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Abstract This study deals with macroscopic modeling of heat transfer in porous media
subjected to high temperature. The derivation of the macroscopic model, based on thermal
non-equilibrium, includes coupling of radiation with the other heat transfer modes. In order
to account for non-Beerian homogenized phases, the radiation model is based on the general-
ized radiation transfer equation and, under some conditions, on the radiative Fourier law. The
originality of the present upscaling procedure lies in the application of the volume averaging
method to local energy conservation equations in which radiation transfer is included. This
coupled homogenization mainly raises three challenges. First, the physical natures of the
coupled heat transfer modes are different. We have to deal with the coexistence of both the
material system (where heat conduction and/or convection take place) and the non-material
radiation field composed of photons. This radiation field is homogenized using a statistical
approach leading to the definition of radiation properties characterized by statistical functions
continuously defined in the whole volume of the porous medium. The second difficulty con-
cerns the different scales involved in the upscaling procedure. Scale separation, required by
the volume averaging method, must be compatible with the characteristic length scale of the
statistical approach. The third challenge lies in radiation emission modeling, which depends
on the temperature of the material system. For a semi-transparent phase, this temperature is
obtained by averaging the local-scale temperature using a radiation intrinsic average while
a radiation interface average is used for an opaque phase. This coupled upscaling proce-
dure is applied to different combinations of opaque, transparent, or semi-transparent phases.
The resulting macroscopic models involve several effective transport properties which are
obtained by solving closure problems derived from the local-scale physics.
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List of Symbols

Roman Symbols

A Specific area of the porous medium
A m Fluid-solid interface or interfacial area within V m

A R Fluid-solid interface or interfacial area within V R

bγ1γ2 Closure variables for the deviation temperature fields (problems I and II)
cpγ Heat capacity per unit mass of the γ -phase
gγ Scattering asymmetry parameter
h Effective heat transfer coefficient
I Radiation intensity
Kγ1γ2 Effective thermal diffusion-dispersion tensor
k Thermal conductivity
L Macroscopic system typical size
lγ Typical local-scale size of phase γ

n Refractive index
nγ1γ2 Normal unit vector from the γ1-phase to the γ2-phase
P, P Energy generation rate per unit volume
pγ , pγ1γ2 Effective property associated with heterogeneities of the average radiative source

term
q Energy flux vector
r Position vector
rm Size of the averaging volume
rR Size of the radiative averaging volume
rγ Closure variables for the deviation temperature fields (problem IV)
s, s′ Curvilinear abscissa along a ray
S Source term in the GRTE
sγ Closure variables for the deviation temperature fields (problem III)
T Temperature
uγ1γ2 Macroscopic pseudo-convective transport vector
u Direction unit vector
V R

γ Volume of the γ -phase within V R

V m
γ Volume of the γ -phase within V m

v Velocity
V m Averaging volume
V R Radiative averaging volume

Greek Symbols

α, αγ Coefficient relating the radiation source term to its average
Bγ Generalized extinction coefficient at equilibrium
βγ Extinction coefficient at equilibrium
Πγ Volume fraction of the γ -phase
K Generalized absorption coefficient at equilibrium
κγ Absorption coefficient at equilibrium
λ Wavelength
�γ Generalized scattering coefficient
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σγ Scattering coefficient
σ Stefan-Boltzmann constant
ϕ Energy flux
ργ Density
ξγ , ξγ1γ2 Macroscopic distribution coefficient
Θ Homogenized temperature (radiation model)
ν Radiation frequency

Subscripts

f Fluid
s Solid
w Wall
t Tomography
γ, γ1, γ2 General index for a phase ( f, s or w)

Superscripts

eff Effective
cd Conductive
R Radiative
sc Scattering
ext Extinction
e Emission
a Absorption
l Leaving a boundary (radiation)
( j) j-th perturbation order

Special notations

〈·〉m Superficial volume averaging operator
〈·〉mγ Intrinsic volume averaging operator related to the γ -phase
〈·〉Rγ Radiative intrinsic volume averaging operator related to the γ -phase
〈·〉A R

Radiative interfacial averaging operator
·̃ Deviation

1 Introduction

This study concerns the derivation of a macroscopic model for heat transfer in porous media
at high temperatures. The originality of this theoretical analysis lies in the coupling of upscal-
ing approaches in order to account for both radiation and diffusion/convection. The present
homogenization process, based on local thermal non-equilibrium, consists in applying the
volume averaging method (Whitaker 1999) to the local energy conservation equations where
homogenized radiation heat transfer is included at the local scale (i.e., at scale equal to
or smaller than the pore size). So far, homogenization procedures for radiation and diffu-
sion/convection in porous media have been separately performed.
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Homogenization of heat transfer in porous media in the absence of radiation has often
been studied using the volume averaging method both in the context of local thermal equilib-
rium or local thermal non-equilibrium (Carbonell and Whitaker 1984; Moyne 1997; Quintard
and Whitaker 1993a; Quintard et al. 1997; Quintard and Whitaker 2000). In the first case,
upscaling energy conservation leads to the averaged one-equation model while the ther-
mal non-equilibrium situation naturally gives rise to a two-equation model whose coupling
between phases is described by interfacial exchange terms and effective transport proper-
ties. These latter are obtained by solving associated local closure problems and dispersion
effects when convection is considered. Constant homogeneous and/or heterogeneous thermal
sources have also been included (Whitaker 1998; Quintard et al. 2000) leading to an addi-
tionnal distribution coefficient for the heterogeneous thermal source. As shown in the next
sections, including radiation actually leads to similar models, but in that case, the homoge-
neous and/or heterogeneous thermal sources are not constant.

Radiation in porous media has been the subject of a specific attention during the last
decades and a first actual challenge consists in characterizing the homogenized porous media
in terms of the averaged radiative properties. Most of the time, these properties are obtained
using a parameter identification technique (Baillis and Sacadura 2000). The emission and
scattering coefficients of the porous medium are identified from experimental data, assuming
that the homogenized radiative transfer can be modeled using a classical radiation transfer
equation (RTE). The radiative characterization of the porous medium can now be based on
a direct statistical homogenization; the microstructure of the solid matrix is then often taken
into account from X- and γ -ray tomography data. The homogenized semi-transparent phase
is accurately characterized from the chord distribution functions of the medium (Torquato
and Lu 1993). This method was first developed by Tancrez and Taine (2004) and extensively
used and further developed in numerous studies (Zeghondy et al. 2006b; Petrasch et al.
2007; Bellet et al. 2009; Haussener et al. 2009,2010a; 2010b,Taine et al. 2010; Chahlafi
et al. 2012). A detailed review is provided by Taine and Iacona (Taine and Iacona 2012)
for statistically isotropic media. These statistical homogenization approaches can be applied
to any microscopic morphology (isotropic or not) and, contrary to identification methods,
are not limited to homogenized medium assumingly obeying Beer’s laws (i.e., absorption,
extinction, and scattering have an exponential behavior).

An alternative method based on spatial averaging has been introduced by Consalvi et al.
(2002) in order to derive a homogenized RTE for multiphase systems. This methodology has
been improved by averaging in each phase giving rise to the conventional RTE. This model
takes into account exchange of radiation between phases (Gusarov 2008). A similar approach
has been used by (Lipiński et al. 2010a,b) and by Petrasch (2011) for semi-transparent two-
phase media.

The coupled homogenization procedure proposed in the present study mainly raises three
difficulties. The first one is related to the different physical nature of radiation, which refers
to a non-material field composed of photons, and conduction/convection, which take place in
the material system. The radiation field is homogenized, in a rather general case, using a sta-
tistical approach leading to the definition of radiation properties characterized by continuous
statistical functions defined in the whole system (cumulated extinction distribution function,
cumulated absorption probability, and cumulated scattering probability). In this general case,
the homogenized phases are not Beerian and the radiation model is based on the Generalized
Radiative Transfer Equation (GRTE) (Taine et al. 2010; Taine and Iacona 2012) and on the
radiative Fourier law under some validity conditions (Gomart and Taine 2011).

The second difficulty concerns the compatibility between the characteristic length scale
of the statistical approach and the length scale constraints imposed by the volume averaging
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method. The third challenge lies in modeling of emission, which depends on the temperature
of the material system. For a semi-transparent phase, this temperature is obtained by averaging
the local-scale temperature using a radiation intrinsic averaging operator; for an opaque
phase, a radiation interface average is used.

The present analysis only considers transfer phenomena in the core of the porous medium.
Indeed, macroscopic modeling at the interface between a homogeneous and a porous medium
is beyond its scope. The paper is organized as follows: first, the challenges we are facing in this
coupled upscaling procedure are presented in Sect. 2. Then, a generalized statistical radiation
model is briefly described and applied for different combinations of opaque, transparent, and
semi-transparent phases (Sect. 3). Sect. 4 is dedicated to the coupled upscaling procedure,
giving rise to the macroscopic governing equations and the closure problems associated with
the effective transfer properties. Finally, Sect. 5 presents the results of numerical calculations
of effective properties.

2 Challenges of Coupling

The porous medium under consideration is composed of a rigid solid matrix (index s) assumed
to be statistically isotropic and uniform, saturated by a fluid (index f ), the two phases com-
posing the material system. The fluid (gas at ambient pressure) is motionless or not and the
solid phase is subjected to high temperature. As previously mentioned, the present analysis
aims at deriving a macroscopic model for non-equilibrium heat transfer including radiation.
The originality of the present upscaling procedure lies in the fact that the volume averaging
method (Whitaker 1999) is applied to local conservation equations where the radiative trans-
fer is taken into account after a statistical homogenization. In this context, we are facing a
number of challenges.

One of the difficulties in upscaling these coupled transfer phenomena lies in their different
physical natures. Indeed, in the problem under consideration, we have to deal with the coex-
istence of both the material system, where heat conduction and convection take place, and
the non-material radiation field, composed of photons. This radiation field is homogenized
using a statistical approach leading to the definition of the associated radiative properties.
Note that these γ -phase radiative properties are continuously defined over the whole volume
of the medium with a spatial resolution smaller than the pore size. It is important to recall
that in the statistical approach, the different phases are not spatially separated, their existence
being defined by a presence probability through the γ -phase volume fraction Πγ . On the
other hand, diffusion and convection in the pores are described by a discrete representation
where conservation equations for each phase are coupled by fluid-solid interfacial boundary
conditions. The derivation of an equivalent (continuous) macroscopic description taking into
account this duality represents one of the major issues of the present analysis.

The second difficulty concerns the different scales involved in the upscaling procedure.
Indeed, the volume averaging method is developed using an averaging volume V m (Fig. 1)
whose size rm is assumed to satisfy scale separation given by the length scale constraints

l f � rm � L (1)

where l f and L are the local and the macroscopic characteristic length scales, respectively.
Obviously, these scales have to be compatible with the characteristic length scale of the
radiation statistical approach.

Finally, the third challenge lies in the modeling of radiation emission which depends,
at local thermodynamic equilibrium, on a temperature Θγ compatible with the statistical
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Fig. 1 Averaging volumes

definition of the γ -phase used in the radiation modeling. For a semi-transparent phase, Θγ is
obtained by averaging the local temperature Tγ using the radiative intrinsic average operator
(Fig. 1)

Θγ = 〈Tγ 〉Rγ = 1

V R
γ

∫

V R
γ

Tγ dV , (2)

where V R is the radiative averaging volume, included in V m (Fig. 1), while V R
γ is the part

of V R occupied by the γ -phase in the material system. The characteristic length scale for
Θγ is rR (radius of V R); its values are discussed in Sect. 4.

For opaque walls, the homogenized wall temperature Θw is defined, using the radiative
interface average, by

Θw = 〈Tw〉A R = 1

A R

∫

A R
Tw dA (3)

where A R is the part of the fluid-solid interface A m included in V R, and Tw is the interface
temperature.

3 Homogenization of the Radiation Field

For the sake of simplicity, the medium is assumed to be statistically isotropic, uniform and
geometrical optics laws are assumed to be valid at any scale. Therefore, if l f represents the
pore size, the radiation wavelength λ must satisfy

λ � l f . (4)

Diffraction phenomena are then negligible.
The radiation statistical model which is coupled to the material system model in Sect. 4

has been given by Taine and Iacona (2012) and detailed by Tancrez and Taine (2004) and
Taine et al. (2010). It is only briefly summarized here.
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3.1 Principles of the Radiation Model

Any non-opaque γ -phase of the porous medium is fully characterized by effective radiative
properties after homogenization.

If radiation extinction within a homogenized phase is characterized by an exponential
law (case of a Beerian medium), these properties are extinction, scattering, or absorption
coefficients (βγ , σγ , or κγ , respectively), and a phase function pγ . All of these quantities
are, in our model, determined using the Radiative Distribution Function Identification method
(RDFI) (Tancrez and Taine 2004). Coupled classical Radiative Transfer Equations (RTEs)
associated with the different non-opaque phases allow the radiative intensity fields Iγ,ν (r, u)

in all these phases to be computed.
In many cases, however, extinction within a homogenized phase is not characterized by

an exponential law: the medium is then non-Beerian. It is commonly the case of statistically
anisotropic porous media or even of some statistically isotropic (e.g., foams of intermediate
porosity). Such homogenized phases are completely characterized, in our approach (Taine
et al. 2010), by an extinction cumulated distribution function (Gext

γ ), an absorption or a
scattering cumulated probability (Psc

γ or Pa
γ , respectively), and a phase function (pγ ). These

quantities have been determined using the methods defined in previous studies (Tancrez and
Taine 2004; Zeghondy et al. 2006a; Petrasch et al. 2007; Haussener et al. 2009, 2010b; Taine
et al. 2010; Taine and Iacona 2012). In that case, coupled Generalized Radiative Transfer
Equations (GRTEs) associated with the different non-opaque phases also allow the radiative
intensity fields Iγ,ν (r, u) to be computed. As a GRTE is directly expressed as a function of
Gext

γ , Psc
γ , and pγ , a numerical Monte Carlo transfer model, based on cumulative distribution

functions, does not require more computing time than in the case of a classical RTE (Taine
et al. 2010).

The coupling method in the present paper can be applied to both Beerian and non-Beerian
homogenized phases, by following the same procedure. Within any homogenized non-opaque
phase γ (fluid or solid), the radiative energy generation rate per unit volume of the medium
PR

γ is given, at a point M(r), by

PR
γ (r) = −∇ · qR

γ , (5)

where qR
γ is the radiative flux vector. This flux is a function of the radiative intensity field

Iγ,ν in the γ -phase such that

qR
γ (r) =

∫ ∞

0

(∫

4 π

u Iγ,ν (r, u) dΩ

)

dν, (6)

where ν is the frequency and u is the current unit vector.

The coupled transfer model is iterative. At iteration n, PR
γ

(n)
and, if necessary, the radiative

flux qR
γ

(n)
(r)·n at an opaque wall are computed from the temperature fields issued, at iteration

n − 1, from the energy balance equations of the phases and their boundary conditions. At

iteration n, PR
γ

(n)
is then a source term of the γ -phase energy balance equation and qR

γ
(n)

(r) ·
n is a contribution to the boundary condition at any possible opaque interface. This scheme
is applied in Sect. 4.

In practice, a radiative Fourier law, also called diffusion approximation, can very often be
applied to homogenized phases of a porous medium. Gomart and Taine (2011) have shown
that this law is valid around a point M(r) if two conditions are satisfied: (a) The point M(r)
does not belong to a radiative boundary layer of the whole porous medium, i.e., is located at
least at a distance greater than lR

b = 5/κeff
γ from any boundary of the porous medium; κeff

γ is
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an effective absorption coefficient which accounts for multiple scattering. This first criterion
ensures that the medium is optically thick in all directions. (b) The temperature field Θγ (M)

satisfies the second criterion

1

Θγ

dΘγ

dx
< η κeff

γ , (7)

where η depends on the desired accuracy on the result (Gomart and Taine 2011). Eq. (7)
has to be satisfied at any scale dx , starting from the finest one at which Θγ is defined. High
temperature variations or discontinuities, for instance due to a flame front within the medium,
therefore, prevent the radiative Fourier law from being used in the whole medium.

The radiative Fourier law is a function of the temperature gradients within possibly cou-
pled non-opaque phase. In the Beerian case, a perturbation technique of the RTE allows the
radiative conductivity tensors to be expressed, from the refractive index nγ , the extinction
and scattering coefficients, βγ and σγ , and the scattering asymmetry parameter gγ of the
phases (Taine et al. 2010; Taine and Iacona 2012). This development is similar to the intro-
duction of the classical thermal conductivity by a perturbation of the Boltzman equation in the
continuous medium approach. For non-Beerian homogenized phases, generalized extinction
and scattering coefficients at equilibrium, Bγ and �γ , replace the classical extinction and
absorption coefficients (Taine et al. 2010; Taine and Iacona 2012; Chahlafi et al. 2012). The
perturbation development is carried out up to the first order, i.e.,

PR
γ = PR

γ

(0) + PR
γ

(1)
(8)

where PR
γ

(i)
is the i-th perturbation order. The zeroth-order term PR

γ
(0)

represents the radia-
tive exchanges within an elementary volume dV where each phase is assumed isothermal.

It vanishes if only one of the two phases is absorbing. The first-order term PR
γ

(1)
is associated

with exchanges between dV and adjacent volumes dV ′.
At this point, it is worth discussing the spatial resolution of the radiation model. On the one

hand, the spatial resolution of the radiative properties of extinction, absorption, and scattering
are mainly limited by the spatial scale lt of the description of the medium, that is often the
spatial resolution of an X- or γ -ray tomography. If the medium is analytically defined,
geometrical information is available at any scale and lt is only limited by the resolution of
the computational model. These limitations are generally much smaller than the pore size.

On the other hand, radiation emission is based, at local thermodynamic equilibrium of
matter, on the spatial resolution of the temperature field Θγ , which depends in practice on the
matter modeling, as discussed in Sect. 4. This spatial limitation is generally more restrictive
and strongly depends on the couple of phases involved: opaque/transparent (O/T), semi-
transparent/semi-transparent (ST/ST), semi-transparent/transparent (ST/T), or opaque/semi-
transparent (O/ST). The first three cases are pesented in the next section. The last O/ST case,
more complex, is not addressed by this paper (see for instance (Chahlafi et al. 2012)).

3.2 Considered Couples of Phases

Porous media with an opaque solid phase and a transparent fluid one (O/T) are encountered
in many applications involving gases (Baillis and Sacadura 2000; Tancrez and Taine 2004;
Haussener et al. 2010b; Petrasch et al. 2007). Indeed, gases are generally considered optically
transparent at the local scale and radiation transfer only occurs between the walls of the
opaque solid matrix. The only homogenized propagation phase w is then characterized by a
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presence probability within the porous medium, i.e., porosity. It accounts for the statistical
wall distribution in a given volume of the porous medium.

The radiative energy generation rate per unit volume PR
w in the propagation phase is

determined using Eqs. (5) and (6). Since the propagation phase is in fact, transparent, it
is physically more relevant to consider a radiative isotropic homogenized flux ϕR

w at the
fluid-solid interface, given by

ϕR
w = PR

w

A
, (9)

where A stands for the interfacial area per unit volume of the porous medium. Computations
of ϕR

w can be carried out from a RTE (or a GRTE) applied to the homogenized phase.

If the validity conditions of the Fourier law defined in Sect. 3.1 are satisfied, PR
w

(0)
is

zero, since the fluid phase is transparent. An isotropic radiative conductivity kR
w is introduced

at the first perturbation order and ϕR
w becomes

ϕR
w = 1

A
∇ · [

kR
w (Θw) ∇Θw

]

, (10)

where the radiative conductivity kR
w is a scalar, as the homogenized phase is statistically

isotropic; kR
w simply writes, if the homogenized phase is non-Beerian and gray (Taine et al.

2010),

kR
w (Θw) = 16π

3

Π f

Bw − �wgw

σ Θ3
w, (11)

where σ is the Stefan-Boltzmann constant and Π f the volume fraction of the fluid phase. If
the medium is Beerian, Bw and �w are replaced by βw and σw , respectively. A generalization
to a non-gray medium is given by Taine et al. (2010).

When both the solid and fluid phases are semi-transparent (ST/ST), two GRTEs (or RTEs)
are coupled (Zeghondy et al. 2006a; Taine and Iacona 2012). The obtained coupled intensity
fields allow the radiative energy generation rate per unit volume given by Eq. (5) to be
determined in each phase.

When the validity conditions of the Fourier law, given in Sect. 3.1, are satisfied, the
perturbation zeroth-order contribution to the radiative energy generation rate per unit volume
is given, for gray phases for simplicity, by

PR
f
(0) = −PR

s
(0) = Π f n2

f K f Ks �fs

K f Ks + K f �sf + Ks�fs
σ

(

Θ4
s − Θ4

f

)

, (12)

where Θ f and Θs are the homogenized temperatures given by Eq. (2). �sf is the partial
scattering coefficient associated with radiation that is scattered from the homogenized phase
s to the homogenized phase f (transmitted at the local scale from the s phase to the f phase).
Eq. (12) represents the power exchanged between the phases within an elementary volume
dV of the porous medium.

The first-order contributions account for radiative exchanges between dV and the adjacent
volume elements, within the same phase and between the two phases, i.e.,

PR
γ

(1) = ∇ ·
(

kR
γ f ∇Θ f + kR

γ s∇Θs

)

γ = f, s. (13)

The partial conductivities kR
γ f and kR

γ s are numerically determined using a procedure similar
to the approach of Chahlafi et al. (2012). It is worth noticing that the zeroth-order term is
generally dominant (Chahlafi et al. 2012).
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A porous medium with a transparent fluid phase and an opaque solid one (O/T) has often
been considered in previous studies (Baillis and Sacadura 2000; Zeghondy et al. 2006a;
Haussener et al. 2009). The associated model is deduced from the ST/ST case by considering
that the homogenized fluid phase does not emit or absorb, but only scatters radiation (Taine
and Iacona 2012). The GRTE (or RTE) for the solid phase remains unchanged. When the

validity conditions of the Fourier law given in Sect. 3.1 are satisfied, PR
f
(0)

, PR
s

(0)
, and

PR
f
(1)

are zero, since emission and absorption only occur within the solid phase. Therefore,
the only contribution is

PR
s

(1) = ∇ · (

kR
s ∇Θs

)

. (14)

In Eq. (14), the value of kR
s is strongly influenced by the scattering properties associated

with the transparent fluid phase, especially at high porosity.

4 Macroscopic Modeling

This section is dedicated to the coupling of the radiative transfer model with an upscaling
model for energy transport in matter based on the volume averaging method (Whitaker 1999).
As previously mentioned, this upscaling method requires the scale separation given by Eq. (1).
More accurately, the use of the spatial averaging theorems and the simplifications associated
with the spatial decomposition in the averaging procedure leads to the following form of the
length-scale constraints (Whitaker 1999)

l f , ls � rm, (15)
(

rm)2 � L2, (16)

where the characteristic length scales of the fluid l f and solid ls phases within the averaging
volume are generally assumed to be of the same order of magnitude. Let us recall that these
length-scale constraints have been written assuming that conduction and convection within
phases at the pore scale are based on the continuum approach (the mean free path smaller
than l f , ls).

For conciseness, the volume averaging procedure is not detailed in the present section
where only the main steps are described and where our attention is focused on the radiation
contribution in the derivation of the macroscopic model. Details regarding the volume aver-
aging method applied to heat transfer with thermal non equilibrium are provided by Quintard
and Whitaker (1993a) and Quintard and Whitaker (2000). Let us just recall that this upscaling
method consists in applying the averaging operator

〈Ψγ 〉m = 1

V m

∫

V m
γ

Ψγ dV , (17)

to the different terms of the local conservation equations. In Eq. (17), 〈Ψγ 〉m is the superficial
average of the generic quantity Ψγ in the γ -phase. The introduction of the intrinsic average

〈Ψγ 〉mγ = 1

V m
γ

∫

V m
γ

Ψγ dV (18)

is also required. The intrinsic and superficial averages are related by

〈Ψγ 〉m = Πγ 〈Ψγ 〉mγ (19)
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where Πγ is the volume fraction of the γ -phase. The volume averaging method requires the
application of the following averaging theorems:

〈∇Ψγ 〉m = ∇〈Ψγ 〉m + 1

V m

∫

A m
nfsΨγ dA , (20)

〈∇ · Aγ 〉m = ∇ · 〈Aγ 〉m + 1

V m

∫

A m
nfs · Aγ dA , (21)

〈

∂Ψγ

∂t

m〉

= ∂〈Ψγ 〉m

∂t
− 1

V m

∫

A m
nfs · wfsΨγ dA , (22)

where Aγ is a generic vector quantity and wfs is the velocity of the fluid-solid interface.
Furthermore, this upscaling method requires at different levels the introduction of the spatial
decomposition (Gray 1975)

Ψγ = 〈Ψγ 〉mγ + ˜Ψγ (23)

where ˜Ψγ represents the deviation of Ψγ in the γ -phase. In order to include radiative transfer
in this averaging procedure, it is first necessary to verify the compatibility of these length
scale constraints with the local spatial resolution used for the radiation model at the local
scale. As mentioned before, this compatibility is obtained when the tomography resolution
lt of the local structure of the porous medium satisfies

lt � l f . (24)

It is worth mentioning that the homogenized temperature Θγ , given by Eq. (2) or (3), has a
resolution of the order of magnitude of the size rR of the radiative averaging volume V R.
rR has to be chosen as small as possible to guarantee the best tracking of the variations of
Θγ ; its minimal size is the one which guarantees the inclusion of a representative element
(regarding radiation) of the γ -phase in V R. In macroscopic 1D configurations, Θγ is constant
over planes; in macroscopic 2D configurations, it is constant over lines. In these two cases,
rR is, therefore, close to lt . In macroscopic 3D configurations, the Θγ field does not feature
any spatial invariance and rR is close to l f . In the following sections, the coupled upscaling
procedure is applied for different combinations of opaque, transparent, or semi-transparent
phases.

4.1 The Opaque/Transparent (O/T) Case

The local equations for energy conservation for the fluid and the solid phases are, respectively,

(

ρ f cp f
)

(

∂T f

∂t
+ v f · ∇T f

)

= ∇ · (

k f ∇T f
)

within V m
f , (25)

(

ρscps
) ∂Ts

∂t
= ∇ · (ks∇Ts) within V m

s . (26)

These equations are associated with the boundary conditions at the fluid-solid interface A m

T f = Ts at A m, (27)

−nfs · k f ∇T f + ϕR
w = −nfs · ks∇Ts at A m, (28)

where nfs is the interfacial normal vector oriented from the fluid phase to the solid phase,
and ϕR

w is a homogenized isotropic radiative flux. If the validity conditions of Fourier’s law
are satisfied, ϕR

w is given by Eq. (10). Otherwise, it is obtained from Eqs. (5), (6), and (9) by
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using the GRTE (Taine et al. 2010). Let us recall that ϕR
w strongly depends on the temperature

Θw through the emission source term (Taine and Iacona 2012). If the macroscopic system
does not feature any invariance, the three-dimensional spatial variations of Θw are accurately
represented by considering V R as small as possible, but large enough to include a fluid/solid
interface element. This is generally satisfied if rR is of the same order of magnitude as lγ
(γ = f, s). It is worth noticing that the definition of the Θw field makes the resolution of the
energy conservation numerical and iterative.

Assuming that the scale separation given by Eqs. (15) and (16) is satisfied, the application
of the averaging theorems to Eqs. (25) and (26) leads to the non-closed averaged conservation
equations for both the fluid and solid phases

Π f
(

ρ f cp f
) ∂〈T f 〉m f

∂t
+ Π f

(

ρ f cp f
) 〈v f 〉m f · ∇〈T f 〉m f + (

ρ f cp f
) ∇ · 〈̃v f ˜T m

f 〉

= Π f ∇ ·
(

k f ∇〈T f 〉m f
)

+ ∇ ·
(

k f

V m

∫

A m
nfs˜T f dA

)

+ k f

V m

∫

A m
nfs · ∇˜T f dA , (29)

Πs
(

ρscps
) ∂〈Ts〉ms

∂t
= Πs∇ · (

ks∇〈Ts〉ms) + ∇ ·
(

ks

V m

∫

A m
nsf ˜Ts dA

)

+ ks

V m

∫

A m
nsf · ∇˜Ts dA . (30)

At this stage, note that Eqs. (29) and (30) are identical to those provided in the absence of
radiation (Quintard et al. 1997; Quintard and Whitaker 2000).

In order to derive a closed form of these equations, the deviations of the temperature fields
˜Tγ (γ = l, s) have to be written in terms of intrinsic averaged quantities. This is achieved by
the derivation of associated closure problems, the first step consisting in deriving deviation
problems.

4.1.1 Deviation Problems

The deviation equations are obtained by subtracting the non-closed macroscopic equations
(Eqs. (29) and (30)), divided by the porosity Π f , from the local equations (Eqs. (25) and
(26)) in which the spatial decomposition (Eq. (23)) is introduced. Under the quasi-stationary
assumption (Whitaker 1999), the temperature deviation equation for the fluid phase takes the
form

(

ρ f cp f
)

v f · ∇˜T f + (

ρ f cp f
)

ṽ f · ∇〈T f 〉m f

= k f ∇2
˜T f − k f

V m
f

∫

A m
nfs · ∇˜T f dA within V m

f . (31)

Similarly, the temperature deviation equation for the solid phase is

0 = ks∇2
˜Ts − ks

V m
s

∫

A m
nsf · ∇˜Ts dA within V m

s . (32)

Use of the spatial decomposition (23) in boundary condition (27) leads to

˜T f = ˜Ts +
(

〈Ts〉ms − 〈T f 〉m f
)

at A m. (33)
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As intensity, radiative source terms or other radiative quantities associated with the energy
generation rate, ϕR

w is continuously defined over the volume of the whole medium. It can be
decomposed under the form

ϕR
w = 〈ϕR

w〉m + ϕ̃R
w. (34)

Under these circumstances, the deviation form of the boundary condition given by Eq. (28)
becomes

−nfs · k f ∇˜T f + nfs · ks∇˜Ts + ϕ̃R
w

= nfs · k f ∇〈T f 〉m f − nfs · ks∇〈Ts〉ms − 〈ϕR
w〉m at A m (35)

where ϕ̃R
w has the same spatial resolution as Θw .

4.1.2 Closure

At this stage, we need to express the radiative flux deviation ϕ̃R
w as a function of 〈ϕR

w〉m. Let
us assume that

ϕ̃R
w = α〈ϕR

w〉m (36)

where α is not a closure variable since it implicitly depends on Θw, itself resulting from the
local temperature T f and Ts .

Note that the treatment required for ϕR
w is actually similar to closure associated with

problems involving heterogeneous reactions (Wood et al. 2000; Valdés-Parada et al. 2006).
The introduction of Eq. (36) into the boundary condition (35) yields

−nfs · k f ∇˜T f + nfs · ks∇˜Ts

= nfs · k f ∇〈T f 〉m f − nfs · ks∇〈Ts〉ms − (1 + α)〈ϕR
w〉m at A m. (37)

Therefore, the deviation problem, where Eq. (35) has been replaced by Eq. (37), suggests to
write the deviation temperature fields under the form

˜T f = bff · ∇〈T f 〉m f + bfs · ∇〈Ts〉ms + s f

(

〈Ts〉ms − 〈T f 〉m f
)

+ r f 〈ϕR
w〉m, (38)

˜Ts = bsf · ∇〈T f 〉m f + bss · ∇〈Ts〉ms − ss

(

〈T f 〉m f − 〈Ts〉ms
)

+ rs〈ϕR
w〉m, (39)

where bff , bfs, s f , and r f are the closure variables associated with the fluid phase and
bsf , bss, ss , and rs those associated with the solid phase. This decomposition is close to
the one proposed for a constant interfacial source term (Quintard and Whitaker 2000). In the
present case, the closure variables r f and rs are associated with the non-constant radiative
source.

The introduction of expressions (38) and (39) into the deviation problem provides four
closure problems associated with the closure variables bγ1,γ2 , sγ , and rγ , the first three being
presented by Quintard et al. (1997) with the same symbols (see Sect. 3 of this reference). For
conciseness, we only consider here the derivation of the closure problem associated with the
radiative closure variables r f and rs . This latter takes the following form:
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Problem IV

(

ρ f cp f

)

v f · ∇r f = k f ∇2r f − k f

V m
f

∫

A m
nfs · ∇r f dA within V m

f (40a)

0 = ks∇2rs − ks

V m
s

∫

A m
nsf · ∇rs dA within V m

s (40b)

r f = rs at A m (40c)

nfs · k f ∇r f = nfs · ks∇rs + 1 + α at A m (40d)

r f (r + li ) = r f (r) for i = 1, 2, 3 (40e)

rs(r + li ) = rs(r) for i = 1, 2, 3 (40f)

〈r f 〉m f = 0 (40g)

〈rs〉ms = 0 (40h)

The validity of the periodic boundary conditions (40e) and (40f) has already been discussed
by Quintard and Whitaker (1993b, 1994): They are valid for periodic unit cells and for
disordered media where the scale separation constraint is satisfied.

The solution of closure problem IV is the original point of the method. It is important to
note that this closure problem depends on α, itself depending on the local temperature fields
T f and Ts . Consequently, the solution of closure problem IV depends on the solution of the
macroscopic conservation equations (see the following section). Therefore, the resolution of
the coupled problem requires to follow an iterative sequence (see Fig. 2):

1. Closure problems I, II, and III are solved.
2. Closure problem IV is solved for initialization. Since this step is performed with α = 0,

the solution does not depend on the macroscopic fields.
3. Effective properties are computed from the solutions of closure problems I–IV. The

macroscopic radiation flux field 〈ϕR
w〉m is initialized using a macroscopic approximate

calculation.
4. Closed macroscopic energy equations (64) and (69) (see the following section) are solved.
5. Local temperature fields T f (r) and Ts (r) are computed in a volume V (x), centered at

x. The decomposition Tγ (r) = 〈Tγ 〉mγ (r) + ˜Tγ (r) and Eqs. (38) and (39) can be used.
V (x) must be optically thick and can be bigger than the averaging volume V m (x). Θw

is then computed over V (x).
6. Radiative transfer is computed, using the appriopriate method (GRTE, degenerated

GRTE, and radiative Fourier law). This yields the ϕR
w field, its average 〈ϕR

w〉m and the α

field.
7. Closure problem IV is solved using the new value of the α field.
8. Effective properties are computed from the solutions of closure problems I–IV.

Steps 4 to 8 are repeated until convergence of r f , rs and ϕm
w is reached.

4.1.3 Closed Form

The averaged equations are closed by introducing closure relations (38) and (39) into Eqs. (29)
and (30). For the fluid phase, this yields

123



Coupled Upscaling Approaches 337

Fig. 2 Flowchart of the iterative sequence

Π f
(

ρ f cp f
) ∂〈T f 〉m f

∂t
+ Π f

(

ρ f cp f
) 〈v f 〉m f · ∇〈T f 〉m f −uff · ∇〈T f 〉m f −ufs · ∇〈Ts〉ms

= ∇ ·
(

Kff · ∇〈T f 〉m f
)

+ ∇ · (

Kfs · ∇〈Ts〉ms) + A h
(

〈Ts〉ms − 〈T f 〉m f
)

+A ξ f 〈ϕR
w〉m,+∇ · (

A p f 〈ϕR
w〉m)

(41)

where

A ξ f = k f

V m

∫

A m
nfs · ∇r f dA , (42)

A p f = k f

V m

∫

A m
nfsr f dA − ρ f cp f 〈̃v f r f 〉m, (43)

are the effective transport properties associated with radiation heat transfer. The other trans-
port properties are more classical and their expressions are given by Quintard et al. (1997) (see
Sect. 3 of this reference). Similarly, the closed form of the macroscopic transport equation
for the solid phase is given by
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Πs
(

ρscps
) ∂〈Ts〉ms

∂t
− usf · ∇〈T f 〉m f − uss · ∇〈Ts〉ms

= ∇ ·
(

Ksf · ∇〈T f 〉m f
)

+ ∇ · (

Kss · ∇〈Ts〉ms) + A h
(

〈T f 〉m f − 〈Ts〉ms
)

+A ξs〈ϕR
w〉m. + ∇ · (

A ps〈ϕR
w〉m)

(44)

Therefore, the effective transport properties associated with radiation are such that

A ξs = ks

V m

∫

A m
nsf · ∇rs dA , (45)

A ps = ks

V m

∫

A m
nsf rs dA . (46)

The fourth term in Eqs. (41) and (44) (associated with ξγ ) stands for the spatial distribution
of the macroscopic volumetric source term due to the radiative flux. In expressions (42) and
(45), the scalars ξγ (γ = f, s) are analogous to the distribution coefficient introduced by
Quintard and Whitaker (2000). A major difference, due to the presence of a non-zero α

coefficient in boundary condition (37), is that ξ f + ξs does not equal 1:

A
(

ξ f + ξs
) = 1

V m

∫

A m
nfs · ∇ (

r f − rs
)

dA

= 1

V m

∫

A m
1 + α dA

= A + 1

V m

∫

A m
α dA . (47)

∫

A m α dA will be zero only if the α is symmetric over the averaging volume.
The fifth term on the right-hand side of Eqs. (41) and (44) (associated with pγ ) represents

a macroscopic contribution due to the heterogeneities of the average radiative flux at the
fluid/solid interface. It includes coupling effects at the local scale between diffusion, convec-
tion (through dispersion), and radiation as well as tortuosity effects. The expressions of the
vectors pγ are similar with those of the diffusion-dispersion tensors Kγ1γ2 . The associated
macroscopic terms include diffusive and tortuous effects; however, they cannot be interpreted
as macroscopic diffusive contributions.

Let us remark that if ϕ̃R
w is negligible compared to 〈ϕR

w〉m, α becomes negligible compared
to 1 and problem IV degenerates into a form identical to the one presented by Quintard and
Whitaker (2000).

4.2 The Semi-Transparent/Semi-Transparent (ST/ST) Case

Let us consider the case where both phases are semi-transparent. Although less common than
the O/T case, this case is interesting because of the symmetry between the phases involved.

The radiative energy generation rate is introduced as a volumetric source term in both the
fluid and solid local governing equations, yielding, respectively,

(

ρ f cp f
)

(

∂T f

∂t
+ v f · ∇T f

)

= ∇ · (

k f ∇T f
) + PR

f within V m
f , (48)

(

ρscps
) ∂Ts

∂t
= ∇ · (ks∇Ts) + PR

s within V m
s , (49)
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where PR
γ (γ = f, s) is the energy generation rate provided by the GRTE (denoted PR

γ ) and
divided by phase volume fraction Πγ . The associated boundary conditions are

T f = Ts at A m, (50)

−nfs · k f ∇T f = −nfs · ks∇Ts at A m. (51)

The application of the averaging theorems on Eqs. (48) and (49) gives rise to the following
two non-closed averaged equations

Π f
(

ρ f cp f
) ∂〈T f 〉m f

∂t
+ Π f

(

ρ f cp f
) 〈v f 〉m f · ∇〈T f 〉m f + (

ρ f cp f
) ∇ · 〈̃v f ˜T f 〉

= Π f ∇ ·
(

k f ∇〈T f 〉m f
)

+ ∇ ·
(

k f

V m

∫

A m
nfs˜T f dA

)

+ k f

V m

∫

A m
nfs · ∇˜T f dA + Π f 〈PR

f 〉m f , (52)

Πs
(

ρscps
) ∂〈Ts〉ms

∂t
= Πs∇ · (

ks∇〈Ts〉ms) + ∇ ·
(

ks

V m

∫

A m
nsf ˜Ts dA

)

+ ks

V m

∫

A m
nsf · ∇˜Ts dA + Πs〈PR

s 〉ms, (53)

where the last terms, Π f 〈PR
f 〉m f and Πs〈PR

s 〉ms , are the upscaled energy generation rate
in the respective phases.

4.2.1 Deviation Problem

The deviation problem is obtained as in Sect. 4.1.1. For the fluid phase, the deviation equation
takes the form

(

ρ f cp f
)

v f · ∇˜T f + (

ρ f cp f
)

ṽ f · ∇〈T f 〉m f

= k f ∇2
˜T f − k f

V m
f

∫

A m
nfs · ∇˜T f dA + ˜PR

f within V m
f , (54)

while for the solid phase, we have

0 = ks∇2
˜Ts − ks

V m
s

∫

A m
nsf · ∇˜Ts dA + ˜PR

s within V m
s . (55)

Use of the spatial decomposition in the boundary conditions (51) and (50) leads to an equation
identical to Eq. (33), and to the boundary condition

− nfs · k f ∇˜T f + nfs · ks∇˜Ts = nfs · k f ∇〈T f 〉m f − nfs · ks∇〈Ts〉ms at A m. (56)

4.2.2 Closure

As in the O/T case, the deviation terms need to be expressed as functions of the macroscopic
source terms. Following the approach adopted in Sect. 4.1.2, ˜PR

γ (γ = f, s) is expressed as

a function of 〈PR
γ 〉mγ such that

˜PR
γ = αγ 〈PR

γ 〉mγ . (57)
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This expression is introduced in Eqs. (54) and (55) to obtain
(

ρ f cp f
)

v f · ∇˜T f + (

ρ f cp f
)

ṽ f · ∇〈T f 〉m f

= k f ∇2
˜T f − k f

V m
f

∫

A m
nfs · ∇˜T f dA + α f 〈PR

f 〉m f within V m
f (58)

and

0 = ks∇2
˜Ts − ks

V m
s

∫

A m
nsf · ∇˜Ts dA + αs〈PR

s 〉ms within V m
s (59)

Here, the deviation problem involves the two additional source terms 〈PR
f 〉m f and 〈PR

s 〉ms .
This suggests the following form for the temperature deviations

˜T f = bff · ∇〈T f 〉m f + bfs · ∇〈Ts〉ms + s f

(

〈Ts〉ms − 〈T f 〉m f
)

+rff 〈PR
f 〉m f + rfs〈PR

s 〉ms, (60)

˜Ts = bsf · ∇〈T f 〉m f + bss · ∇〈Ts〉ms − ss

(

〈T f 〉m f − 〈Ts〉ms
)

+rsf 〈PR
f 〉m f + rss〈PR

s 〉ms . (61)

The introduction of expressions (60) and (61) in the deviation problem leads to five closure
problems. Those associated with the first three closure variables are identical to problems I,
II, and III already derived in Sect. 4.1.2. Closure problems IV and V for variables rff , rfs, rsf ,
and rss are provided below.

Problem IV
(

ρ f cp f

)

v f · ∇rff = k f ∇2rff − k f

V m
f

∫

A m
nfs · ∇rff dA + α f within V m

f (62a)

0 = ks∇2rsf − ks

V m
s

∫

A m
nsf · ∇rsf dA within V m

s (62b)

rff = rsf at A m (62c)

nfs · k f ∇rff = nfs · ks∇rsf A m (62d)

rff (r + li ) = rff (r) for i = 1, 2, 3 (62e)

rsf (r + li ) = rsf (r) for i = 1, 2, 3 (62f)

〈rff 〉m f = 0 (62g)

〈rsf 〉ms = 0 (62h)

Problem V
(

ρ f cp f

)

v f · ∇rfs = k f ∇2r f − k f

V m
f

∫

A m
nfs · ∇rfs dA within V m

f (63a)

0 = ks∇2rss − ks

V m
s

∫

A m
nsf · ∇rss dA + αs within V m

s (63b)

rfs = rss at A m (63c)

nfs · k f ∇rfs = nfs · ks∇rss at A m (63d)

rfs(r + li ) = r f (r) for i = 1, 2, 3 (63e)

rss(r + li ) = rs(r) for i = 1, 2, 3 (63f)

〈rfs〉m f = 0 (63g)
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〈rss〉ms = 0 (63h)

Comments made in the previous section also apply for these closure problems. The resolution
sequence is the same as in the O/T case (see Sect. 4.1.2).

4.2.3 Closed Form

The averaged equations are closed by introducing the closure relations (60) and (61) into
Eqs. (52) and (53). The closed form for the fluid phase is

Π f
(

ρ f cp f
) ∂〈T f 〉m f

∂t
+Π f

(

ρ f cp f
) 〈v f 〉m f · ∇〈T f 〉m f − uff · ∇〈T f 〉m f − ufs · ∇〈Ts〉ms

= ∇ ·
(

Kff · ∇〈T f 〉m f
)

+ ∇ · (

Kfs · ∇〈Ts〉ms) + A h
(

〈Ts〉ms − 〈T f 〉m f
)

+Π f 〈PR
f 〉m f − ξsf 〈PR

f 〉m f + ξfs〈PR
s 〉ms

+∇ ·
(

A pff 〈PR
f 〉m f

)

+ ∇ · (

A pfs〈PR
s 〉ms) (64)

where the effective properties associated with radiation transfer are given by

ξsf = − k f

V m

∫

A m
nfs · ∇rff dA = ks

V m

∫

A m
nfs · ∇rsf dA , (65)

ξfs = k f

V m

∫

A m
nfs · ∇rfs dA = − ks

V m

∫

A m
nfs · ∇rss dA , (66)

A pff = k f

V m

∫

A m
nfsrff dA − (

ρ f cp f
) 〈̃v f rff 〉m, (67)

A pfs = k f

V m

∫

A m
nfsrfs dA − (

ρ f cp f
) 〈̃v f rfs〉m, (68)

Similarly, we have, for the solid phase,

Πs
(

ρscps
) ∂〈Ts〉ms

∂t
− usf · ∇〈T f 〉m f − uss · ∇〈Ts〉ms

= ∇ ·
(

Ksf · ∇〈T f 〉m f
)

+ ∇ · (

Kss · ∇〈Ts〉ms) + A h
(

〈T f 〉m f − 〈Ts〉ms
)

+Πs〈PR
s 〉ms + ξsf 〈PR

f 〉m f − ξfs〈PR
s 〉ms

+∇ ·
(

A psf 〈PR
f 〉m f

)

+ ∇ · (

A pss〈PR
s 〉ms) (69)

where the additional effective transport properties associated with radiation are

A psf = ks

V m

∫

A m
nsf rsf dA , (70)

A pss = ks

V m

∫

A m
nsf rss dA . (71)

The last five terms on the right-hand side of Eqs. (64) and (69) are macroscopic radiative
source terms. The first one represents the phase repartition of the radiative energy generation
rate. Provided that the conditions of an optically thick medium are satisfied, and according
to Eq. (8), this radiative source can be decomposed into zeroth- and first-order contributions.
The zeroth order corresponds to the radiative exchange between phases due to radiation
(Eq. (12)) while the first-order contribution stands for a diffusive inter-phase interaction
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(Eq. (13)) originating from radiation. The second and the third terms represent the macro-
scopic phase exchange where the scalars ξγ1γ2 distribute a part of the macroscopic radiative
energy generation rate from a phase to the other. It is interesting to note that because of its
nature, the expressions for ξγ1γ2 given by Eqs (64) and (69) are similar to the expression
of the heat transfer coefficient h provided by Quintard et al. (1997) (see Sect. 3 of this ref-
erence). The same observation can be made for the last two terms where the vectors pγ1γ2

contain contributions associated with both the tortuosity of the porous microstructure and the
dispersion contribution (for the fluid phase). The other transport properties associated with
the classical diffusion/convection modes are given by Quintard et al. (1997).

4.3 The Semi-Transparent/Transparent (ST/T) Case

In this configuration, more common than the previous ST/ST case, the solid phase is semi-
transparent while the fluid one is transparent. The ST/T case is a particular case of the ST/ST
configuration. The major difference lies in the zero value of the radiative energy generation
rate PR

f and its average 〈PR
f 〉m f . The closure variables rff and rfs are consequently removed

from the closure relations (60) and (61). The reduction of the number of closure variables leads
to the removal of closure problem IV (Eqs. (40a)). Closure problem V remains unchanged.

The macroscopic closed form is made of Eqs. (64) and (69) in which every term associ-
ated with 〈PR

f 〉m f is removed. The expressions of the effective properties involved remain
unchanged.

5 Numerical Determination of the Averaged Properties

This section concerns the determination of the effective transport properties associated with
radiation in the closed form of the macroscopic equations for the opaque/transparent (O/T)
case (Eqs. (64) and (69)). A simple case, in which α = 0, is considered. It corresponds to
a case in which the deviation field ϕ̃R

w of the radiation flux is negligible. This corresponds
to steps 1 and 2 of the iterative sequence mentioned in Sect. 4.1.3. The associated closure
problems are solved in unit cells where the solid phase is composed of cylinders arranged
in an equilateral triangle array (see Fig. 3). Numerical calculations are performed using the
COMSOL Multipysics software package, for different values of the conductivity ratio ks/k f

and of the cell Péclet nummber defined by

Pe = ρ f cp f 〈v f 〉 f l f

k f
(72)

The validation of the numerical solutions of the closure problems has been performed
by comparing the solutions of closure problems I-III with the data provided by Quintard
et al. (1997) for inline and staggered arrays of cylinders, with a porosity Π f = 0.38. For
conciseness, only the longitudinal thermal dispersion coefficient is represented in Fig. 4
but all the averaged properties have been compared. As expected, a diffusion regime is
observed at small values of the Péclet number, while an asymptotic dispersive regime is
found at large Péclet number. The influence of the conductivity ratio is also in quantitative
agreement with the results presented by Quintard et al. (1997): changes are significant only
for 0.1 ≤ ks/k f ≤ 10. Very good agreement with the data provided by Quintard et al. (1997)
is found for the other dispersion-diffusion coefficients and for the volumetric heat transfer
coefficient. Discrepencies have been observed in the results for the pseudo-convective vectors
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Fig. 3 Geometry of the equilateral array of cylinders

Fig. 4 Longitudinal thermal dispersion tensor for inline (left) and staggered array of cylinders (right). Π f =
0.38

uγ1,γ2 ; however, since no additional reference data have been published, the interpretation of
these discrepencies remains unsure.

As shown in Sect. 4.1.3, the closed form of the macroscopic conservation equations for
an opaque/transparent configuration (Eqs. (41) and (44)) involves the additional averaged
properties ξ, p f , and ps , associated with radiation effects, which depend on the closure
variables r f and rs associated with closure problem IV.

The distribution coefficient ξ and on the vectors pγ are represented in Figs. 5 and 6,
respectively, for a porosity Π f = 0.80. Only the relevant conductivity ratios are considered:
ks/k f < 1 can only occur if the fluid is a liquid, which cannot be considered as transparent.
ξ hardly depends on the Péclet number while it is very sensitive to the conductivity ratio.
These results are consistent with those obtained by Quintard and Whitaker (2000) for a
generic uniform heterogeneous source term.

Figure 6 shows that the order of magnitude of the radiative coefficient Aps is much
smaller than its counterpart in the fluid phase Ap f . An estimate of the associated terms in
the macroscopic energy equations can be established based on the values presented in Figs. 5
and 6. In the considered case, we have:

∇ · (

A ps 〈ϕR
w〉m

)

A (1 − ξ) 〈ϕR
w〉m = O

(

A ps
l f

L

1

1 − ξ

)

. (73)
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Fig. 5 Distribution coefficient.
Π f = 0.80

Fig. 6 Radiative flux average coefficient for the fluid (left) and the solid (right) phases. Π f = 0.80

where l f is the typical pore size and L is the size of the macroscopic system. This estimate
is based on the following assumption:

A = O

(

1

l f

)

. (74)

The scale separation constaint also requires that

l f

L
� 1. (75)

In the conditions considered, we have

1 − ξ = O (1) . (76)

Since the values of A ps , are smaller than e-2, ∇ · (

A ps 〈ϕR
w〉m

)

will always be negligible
compared to the radiative source term in the solid phase A (1 − ξ) 〈ϕR

w〉m. Since estimating
the value of 〈ϕR

w〉m is difficult, comparing ∇ · (

A p f 〈ϕR
w〉m

)

with terms in its macroscopic
equation other than the radiative source term Aξ 〈ϕR

w〉m (which should be small in most cases
due to the small value of ξ ) cannot be done without additional information.
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6 Conclusion

In this paper, a coupled upscaling analysis has been developed in order to derive a macroscopic
model for heat transfer, including radiation, in porous media subjected to high temperature.
The averaging procedure, based on local thermal non-equilibrium, has been performed by
applying a volume averaging method to the local energy conservation equations accounting
for radiation. A specific statistical homogenization has been performed for radiation, leading
to the radiative properties characterized by statistical continuous functions defined in the
whole system. When non-Beerian phases are considered, the radiation model is based on the
Generalized Radiative Transfer Equation (GRTE) and in some cases on the radiative Fourier
law.

The main results regarding the present analysis can be summed up as follows. First,
coupled upscaling was achieved in spite of the non-material nature of the radiative heat
transfer. The length scale constraints imposed by the volume averaging method were found
to be compatible with the characteristic length scale of the radiative statistical approach.
Finally, the radiation emission modeling depends on the temperature field of the material
system which must be compatible with the statistical definition of the phase for radiation.
Indeed, for a semi-transparent phase, this temperature is obtained by averaging the local
temperature using the radiative intrinsic average while a radiative interface average is used
for an opaque phase.

For the three solid/fluid configurations considered (opaque/transparent, semi-transparent/
semi-transparent, and semi-transparent/transparent), macroscopic thermal non-equilibrium
models have been obtained and associated closure problems for the determination of the
effective transfer properties have been derived. For each phase, additional macroscopic terms
due to radiation have been found. The two additional terms found in the most common case
(O/T) represent a diffusive flux and a spatial distribution of the macroscopic volumetric
source term, both due to the radiative flux at the fluid/solid interface. For the symmetrical
ST/ST case, the five additional macroscopic terms (only two for the ST/T case) stand for the
volumetric phase repartition and the exchange between phases due to the radiative energy
generation rate. The closure problems for the related closure variables have been derived.
Some of these variables contain contributions associated with both the tortuosity of the
porous microstructure and the dispersion contribution (for the fluid phase). Their numerical
determination on realistic structures and the calculation of the macroscopic terms due to
radiation in a simplified configuration will be the subject of a specific study.

As a conclusion, it is interesting to note that the coupled upscaling procedure for heat
transfer in porous media including radiation gives rise to technical characteristics similar
to those encountered during the averaging procedure of homogeneous or heterogeneous
reactive transport. In both cases, one of the main difficulties is due to the fact that interfacial
and volumetric source terms depend on the local fields (temperature or concentration for
instance). This challenge could be addressed by developing a downscaling procedure in
order to obtain the local fields from the resolution of the macroscopic problem.
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Haussener, S., Lipiński, W., Wyss, P., Steinfeld, A.: Tomography-based analysis of radiative transfer in react-
ing packed beds undergoing a solid–gas thermochemical transformation. J. Heat Transf. 132(6), 061201
(2010b)
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