matrix diffusion, focusing on evolution
of breakthrough curves as a function of distance. The transport behavior is strongly affected
by the spatial variability of the aperture field. We first review solutions for one-dimensional
tracer transport within the equivalent-stratified medium and CTRW approaches. We then
describe the experimental set-up and procedures; we discuss how image processing based
on the Beer–Lambert attenuation law can be used to determine average temporal break-
through curves along the flow direction. We then investigate the ability of the two modeling
approaches to match the breakthrough curves, and examine variation of model parameters
with distance.
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2 Theory

2.1 The equivalent-stratified medium approach

Transport in stratified media has been considered frequently in the groundwater literature as a
suitable alternative for modeling transport in geological media (Güven et al. 1984; Communar
1998; Zavala-Sanchez et al. 2009; Bolster et al. 2010).

The main idea of this approach is to replace a heterogeneous fractured or porous medium
by an equivalent-stratified medium. This approach supposes that: (i) the displacement of
tracer in each layer is piston-like, (ii) mass transfer across the layers is negligible (flow is
parallel to the layers), so that the layer positions do not modify the tracer spreading front and
the spatial distribution of layers can be changed to facilitate the concentration calculations,
(iii) the porosity of the medium is uniform, (iv) pore-scale dispersion and molecular diffusion
are negligible, and (v) the permeability of the layers is randomly distributed (constant for
each layer but can change from one layer to another).

For the case of a continuous injection at constant flow rate Q and concentration C0 at
x = 0, the concentration at position x and time t is given by [see Fourar and Radilla (2009)
for more details]:

C(x, t)

C0
=

kmax∫

k∗= x〈k〉
Ut

G(k)dk (1)

where U is the average fluid velocity, G(k) is the probability distribution function (pdf) of
the permeability k, kmax is the maximum permeability value, k∗ is the permeability of the
layer where tracer front reaches position x at time t and 〈k〉 is the mean permeability.

To calculate the concentration, an adequate pdf of the permeability must be chosen. Numer-
ous studies at various problem scales and in different geological settings have shown that
fracture apertures, and therefore local permeabilities, follow normal (Hakami and Larsson
1996; Oron and Berkowitz 1998; Sharifzadeh et al. 2004) or lognormal (Iwano and Einstein
1993; Johns et al. 1993; Pyrak-Nolte et al. 1997) distributions:

G(k) = 1

σk
√

2π
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(
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)
(normal distribution) (2)
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σln k
√
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2σ 2
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)
(lognormal distribution) (3)

where σ 2
k and σ 2

ln k are the variance of k and ln k, respectively.
Substituting the expressions of G(k) in Eq. 1 and performing the integrations yields the

following equations for the stratified approach using normal and lognormal permeability
distributions, respectively (Fourar 2006; Bauget and Fourar 2008; Fourar and Radilla 2009):

C(x, t)

C0
= 1

2
erfc

( x
Ut − 1

H
√

2

)
(4)

C(x, t)

C0
= 1

2
erfc

⎛
⎝ ln

(
x

Ut

√
1 + H2

)
√

2 ln(1 + H2)

⎞
⎠ (5)

where, in both equations, H is the “heterogeneity factor” defined by the ratio of the standard
deviation and the average permeability:
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H = σk

〈k〉 (6)

As explained above, the purpose of the equivalent-stratified medium is to provide a perme-
ability distribution of a stratified medium which allows the best match between the modeled
and the measured tracer concentration curves. Equations (4) and (5) are analytical expres-
sions for the BTCs, controlled by a single parameter H , and leading to a robust and quickly
converging parameter estimation approach. Also, these analytical solutions allow a straight-
forward quantitative comparison of the level of spatial variability in terms of aperture field
maps. Discussion of methods for numerical determination of a permeability distribution that
provides an exact match to the BTCs is beyond the scope of this paper.

It is important to note that the equivalent stratified medium and the real heterogeneous
medium share the same total flow rate, the same global pressure drop (i.e., between the inlet
and the outlet), and the same mean permeability. As a result, the flow velocity in a given layer
of the equivalent medium is constant from the inlet to the outlet and the pressure drop is linear.
This approach can lead to a reasonable description of transport in highly layered medium.
To use it for heterogeneous fractures, we assume that the fractures can be represented by an
equivalent-stratified medium with a given value of H . Because the breakthrough curve at
the outlet contains information about all the flow paths, the heterogeneity factor can be used
to roughly measure the level of heterogeneity (or level of spatial variability of the aperture
field) of a fracture.

2.2 The continuous time random walk (CTRW) approach

The CTRW framework has been shown to be effective for describing non-Fickian transport
behavior of a tracer flowing through porous and fractured media (Berkowitz and Scher 1997;
Margolin and Berkowitz 2000; Dentz et al. 2003; Berkowitz et al. 2006). In the CTRW
framework, transport is modeled as a sequence of particle transitions with displacement s
and time t , with a probability densityψ(s, t) (see Berkowitz et al. 2006 for a detailed review).

Considering the decoupled form ψ(s, t) = p(s)ψ(t), where p(s) is the probability dis-
tribution of transition displacements and ψ(t) is the probability rate for a transition time t
between sites, the CTRW 1-D transport equation in Laplace space can be written as:

wC̃(x, w)− C0 = −M̃(w)

[
uψ
∂C̃(x, w)

∂x
− Dψ

∂2C̃(x, w)

∂x2

]
(7)

where w is the Laplace variable, M̃(w) = t1w
ψ̃(w)

1−ψ̃(w) is a memory function that captures

the anomalous transport induced by unresolved heterogeneities, t1 is a characteristic time
for transition between sites, uψ and Dψ are the average transport velocity and generalized
dispersion coefficient, respectively, and the Laplace transform of a function f (t) is repre-
sented by f̃ (w). As discussed by Berkowitz et al. (2006), it is important to note that the
transport velocity can be different from the mean fluid velocity. Also, the generalized disper-
sion coefficient is distinct from that in the ADE. Note that, in contrast, Fickian-based models
assume that the center of mass of the tracer plume moves with the average fluid velocity,
and that the dispersion behaves macroscopically as a Fickian process, with the dispersivity
being assumed constant in space and time. This means that the heterogeneities (i.e., spatial
variability of the fracture aperture field) are neglected at the scale of interest and the medium
is considered homogeneous (i.e., two parallel plates in context of this paper).
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The probability density function ψ(t) is a key aspect of the CTRW approach, which
characterizes the nature of the transport. We employ a truncated power law (TPL) that also
allows a transition from non-Fickian behavior to Fickian behavior at large times:

ψ(t) = t−1
1

{(
t1
t2

)β
exp

(
t1
t2

)
�

(
−β, t1

t2

)}−1

exp
(
−t

/
t2

)(
1 + t

t1

)−1−β
(8)

where β is a measure of the dispersive transport, t2 is the cut-off time to Fickian behavior
and �(a, x) is the incomplete gamma function. With the TPL transition time distribution
function, the very nature of solute transport can be characterized by the value of β which
falls into three possible ranges. The case of 0 < β < 1 describes the most anomalous
transport where both the mean and standard deviation of the tracer plume scale as power
laws with time. For 1 < β < 2, solute transport is anomalous where the mean plume
velocity is constant in time and the standard deviation retains a power law scaling. When
β > 2, solute transport is Fickian and the CTRW equation simplifies to the ADE. The TPL
scales as ψ(t) ≈ (t/t1)−1−β for t1 < t < t2 (the transport behavior is anomalous in this
time regime) and decreases exponentially ψ(t) ≈ e−t/t2 for t >> t2 (Fickian behavior may
be reached at a time scale longer than t2).

3 Experimental Procedure

The schematic of the experimental setup is shown in Fig. 1. The apparatus was designed to
measure the concentration of immiscible fluid as it flows through a transparent replica of a
natural fracture. The centerpiece of the apparatus is a transparent epoxy resin cast of both
sides of the natural rough-walled rock fractures. The original fractures used in this work are a
Vosges sandstone sample with nominal dimensions approximately 26 cm long and 15 cm wide
and a granite sample with nominal dimensions approximately 33 cm long and 15.5 cm wide.

To create the transparent epoxy resin casts of the fractures surfaces, the same method
described by Isakov et al. (2001) was used. In this method, each fracture half of the block

Fig. 1 Schematic of the Experimental Setup
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was cleaned with compressed air and placed on a smooth working plate. Thin polycarbonate
walls were added to the side of the sample and a thin layer of Silastic (5-mm thick) was
poured over the sample surface and left to cure. Once the Silastic layer was cured, the walls
were removed and the two parts were separated carefully. The Silastic layer was then placed
on the working plate, rough surface upwards, and edged again by the same walls. A clear
casting resin was poured on top of the Silastic layer and allowed to solidify completely.
Once the casting resin was set, the walls were removed and the casting resin was separated
carefully from the Silastic layer and polished. As resins are not perfectly rigid materials, being
subject to deformation at room temperature, it was not possible to check how accurately the
casts represent the original fracture surfaces. Moreover, Vosges sandstone tends to crumble
and fracture surfaces lose grains easily; as such, it was not possible to perform a surface
topography scan on the original surfaces. To obtain the best representation, several transparent
resins were tested, and we chose that having the minimal volumetric-drying effect. We focused
our efforts on obtaining reliable local aperture values once the casts were assembled. As will
be seen below, the aperture values obtained by image processing are in very good agreement
with the volumetric check of the total fracture fluid volumes.

The Vosges sandstone fracture cast was provided with four pressure ports in its centre
line. These pressure ports were used for measurements that are not relevant to this study,
but they are taken into account in the image processing of the dispersion experiments. Also,
screws in the cast holder are accounted for on the Vosges sandstone fracture. The design of
granite fracture cast was improved for the dispersion experiments. Thus, only one pressure
port was drilled along the centre line of the lower plate and the experimental cell design was
enhanced in a way that the screws were placed out of the replica.

The entrance section of the fractures was connected to a distributor (parallelepipedal
reservoir) in which the solution and water could be dispersed separately through four ports.
These ports are located opposite each other: 4 underneath, 4 on top. The distributor width is
equal to the fractures width and its height is 6.5 mm.

The tracer was a methylene blue dye (ACROS ORGANICS Methylene Blue hydrate,
pract., 75 %), which was found to be a clear and bright tracer in visualization experiments.
Placed in a water flow, it offers a good contrast for visualization. The molecular diffusion
coefficient of methylene blue in water is 3.1 ± 0.1 × 10−12 m2/s (Didierjean et al. 1997).

The water and solution density and dynamic viscosity were measured at room temperature
(23 ◦C) using a pycnometer (ρw = 997.1 kg/m3 and ρs = 997.3 kg/m3) and a capillary
tube (μw = 0.959 mPa s and μs = 0.96 mPa s). The results confirm that addition of the
coloring agent did not significantly affect the hydraulic properties of the experimental fluids.

To conduct tracer experiments at room temperature, each fracture was first fully satu-
rated by injecting water at a high flow rate (1 × 105 ml/h) using a volumetric pump (PCM,
EcoMoineau M Series).The distributor was then filled with the solution while avoiding the
fracture. Here, the fracture outlet was closed and the solution was injected very slowly into
the distributor using the four ports placed underneath. As the distributor filled with the solu-
tion, water exited the distributor through the four ports placed on top. Once the distributor
was filled with the solution, the fracture outlet was opened and the pumping of the solution at
the injected concentration C0 = 0.05 g/l was started at a constant flow rate (Q = 230 ml/h
for the Vosges sandstone fracture and Q = 600 ml/h for the granite fracture) using a low
flow rates volumetric pump (Masterflex 7518-00). To achieve a proper initial step injection
of the tracer across the fracture inlet, the distributor dimensions (height = 6.5 mm, length =
35 mm, width = fracture width) and the injection flow rates through four ports were chosen
to obtain very low fluid velocities within the distributor and thus a homogeneous absolute
pressure along the fracture inlet.
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Table 1 Fracture characteristics

Fracture Gravimetric method Image processing

〈h〉 (mm) Vp (ml) 〈h〉 (mm) σ (mm) Vp (ml)

Vosges sandstone 0.857 33 0.847 0.277 32.6
Granite 0.907 47 0.900 0.283 46.7

During the experiment, the fluids (water and the solution) were drained freely through
the exit face of the fracture, which was also connected to a distributor. Afterwards, the fluids
were collected into a basin and channeled through a single port, as shown in Fig. 1. The
injection was continued until the concentration in the fractures was equal to C0.

The injection flow rates were set high enough to make molecular diffusion negligible
as compared to tracer advection (6.97 pore volume (Vp) per hour for the Vosges sandstone
fracture and 12.77 pore volume per hour for the granite fracture). The corresponding Peclet
numbers (Pe = U Lx/Dm) were 1.37 × 105 for the Vosges sandstone fracture experiment
and 3.46 × 105 for the granite fracture experiment. The value of U is simply Q/(L y〈h〉),
with L y the fracture width, Lx the fracture length and 〈h〉 the mean aperture obtained by a
gravimetric method in which the fractured are positioned vertically and the mass of water
injected in the void space of the fractures is measured. The values of the mean aperture and
the average fluid velocity discussed above are presented respectively in Tables 1 and 2.

In both experiments, a series of images were taken at known time intervals for further
analysis. Visualization was performed with a CCD camera (Charge coupled Device), resulting
in data of 1600 × 2825 and 1265 × 2630 pixels after cropping over the fracture area for the
Vosges sandstone and granite fractures, respectively. The light source was a Planistar light
table, which gives homogeneous and constant lighting. A color filter was used to produce the
monochromatic source needed for image processing.

Using these images, the concentration at a given point (x, y) can be determined by image
processing based on the attenuation law of Beer–Lambert (Detwiler et al. 1999; Isakov et
al. 2001). In this law, the intensity of light passing through a solution varies exponentially
with the tracer concentration and the solution thickness. For a given (x, y) position within
the fractures, this law can be written as:

I (x, y) = I0(x, y) exp(−εC(x, y)h(x, y)) (9)

where I and I0 are, respectively, light intensities at concentration C , and at zero concentration,
ε is the tracer absorptivity, and h is the fracture aperture (solution thickness). Equation 9 can
be used to calculate ε, h(x, y), and finally C(x, y) by three-specific experiments, as explained
in the next section.

4 Experimental Results

Using a rectangular glass cell with a constant h of 3 mm, ε was first calculated by measuring
the intensities at different concentrations. Figure 2 shows measurements done with concen-
trations varying from 0 to 0.05 g/l and a linear fit using Eq. 9 rewritten in the following form:

Ln

(
I0

I

)
= εCh (10)

thus leading to ε = 7.867 ± 0.123 m2/g.
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Fig. 2 Tracer absorptivity calibration

The local fracture aperture h(x, y) was then calculated over the entire fracture by taking
two images of the fractures, one at zero concentration leading to I0(x, y) and one at a
known concentration (C0 = 0.05 g/l) leading to I (x, y). Knowing I (x, y), I0(x, y), ε, and
C(x, y) = C0, Eq. 9 allows us to calculate h(x, y).

Figure 3 shows the aperture maps of the Vosges sandstone and the granite fractures. The
influence of random errors due to the light intensity was reduced by averaging 50 images of
each field and using the solution concentration (0.05 g/l) that resulted in minimum total error
[see Detwiler et al. (1999) for a detailed review]. The averaged root-mean-square (RMS)
aperture measurement errors over the entire fracture field are estimated at 1 and 0.8 % of the
mean aperture for the Vosges sandstone and granite fractures, respectively.

The mean value and the standard deviation of the geometric aperture and the total fluid
volume of the fractures are summarized in Table 1. These values are in very good agreement
with the results of the gravimetric method (within 1.2 % for the Vosges sandstone fracture
and within 0.6 % for the granite fracture).

The aperture maps clearly show high spatial variability of the fracture aperture fields. For
both fractures, smaller apertures are located at the centre and the larger apertures are located
near the inlet and the outlet of the fractures. The lower half of the Vosges sandstone fracture
aperture field shows higher variability than the upper half, while for the granite fracture, the
spatial variability appears to be relatively high across the entire fracture area.

The aperture data for the Vosges sandstone and granite fractures are displayed as his-
tograms in Fig. 4a, b. The histogram of the Vosges sandstone fracture shows a sharper peak
than that for the granite, and the skewness is more positive than for the granite fracture,
indicating that more elevations fall below the mean value for this fracture. Also, the kurtosis
for the Vosges sandstone fracture indicates a more peaked distribution than that of the granite
fracture.

Simply knowing the aperture distributions and their statistics is not sufficient to compare
the entire pattern of the fractures void geometry. To investigate the spatial correlation of
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Fig. 3 Aperture map determination: upper row Vosges sandstone; lower row granite. In image I0, the fracture
is saturated with water, in image I the fracture is saturated with the solution at C0, h is the aperture map in
mm

the fractures aperture and finally compare the level of spatial variability of the aperture
field, (semi)variogram (γ ) analyses were carried out using the Bayesian Maximum Entropy
Library/BMELib package (Christakos et al. 2002). A variogram shows the variation between
pairs of data as function of the separation (or lag) distance between them. The semi-variogram
is calculated as:

γ (�r) = 1

2Nr

Nr∑
i=1

(h(�r +��r)− h(�r))2 (11)

where Nr is the number of pairs.
The omnidirectional experimental semivariograms for the Vosges sandstone and granite

fractures are presented in Fig. 4c. The maximum separation distance is approximately one-
third the diagonal extent of the fractures. For both fractures, the results show a relatively
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Fig. 4 Histogram and semivariogram of the fracture aperture fields. a Histogram of the Vosges sandstone
fracture. b Histogram of the granite fracture. c Experimental semivariograms (omnidirectional) of the fracture
aperture fields

strong trend with the separation distances. This can be explained by a high spatial variability
of the fracture aperture fields (Fig. 3). The semivariograms indicate that for separation dis-
tances between 6 and 40 mm, the semivariogram values are higher for the Vosges sandstone
fracture, while outside this range these values are higher for the granite fracture. These
higher semivariogram values at distances comparable to the size of the fractures confirm
once more that the granite fracture aperture field is more variable (heterogeneous) than the
Vosges sandstone one.

Using Eq. 9 and the previous results [i.e., ε and h(x, y)], the local 2D instantaneous
concentration C(x, y, t) during the tracer injection experiments was calculated. For each
fracture, Fig. 5 shows 2D dimensionless concentration maps at six different dimensionless
times. The following dimensionless variables were used: dimensionless time t∗ = Qt/Vp

where Vp is the fracture total fluid volume, dimensionless position x∗ = x/Lx , and dimen-
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Fig. 5 a Tracer experiment for the Vosges sandstone fracture: 2D dimensionless concentration maps at
different t∗ = Qt/Vp with Q = 230 ml/h and Vp = 33 ml. Injection is from below. b Tracer experiment for
the granite fracture: 2D dimensionless concentration maps at different t∗ = Qt/Vp with Q = 600 ml/h and
Vp = 47 ml. Injection is from below

sionless concentration C∗ = C/C0. As shown in Fig. 5, the concentration fields contain
some dark areas, which correspond to the pressure ports, the screws and the cast holders
mentioned previously in Sect. 3. All of these artifacts represent less than 1.2 % of the Vosges
sandstone fracture volume and less than 0.6 % of the granite fracture volume.

The effect of the spatial variability of the fracture aperture field on the transport process,
especially the constricted areas at the centre of the fractures (dark blue areas in Fig. 3,
h < 0.5 mm for the Vosges sandstone fracture and h < 0.75 mm for the granite fracture),
clearly appear in the images of Fig. 5. For the Vosges sandstone fracture (Fig. 5a), the
tracer first moves forward homogeneously near the inlet of the fracture (t∗ < 0.12). After
reaching the constricted zone, the solution advances in two preferential flow paths that can
be recognized in the fourth (t∗ ∼ 0.23) and fifth (t∗ ∼ 0.41) images. These flow paths
grow slowly in the transverse direction but reach the outlet of the fracture almost uniformly
(t∗ ∼ 0.65). For the granite fracture, Fig. 5b shows a less uniform tracer front. The third
(t∗ ∼ 0.11), fourth (t∗ ∼ 0.35), and fifth (t∗ ∼ 0.57) images show tracer transport in two
distinct preferential flow paths, with two different velocity profiles. These flow paths grow
more significantly in the transverse direction than those of the Vosges sandstone fracture,
and reach the outlet of the fracture with different arrival times (t∗ ∼ 0.8). These results are
in agreement with the observation of larger apertures on the left side of the fracture; the first
arrival appeared on the left side.

To apply the transport models to the experimental results, 1D dimensionless concentra-
tion profiles along the fracture were computed from the 2D concentration fields. The 1D
dimensionless concentration profile is defined as the flux-weighted concentration at a given
position x (or x∗) from the fracture inlet:
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Fig. 6 Concentration profiles versus dimensionless time: a Vosges sandstone, b granite

C∗(x, t) =
∑
y

C(x, y, t)Q(x, y)

C0
∑
y

Q(x, y)
(12)

where Q(x,y) is the local flow rate obtained using a pore network model (Zimmerman and
Bodvarsson 1996):

∇ · (Q) = ∇ ·
(

h3�y

12μ
∇ P

)
= 0 (13)

where P(x, y) is the local pressure, h(x, y) is the local aperture parallel to the z axis and
�y is the width of a pixel. Equation (13) is commonly known as the local cubic law for fluid
flow in a rough-walled fracture.

Figure 6 shows the averaged concentration profiles at five positions (x∗ = 0.2 (or 0.25),
x∗ = 0.4 (or 0.45), x∗ = 0.6, x∗ = 0.8, and x∗ = 1) as a function of the dimensionless time
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for the Vosges sandstone and granite fractures, and for two different experiments carried out
under the same experimental conditions. The superimposition of the concentration profiles
validates the robustness of the experimental procedure in terms of reproducibility.

The early arrival times and late tails in the concentration profiles are evidence of spatial
variability of the fracture aperture field. Comparing the concentration profiles of the fractures,
we find earlier arrival times and longer time tailing behaviors for the granite fracture. A less
uniform tracer front and thereby both fast and slow preferential flow paths were observed
in Fig. 5, for the granite fracture. The tracer reaches the outlet of this fracture shortly after
injection (t∗ ∼ 0.4) while this occurs at a larger dimensionless time for the Vosges sandstone
(t∗ ∼ 0.55). Moreover, the plume center of mass (C∗ = 0.5) and the complete saturation
of the fractures (C∗ = 1) occur respectively at dimensionless times t∗ ∼ 1.2 and t∗ ∼ 5.5
for the granite fracture and at dimensionless times t∗ ∼ 1 and t∗ ∼ 5 for the Vosges
sandstone fracture. These observations support the finding of smaller arrival times and longer
time tailing behaviors in the concentration profiles of the granite fracture, as evident from
Fig. 6.

The concentration measurements are affected to random errors due to CCD image noise
and solute absorptivity ε and apertures h measurements accuracy. The errors of ε and h are
known, however, the transport experiments were instantaneous and thus the concentration
measurement errors could not be obtained by averaging multiple images. To estimate these
errors, the fractures were sequentially filled with 10 known concentrations varying from 0
to C0 = 0.05 g/l and the root-mean-square errors at each pixel and the averaged errors at
each positions x were calculated, respectively. These resulting averaged error profiles were
then fitted by least-squares spline to accurately interpolate the averaged RMS error of the
concentrations of the transport experiments. The averaged root-mean-square (RMS) error
at individual positions ranged from 0.003C0 for the 0 g/l in both fractures to 0.011C0 and
0.009C0 for 0.05 g/l in the Vosges sandstone and the granite fractures, respectively. These
values were used to plot the error bars on the BTCs presented in the next section (i.e.,
Figs. 7 and 8).

5 Modeling Analysis

5.1 Breakthrough Curves at Fracture Outlets

As noted in Sect. 1, experiments are usually performed on non-transparent samples by mea-
suring only the volume production and the outlet breakthrough curves. In this context, fracture
transport properties are usually only characterized on a global (domain) scale. In this sub-
section, for each presented model we study the ability to fit the tracer outlet concentration
profiles (i.e., breakthrough curves) and the goodness-of-fits of the estimated parameters. We
then use these models in Sects. 5.2 and 5.3 to examine concentration profiles at different
dimensionless positions x∗ along the fractures.

Figure 7 shows the analytical solutions (Eqs. 4, 5, and 7) fitted to the outlet concentration
profiles by allowing all parameters to change in the fitting process. For reference, we show
here also solutions using the one-dimensional ADE:

∂C

∂t
= D

∂2C

∂x2 − U
∂C

∂x
(14)

where D is the longitudinal hydrodynamic dispersion coefficient related to the dispersivity
α and the molecular diffusion of the solute in the fluid Dm by D = αU + Dm (Taylor 1953;
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Table 2 Model parameters at position x∗ = 1 (Q = 230 ml/h for the Vosges sandstone fracture and Q =
600 ml/h for the granite fracture)

Vosges sandstone Granite Vosges sandstone Granite
Q = 230 ml/h Q = 600 ml/h

U = Q/(L y〈h〉) U = Q/(L y〈h〉)
ADE

U (m/s) 4.25e-4 8.81e-4 5.03e-4 11.80e-4

D(m2/s) 8.92e-6 4.25e-5 6.68e-6 4.57e-5

RMSE 1.62 1.90 11.99 11.40

Stratified (normal distribution)

U (m/s) 4.73e-4 10.49e-4 5.03e-4 11.80e-4

H 0.463 0.427 0.397 0.467

RMSE 1.40 4.29 3.61 6.91

Stratified (lognormal distribution)

U (m/s) 5.00e-4 11.52e-4 5.03e-4 11.80e-4

H 0.390 0.557 0.385 0.586

RMSE 1.66 1.81 1.88 2.16

CTRW

uψ (m/s) 7.41e-4 22.66e-4

Dψ(m2/s) 3.22e-6 5.83e-5

β 1.66 1.35

t1 (s) 100.87 10−0.22

t2 (s) 104 103.2

RMSE 0.78 1.79

Aris 1956). For the case of a continuous injection of a constant concentration, the analytical
solution of the ADE is given by Ogata and Banks (1961).

The experimental averaged concentration profiles for the fractures are very close to each
other in a complete dimensionless form (C∗ vs t∗). Therefore, to better distinguish among the
different models, the results are presented as function of time t in Figs. 7, 8, and 9. Moreover,
to compare the results of different models in the early breakthrough times and long-time tails,
the results are presented in both linear (C∗ vs t) and logarithmic (log(1−C∗) vs log(t)) scale.
The parameter values and the goodness of results are summarized in Table 2. To compare
the models, the root-mean-square error (RMSE) is used as a criterion to reflect the goodness
of fit. It is calculated by:

RM SE = 100

√√√√ 1

N

N∑
i=1

(
C∗

ie − C∗
im

)2 (15)

where C∗
ie is the estimated concentration, C∗

im is the measured concentration, and N is the
number of measured values at a particular observation point.

The results show generally good agreements between the experimental and model con-
centration profiles (Fig. 7; Table 2). However, the comparison between the measured average
velocities and those estimated by the models reveals that the ADE and stratified approach
using the normal permeability distribution are unable to estimate correctly the average veloc-
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Fig. 7 Outlet average concentration profiles versus time (Q = 230 ml/h for the Vosges sandstone fracture
and Q = 600 ml/h for the granite fracture). Analytical solutions (Eqs. 4, 5, 7, and 14) fitted to the outlet
concentration profiles (all parameters change in the fitting process): a Linear scale, b logarithmic scale. See
Table 2 for detailed values

ities; the estimated values are larger than the measured ones for both experiments. To correct
this discrepancy, these models were subsequently fitted to the experimental data using the
measured average velocity as a given parameter and leaving the dispersion coefficient D and
the heterogeneity factor H as the fitting parameters (Fig. 8). Parameter values and goodness
of fit in terms of RMSE associated with these results are also summarized in Table 2.

This second fit leads to a significant shift to the right for the advection–dispersion approach,
with a very poor match to the data (Fig. 8). As often demonstrated in the literature, the
advection–dispersion approach is unable to describe the early arrival time and the long-time
tailing behavior characteristic of non-Fickian transport.

For the stratified approach with a normal permeability distribution, this second fit also
has a negative effect as the resulting BTC moves away from the experimental BTC for both
fractures and for values of C∗ in the range of 0–0.9 (i.e., 1 − C∗ higher than 10−1).

Finally, excepting the long-time tailing region of the experimental BTCs, the stratified
approach with a lognormal permeability distribution shows a better agreement with the exper-
imental data in Fig. 8. The model BTCs associated with this approach are almost unaffected
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Fig. 8 Outlet average concentration profiles versus time (Q = 230 ml/h for the Vosges sandstone fracture and
Q = 600 ml/h for the granite fracture). Analytical solutions (Eqs. 4, 5, 14) fitted to the outlet concentration
profiles using the measured average velocity as a constant and the dispersion coefficient D and the heterogeneity
factor H as fitting parameters: a Linear scale, b logarithmic scale. See Table 2 for detailed values

by the second fit, as confirmed by the RMSE values in Table 2. Therefore, the stratification
factor values obtained by this approach can be used to quantitatively compare the degree of
heterogeneity of the fractures. The higher value of the stratification factor H for the granite
fracture suggests that the aperture field of this fracture is more variable than that of the Vosges
sandstone fracture. This result is in good agreement with the physical characteristics of the
two fractures.

As explained later in Sect. 5.2, the distributions of local permeabilities over the entire
fractures are better described by a lognormal distribution than by a normal distribution. While
local permeability distributions disregard the spatial correlation of the field, this observation
seems to suggest that the permeability distribution of the equivalent medium layers is linked
to the local permeability distribution. We will see later that when the local permeabilities
follow a normal distribution, BTCs are best fitted by the stratified approach with a normal
permeability distribution of the layers.

Considering now the CTRW approach, Fig. 7 clearly shows its ability to characterize
tracer transport in the two fractures, agreeing with the experimental data for both the early
arrival times and the long-time tailing. Accordingly, CTRW model leads to the lowest RMSE
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Fig. 9 Outlet average concentration profiles versus time (Q = 460 ml/h for the Vosges sandstone fracture
and Q = 1200 ml/h for the granite fracture). See Table 3 for detailed calculations and values

values in Table 2 for both fractures. The lower value of β for the granite fracture in Table 2
indicates again that this fracture is more heterogeneous than the Vosges sandstone fracture.
For our experiments, we obtain transport velocities higher than the mean fluid velocities. As
explained above, the transport velocity may be larger or smaller than the average fluid velocity.
The difference between these two velocities arises because of the way that the velocities are
averaged; in contrast to the definition of average fluid velocity U , the average transport
velocity uψ is defined as the first moment of the transition length probability distribution
function, p(s), divided by a characteristic time. The presence of preferential paths can explain
an average transport velocity higher than the average fluid velocity. Tracer injected in the
vicinity of a preferential path will allow much of the tracer to travel through the fracture at
higher velocity; this tracer is excluded from the other regions where water is present, yielding
a higher average tracer velocity relative to that of the fluid (Kuntz et al. 2011).

Table 2 summarizes the parameter values and the goodness of the results presented in this
subsection, and confirms that the equivalent-stratified medium and the CTRW approaches
characterize non-Fickian transport features in the two fractures.

To demonstrate the robustness of the estimated parameters of these approaches, a second
set of experiments was carried out at different flow rates and the estimated parameters (see
Table 2) were used to model the resulting averaged concentration profiles. Figure 9 shows
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the concentration profiles at the outlet of the fractures. Details of the parameters and their
values calculated from the analytical solutions (Eqs. 5, 7) are summarized in Table 3. The
RMSE values confirm that the estimated values (Table 2) can be used to model the averaged
concentration profiles at different flow rates.

To this point, the equivalent stratified medium and the CTRW approaches were tested at
the outlet of the fractures. As noted above, in the next sections we study individually the
suitability of these approaches to fit the concentration profiles at different positions along the
length of the fractures.

5.2 The equivalent-stratified medium approach

As explained in Sect. 2.1, the fundamental equation of the stratified approach (Eq. 1) assumes
that the permeability of layers of the equivalent stratified medium is randomly distributed
and follows a given probability distribution function (normal or lognormal distribution law).
The permeability of each layer is constant at medium scale but can change from one layer
to another. Here, the transport can be characterized by a constant heterogeneity factor H ,
and the average tracer front velocity can be given by the measured average fluid velocity.
Figure 10a, b shows the stratified normal and lognormal distribution approaches (Eqs. 4, 5)
fitted to the outlet concentration profile and plotted at four distances with the heterogeneity
factor calculated at x∗ = 1 for the Vosges sandstone and granite fractures, respectively. The
associated root-mean-square error (RMSE) values are listed in Table 4.

Experimental and model concentration profiles in Fig. 10a and their corresponding RMSE
values in Table 4 show that the stratified normal and lognormal distribution approaches better
fit the measured concentration profiles, respectively, at distances x∗ = 0.25, 0.45 and 0.6 and
at distances x∗ = 0.8 and 1 for the Vosges sandstone fracture. Except for some discrepancies
during the intermediate and late times at x∗ = 0.25 and the late times at x∗ = 0.8, the
agreement between the experimental results at each distance and its associated (normal or
lognormal) approach is generally satisfactory. However, a reliable criterion to choose the
suitable permeability distribution at a given location in the fractures is needed.

The differences between the results using the normal and lognormal distributions might
be related to the difference in the distribution of local permeabilities from the inlet to a given
position in the fracture. Figure 11 shows the distributions of local permeabilities (k(x, y) =
h2(x, y)/12) over the inlet and four distances (x∗ = 0.25, 0.5, 0.75 and 1) for the Vosges
sandstone fracture. The distributions are also fitted by normal and lognormal distributions and
the determination coefficient r2 (shown in Fig. 11) is used as a criterion to reflect the goodness
of fits. The distribution of local permeabilities follows the normal law in the first half of this
fracture, as shown in Fig. 11a, b. Then, for x∗ > 0.5, the distributions change progressively
their forms and become completely lognormal for x∗ > 0.7, as shown in Fig. 11c, d.

From these results, one can conclude that the applicability of the stratified normal and
lognormal approaches at a given position in a fracture depends on the distribution of the
local permeabilities between the inlet and that position. This finding is corroborated by the
results on the granite fracture experiment. Figure 10b and the corresponding RMSE values
in Table 4 indicate that the stratified lognormal distribution approach yields better fits than
those of the stratified normal distribution approach, at all distances x∗ for this fracture. Also,
in agreement with these results, the distribution of local permeabilities follows the lognormal
law along the entire fracture, as shown in Fig. 12.

Although the stratified lognormal distribution better captures the concentration profiles
for this fracture, the goodness of fit is not satisfactory as x∗ decreases, especially below 0.6.
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Fig. 10 Stratified model fitted to the concentration profiles at different positions using the measured average
velocity and the heterogeneity factor H calculated at x∗ = 1: a Vosges sandstone; b granite

As discussed in Sect. 4, this might be due to the high level of spatial variability of the aperture
field of this fracture which cannot be accurately modeled using a single parameter model (i.e.,
the heterogeneity factor H ). A simple way to increase the ability of the stratified approach
to model tracer transport in the fractures is to consider any fracture portion between the
inlet and a given position as a heterogeneous medium itself, leading to a position-dependent
heterogeneity factor (see Fourar and Radilla 2009).

Figure 13a, b shows the stratified normal and lognormal distribution approaches (Eqs. 4, 5)
fitted to the concentration profiles at different distances respectively for the Vosges sandstone
and granite fractures using the measured average velocity as constant and leaving the hetero-
geneity factor H as the single fitting parameter. As expected, the individually fitted curves
better describe the experimental concentration profiles. Values of H and RMSE are listed in
Table 4. The performance of individual fits is indicated by the smaller RMSE values of indi-
vidual fits than the predicted ones with the heterogeneity factor H calculated at x∗ = 1.Here
again, the applicability of the stratified normal and lognormal approaches at each position
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Fig. 11 The distribution of local permeabilities between the inlet and the positions x∗ = 0.25, x∗ = 0.5, x∗ =
0.75, and x∗ = 1 for the Vosges sandstone fracture. The distributions are fitted by normal and lognormal
distributions

is in agreement with the distribution of the local permeabilities between the inlet and this
position.

Figure 14 shows the evolution of experimental values of H as a function of the dimen-
sionless length of the fractures. It appears that the heterogeneity factor H is a decreasing
function of the distance from the fracture inlets. The fractures at the inlet can be considered
as stratified and therefore, H has its maximum value. As the tracer advances through the
fractures, the flow becomes three-dimensional and the stratification effect of the fractures
decreases. The stratification factor tends to a constant value near the outlet of both fractures.
Figure 14 shows the stratification factor to be a power law of the dimensionless distance from
the fracture inlet:

H = a(x∗)b (16)
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Fig. 12 The distribution of local permeabilities between the inlet and the positions x∗ = 0.25, x∗ = 0.5,
x∗ = 0.75, and x∗ = 1 for the granite fracture. The distributions are fitted by normal and lognormal distribu-
tions

The associated values of parameters a and b are presented in Table 4. By comparing the values
for a, the stratification factor values at x∗ = 1, the fractures can be classified according to
their degree of heterogeneity. These results are consistent with the study of Fourar and Radilla
(2009) on heterogeneous porous media.

The stratified approach leads to fairly good results: its main advantage is that it provides a
good estimate of the average fluid velocity and also gives insight into the distribution of local
permeabilities of a given heterogeneous medium. Moreover, the stratification factor H can be
used to quantify the degree of heterogeneity of the fracture. However, this approach is unable
to describe correctly the long-time tailing behaviors associated with non-Fickian transport
(the stratified normal and lognormal distribution approaches underestimate and overestimate
the concentration values, respectively). This is mainly due to the inherent assumption of the
present work which considers two simple and commonly used permeability distributions
defined by a single parameter (i.e., normal and lognormal distributions). Searching for a
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Fig. 13 Stratified model fitted to the concentration profiles at different positions leaving the heterogeneity
factor H as a single fitting parameter: a Vosges sandstone; b granite

more complex permeability distribution of layers for which the resulting BTCs better fit the
experimental BTCs is certainly possible, but beyond the scope of the present work.

5.3 The CTRW approach

Using the CTRW approach, it is possible to match breakthrough curves measured at different
positions with a single set of uψ, Dψ, β, t1, and t2; obtained from a fit to the outlet concen-
tration profile. Our results confirm that for both fractures, 1 < β < 2, so that the average
tracer velocity is constant in time; therefore, the CTRW transport equation (Eq. 7) with TPL
probability rate is fitted to the outlet concentration profile and plotted at four additional posi-
tions, as shown in Fig. 15. The associated RMSE values are listed in Table 4. Compared to
the stratified normal and lognormal approaches, the CTRW approach provides better results
with a single set of parameters. The performance of the CTRW approach is also reflected by
smaller RMSE values, as evident from Table 4.
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Fig. 14 Heterogeneity factor H versus the dimensionless distance x∗

Figure 15a and the associated RMSE values in Table 4 indicate that the predictions of the
CTRW approach are generally in very good agreement with the experimental concentration
profiles of the Vosges sandstone fracture, except some discrepancies during the early and
intermediate times at x∗ = 0.25. It is important to note that all three modeling approaches
considered here are averaged approaches, so that in all cases, the tracer must experience
sufficient heterogeneities (i.e., x∗ must be sufficiently large) to allow a meaningful application
by “average concentration” estimates from the model. Therefore, it is somewhat normal that
the CTRW approach, and also the stratified normal and lognormal distributions approaches,
cannot describe correctly the concentration profile near the outlet of the fractures only by the
parameters obtained from the outlet concentration profile. This feature can also be confirmed
by the experimental and predicting results of the granite fracture. As shown in Fig. 15b and
Table 4, the goodness of fits increases significantly as x∗ decreases, especially below 0.6.

As explained in Sect. 2.2, the TPL transition time distribution function is a key aspect of the
CTRW approach, which characterizes the nature of the transport by the value of β. The nature
of the transport in a fracture depends obviously on the configuration of the heterogeneities.
Therefore, an individual value of β at each x∗ can be used to explain the effect of the spatial
variability of the fracture aperture fields on the nature of the transport between the inlet and
different distances.

Figure 16a, b shows the CTRW approach (Eq. 7) fitted to the concentration profiles
at different distances using the uψ, Dψ, t1, and t2, calculated from the outlet concentration
profile, as constants and leaving β as the single fitting parameter for the Vosges sandstone and
granite fractures, respectively. The estimated values of β and the goodness of fit at different
distances are listed in Table 4. For both fractures, the results do not change significantly
except at x∗ = 0.25 for the Vosges sandstone fracture and x∗ = 0.2 for the granite fracture.
As can be seen in Table 4, the estimated values of β are very close to the values obtained
from the outlet concentration profiles at x∗ > 0.2. This behavior shows stability in the flow at
the fracture scale, which is in agreement with the CTRW framework that assumes stationary
statistical properties even though the fracture aperture fields are highly variable. The lower
values of β at x∗ near the inlet (consistent also with the higher values of the stratification
factor H in this region), indicate the strong impact of the local heterogeneities on transport
near the fracture inlets.
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Fig. 15 CTRW model (Eq. 7) fitted to the outlet concentration profiles and plotted at four other positions: a
Vosges sandstone; b granite

The results demonstrate the ability of CTRW to characterize anomalous transport in the
fractures. This approach accounts for a broad spectrum of tracer transition rates in heteroge-
neous media, and as a consequence, it is capable of correctly capturing the early arrival
times and the long-time tailing. Moreover, the CTRW parameters Dψ, β and t2 can be
used to characterize the nature of tracer transport in the fractures and to compare relative
degrees of fracture heterogeneity. For our experiments, the higher value of dimensionless
dispersion coefficient for the granite fracture shows that the transport is more dispersive:
D∗
ψ = Dψ/(uψ Lx ) is 0.017 for the Vosges sandstone fracture and 0.078 for the granite

fracture. The lower values of β for the granite fracture show again that the aperture map of
this fracture is more variable than the Vosges sandstone fracture. For both experiments, the
values of cut-off time t2 are very large compared to the duration of the experiment (2580 s
for the Vosges sandstone fracture experiment and 1550 s for the granite fracture experiment),
indicating that transition to Fickian transport has not yet occurred.
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Fig. 16 CTRW model (Eq. 7) fitted to the concentration profiles using the uψ, Dψ, β, t1 and t2 of the outlet
concentration profile and leaving exponent β as the single fitting parameter: a Vosges sandstone; b granite

6 Conclusions

Tracer test experiments were conducted through replicas of two real fractures. The experi-
ments were interpreted with three different approaches to evaluate their ability to describe the
transport behaviors and to relate model parameters to fracture heterogeneity. In particular,
we evaluated the advantages and disadvantages of the stratified and CTRW approaches in
terms of their ability to describe the evolution of breakthrough curves determined at several
distances from the inlet.

The results indicated that the classical advection–dispersion model is not appropriate for
modeling early arrival and long-time tailing, as a result of the inherent heterogeneity of the
fractures and the resulting non-Fickian transport behavior. In contrast, the stratified model
with one spatially dependent parameter better captured the evolution of anomalous break-
through curves. Using this approach, the average fluid velocity and the distribution law of
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local permeabilities can be determined for a medium. Also, the heterogeneity factor H can
be used to examine the degree of heterogeneity. However, the stratified approach associ-
ated with a single parameter permeability distribution cannot explain the long-time tailing
adequately, and the H factor is space-dependent and determined from detailed information
on the permeability distribution. Developing more complex (multi parameter) permeability
distributions would certainly lead to better fits of the experimental BTCs and is therefore
a potentially promising path to be explored in the future. The CTRW, based on estimated
parameters obtained from the outlet breakthrough curve, provided excellent description of
the full evolution of the breakthrough curves. The coefficient β appears as a consistent para-
meter to characterize the heterogeneity. Further study is needed to identify the relationship
between the tracer transport velocity and the mean fluid velocity.
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