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Abstract The linear and non-linear stability of a rotating double-diffusive reaction–
convection in a horizontal anisotropic porous layer subjected to chemical equilibrium on
the boundaries is investigated considering a Darcy model that includes the Coriolis term. The
effect of Taylor number, mechanical, and thermal anisotropy parameters, reaction rate, solute
Rayleigh number, Lewis number, and normalized porosity on the stability of the system is
investigated. We find that the Taylor number has a stabilizing effect, chemical reaction may
be stabilizing or destabilizing and that the anisotropic parameters have significant influence
on the stability criterion. The effect of various parameters on the stationary, oscillatory, and
finite-amplitude convection is shown graphically. A weak nonlinear theory based on the trun-
cated representation of Fourier series method is used to find the finite amplitude Rayleigh
number and heat and mass transfer.

Keywords Double-diffusive convection · Rotation · Chemical reaction · Porous layer ·
Anisotropy · Heat mass transfer
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Variables

a Wavenumber
d Height of the porous layer [m]
g Gravitational acceleration, (0, 0,-g) [m s−2]

K Inverse anisotropic permeability tensor, K −1
x ii + K −1

y jj + K −1
z kk

k Lumped effective reaction rate
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Le Lewis number, κTz/κS

l,m Horizontal wavenumbers
Nu Nusselt number

p Pressure [kg m−1 s−2]
q Velocity vector (u,v,w) [m s−1]

RaT Darcy–Rayleigh number, ρ0βTg�T d Kz/μεκTz

RaS Solute Rayleigh number, ρ0βSg�Sd Kz/εμκTz

S Solute concentration
Seq(T ) Equilibrium concentration of the solute at a given temperature

Sh Sherwood number
�S Salinity difference between the walls

t Time [s]
T Temperature [K]

T a Darcy Taylor number (2�Kz/μ)
2

�T Temperature difference between the walls [K]
Vz z component of vorticity vector V = ∇ × q [m s−1]

x, y, z Space coordinates [d]

Greek Symbols

βT Thermal expansion coefficient
βS Solute expansion coefficient
ε Porosity
� Angular velocity [radians s−1] (0, 0,�)
η Thermal anisotropy parameter, κTx/κTz

κT Anisotropic thermal diffusion tensor, κTx ii + κTyjj + κTzkk
κS Solute diffusivity
λ Normalized porosity parameter,ε (ρc)f

(ρc)m
χ Damkohler number, kd2/εκTz

μ Dynamic viscosity [N s m−2]
ν Kinematic viscosity [m2 s−1]
ρ Density [kg m−3]
ρc Volumetric heat capacity
σ Growth rate
ξ Mechanical anisotropy parameter, Kx/Kz

ψ Stream function

Other Symbols

∇2
1

∂2

∂x2 + ∂2

∂y2

∇2 ∇2
1 + ∂2

∂z2

Subscripts

b Basic state
c Critical
f Fluid
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m Porous medium
0 Reference value
s Solid
i Imaginary part

Superscripts

* Dimensionless quantity
’ Perturbed quantity
F Finite amplitude

Osc Oscillatory state
St Stationary state

1 Introduction

Recent interest in double-diffusive convection in porous media has been motivated by its
wide range of applications, from the solidification of binary mixtures to the heat transfer
in geothermal reservoirs. Double-diffusive convection has implications for many geological
processes, such as crustal heat and solute transport, metamorphism, the diagenetic evolution
of sedimentary basins and ore genesis. Besides its importance in the hydrogeological context,
double diffusive convection in porous media has wide variety of geotechnical applications,
among them contaminant transport in saturated soil, underground disposal of nuclear wastes,
liquid re-injection, the migration of moisture in fibrous insulation, and electro-chemical
and drying processes. The problem of double-diffusive convection in porous medium has
been extensively investigated and the growing volume of work devoted to this area is well
documented by Nield and Bejan (2006); Ingham and Pop (1998, 2005); Vafai (2000, 2005)
and Vadas (2008).

The study of double diffusive convection in a rotating porous media is motivated both
theoretically and by its practical applications in engineering. To mention only a few engi-
neering applications let us consider the food process industry, chemical process industry and
rotating machinery. More specifically, packed bed mechanically agitated vessels are used
in food processing and chemical engineering industries in batch process. The packed bed
consists of solid particles of fibers of material which form the solid matrix while fluid flows
through the pores. As the solid matrix rotates, due the mechanical agitation, a rotating frame
of reference is a necessity when investigating these flows. The role of the flow of fluid through
these beds can vary from drying processes to extraction of soluble components from the solid
particles. Another important application of rotating flows in porous media is in the design
of a multi-pore distributor in a gas–solid-fluidized bed. A commonly used solution to avoid
maldistribution of gas and bed instability is cyclic interchange fluidization, where the distrib-
utors are rotating at constant angular velocities. Modeling of flow and heat transfer in porous
media is also applied for the design of heat pipes using porous wicks and includes effects of
boiling in unsaturated porous medium, surface tension driven flow with heat transfer and con-
densation in unsaturated porous media. When the heat pipe is used for cooling devices which
are subject to rotation the corresponding centrifugal and Coriolis effects become relevant as
well.

There are only few studies available on double-diffusive convection in a porous medium in
the presence of rotation. Chakrabarti and Gupta (1981) have analyzed the nonlinear thermo-
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haline convection in a rotating porous medium. The effect of rotation on linear and nonlinear
double-diffusive convection in a sparsely packed porous medium was studied by Rudraiah et
al. (1986). The Lyapunov direct method is applied to study the nonlinear conditional stability
problem of a rotating doubly diffusive convection in a sparsely packed porous layer by Guo
and Kaloni (1995). The nonlinear stability of the conduction–diffusion solution of a fluid
mixture heated and salted from below and saturating a porous medium in the presence of
rotation is studied by Lombardo and Mulone (2002) using Lyapunov direct method.

Thermal convection is considered to be an important and in many practical cases a major
mechanism for the transport and deposition of salts and other chemicals in sedimentary basins.
A variety of chemical reactions can occur as fluid, carrying various dissolved species, moves
through a permeable matrix. The nature of the resulting dissolution or precipitation depends
on the reaction kinetics and the influence of temperature, pressure, and other factors on them
has been studied by Phillips (2009). The effect of chemical reactions on convective motion
is not fully known and has received relatively little attention. The first study on the effect of
chemical reaction on the onset of convection in a porous medium was due to Steinberg and
Brand (1983, 1984). Their analysis is restricted to the regime where the chemical reaction
was sufficiently fast that the solutal diffusion could be neglected. Gatica et al. (1989) and
Viljoen et al. (1990) investigated the effect of exothermic-reaction on the stability of the
porous system. Their study is limited to the case where the thermal and solutal diffusivities
are equal so that overdamped oscillations are not possible. Malashetty and Gaikwad (2003)
performed linear stability analysis for chemically driven instabilities in binary liquid mixtures
with fast chemical reaction. They found analytical expressions for the onset of stationary and
oscillatory instabilities. Recently, Pritchard and Richardson (2007) made an exhaustive study
of the effect of temperature dependent solubility on the onset of thermosolutal convection
in an isotropic porous medium. A linear stability analysis was used to investigate how the
dissolution or precipitation of concentration affects the onset of convection and selection
of an unstable wavenumber. The analysis was further extended using a Galerkin method
to predict the structure of the initial bifurcation, and they compared analytical results with
numerical integration of the full nonlinear equations. More recently, Malashetty and Biradar
(2011) have investigated the onset of double-diffusive reaction–convection in an anisotropic
porous layer.

Due to the structure of a porous material there can be a pronounced anisotropy in prop-
erties such as permeability or thermal diffusivity. Anisotropy is generally a consequence of
preferential orientation or asymmetric geometry of porous matrix or fibers encountered in
numerous systems in industry and nature. In geological processes such as sedimentation,
compaction, frost action, and the reorientation of the solid matrix are responsible for the cre-
ation of an anisotropic porous medium. Anisotropy is particularly important in a geological
context, since sedimentary rocks generally have a layered structure; the permeability in the
vertical direction is often much less than in the horizontal direction. Anisotropy can also
be a characteristic of artificial porous materials like pelletting used in chemical engineering
process and fiber material used in insulating purpose. The review of research on convective
flow through anisotropic porous media has been well documented by McKibbin (1985) and
Storesletten (1998, 2004). The effect of anisotropy in mechanical and thermal properties on
thermohaline convection in a porous layer has been analyzed by Tyvand (1980). The onset
of double-diffusive convection in an anisotropic porous medium with additional constraints
like rotation and cross diffusion effects including weak nonlinear theory has been studied
by Malashetty and co-workers (2008, 2010, 2011). The study on convection in anisotropic
porous media saturated with binary fluid is very sparse.
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It is demonstrated that the dynamics occurring in the mushy layer are critical to the
quality of the final product and suppression of convection is an important factor. The rotation
is being used as a means to suppress convection. The earlier studies have modeled the mushy
layer as isotropic porous medium. Realistically, the permeability and thermal diffusivity are
anisotropic. In view of these, it is of interest to gain a general understanding of the manner
in which rotation affects the hydrodynamic stability of a double diffusive anisotropic porous
layer. Therefore, in the present paper, we study the effect of rotation on the onset of double
diffusive reaction–convection in an anisotropic porous medium. The main aim of this study
is to analyze the linear and weak non-linear stability of a rotating reactive binary mixture in
a horizontal porous layer with anisotropic permeability and thermal diffusivity. The porous
medium is assumed to be isotropic in the horizontal plane. Our objective is to study how the
onset criterion for stationary, oscillatory, and steady finite-amplitude convection is affected
by the Taylor number, chemical reaction parameter, and anisotropy parameters.

2 Mathematical Formulation

Consider a reactive, anisotropic porous layer, saturated with Boussinesq fluid of infinite
horizontal extent confined between the planes z = 0 and z = d , with the vertically downward
gravity force g acting on it. A uniform adverse temperature difference �T = (Tl − Tu)

and a stabilizing concentration difference �S = (Sl − Su) where Tl > Tu and Sl > Su

are maintained between the lower and upper boundaries. A Cartesian frame of reference is
chosen with the origin in the lower boundary and the z axis vertically upwards. The porous
layer rotates uniformly about the z axis with a constant angular velocity � = (0, 0,�).
The Darcy model that includes the Coriolis term is employed for the momentum equation.
The transport of heat and solute is described by the advection–diffusion equations Phillips
(2009). The Boussinesq approximation, which states that the variation in density is negligible
everywhere in the conservations except in the buoyancy term, is assumed to hold. With these
assumptions the governing equations are

∇ · q = 0, (2.1)

∇ p + 2� × q + μK · q − ρg = 0, (2.2)

(ρc)m
∂T

∂t
+ (ρc)f (q · ∇)T = (ρc)m∇ · (κT · ∇T ), (2.3)

ε
∂S

∂t
+ (q · ∇)S = εκS∇2S + k(Seq(T )− S), (2.4)

ρ = ρ0[1 − βT(T − T0)+ βS(S − S0)], (2.5)

where q = (u, v, w) is the velocity, p the pressure, T the temperature, S the concentration, ε
represents the porosity, � = (0, 0,�) angular velocity of rotation, K = K −1

x ii + K −1
y jj +

K −1
z kk is the inverse of the anisotropic permeability tensor and κT = κTx ii +κTyjj+κTzkk

is the anisotropic thermal diffusion tensor. We restrict consideration to horizontal isotropy
in mechanical and thermal properties of the porous medium, i.e., Kx = Ky and κTx = κTy .
The permeability and thermal diffusivity tensors of the porous medium are assumed to have
principal axes aligned with the coordinate system. Further, κSis the solute diffusivity and k is
a lumped effective reaction rate, and Seq(T ) is the equilibrium concentration of the solute at
a given temperature. The quantities βT and βS are the thermal volume expansion coefficient
and density coefficient for salinity, respectively, and both are positive. The volumetric heat
capacity of the fluid is denoted by (ρc)f and that of the saturated medium as a whole by

123



244 S. N. Gaikwad, I. Begum

(ρc)m = (1 − ε) (ρc)s + ε (ρc)f , where the subscripts f, s, and m denote the properties of
the fluid, solid, and porous matrix, respectively. Following Pritchard and Richardson (2007),
and Jupp and Woods (2003), it is assumed that the equilibrium solute concentration is a linear
function of temperature so that Seq(T ) = S0 + φ(T − T0). Further, if chemical equilibrium
at the boundaries is assumed, then φ = Sl−Su

Tl−Tu
= �S

�T . The coefficient φ in general may be
positive or negative. Obviously, if φ > 0, the solubility increases with temperature, while if
φ < 0, the solubility decreases with temperature. It should be noted that, only the case φ > 0
is considered in the present paper.

The boundary conditions are that at the upper boundary, T = Tu, S = Su and at the
lower boundary T = Tl, S = Sl, and the vertical component of velocity vanishes at both
the boundaries. The basic state of the fluid is assumed to be quiescent. We then find the
temperature and solute distribution in the basic state as

Tb(z) = −�T

d
z + Tl and Sb(z) = −�S

d
z + Sl (2.6)

The initial distribution of solute is Sb = Seq(Tb) and since Seq is linear in T , we allow the
existence of a steady basic state in which the solute is everywhere in chemical equilibrium
with the solid matrix and therefore the vertical flux of solute is constant in space. We study
the stability of this basic state using the method of small perturbations. Now, we superpose
infinitesimal perturbations on this basic state in the form

q = qb + q′, T = Tb(z)+ T ′, S = Sb(z)+ S′, p = pb(z)+ p′, ρ = ρb(z)+ ρ′ (2.7)

where the prime indicates perturbations. Substituting Eq. (2.7) into Eqs. (2.1–2.5), and using
the basic state solutions, we get the linearized equations governing the perturbations in the
form

∇.q′ = 0, (2.8)

∇ p′ + 2� × q′ + μK · q′ + ρ0
(
βTT ′ − βSS′) g = 0, (2.9)

(ρc)m
∂T ′

∂t
+ (ρc)f

((
q′ · ∇)

T ′ − w′�T

d

)
= (ρc)m∇ · (κT · ∇T ′), (2.10)

ε
∂S′

∂t
+ (

q′ · ∇)
S′ −

(
w′�S

d

)
= εκS∇2S′ + k

(
Seq(T

′)− S′) . (2.11)

By operating curl twice on Eq. (2.9), we eliminate p′ from it and then render the resulting
equation and the Eqs. (2.8–2.11) dimensionless by setting

(
x ′, y′, z′) = (x∗, y∗, z∗)d, t ′ = t∗(d2/κTz),

(
u′, v′, w′) = (εκTz/d)

(
u∗, v∗, w∗) ,

T = (�T )T ∗, S = (�S) S∗ (2.12)

to obtain non-dimensional equations as (on dropping the asterisks for simplicity)
(

∇2
1 + 1

ξ

∂2

∂z2 + T a
∂2

∂z2

)
w − RaT∇2

1 T + RaS∇2
1 S = 0 (2.13)

∂T

∂t
+ λ(q · ∇)T − λw = η∇2

1 T + ∂2T

∂z2 , (2.14)

∂S

∂t
+ (q · ∇)S − w = 1

Le
∇2S + χ(T − S), (2.15)

where RaT = ρ0βTg�T d Kz/μεκTz , the Darcy–Rayleigh number, RaS = ρ0βSg�Sd Kz/

μεκTz , the solute Rayleigh number, both defined in terms of the vertical permeability Kz ,
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Onset of Double-Diffusive Reaction–Convection 245

vertical thermal diffusivity κTz , and the porosity ε, T a =
(

2�Kz
μ

)2
, the Darcy Taylor number,

Le = κTz/κS, the Lewis number, χ = kd2/εκTz , Damkohler number that measures the rate
of reaction, ξ = Kx/Kz , the mechanical anisotropy parameter, η = κTx/κTz , the thermal
anisotropy parameter, and λ = ε

(ρc)f
(ρc)m

, the normalized porosity parameter. The Lewis number
Le is known to be much greater than unity, and the dimensionless reaction rate measured by
the Damkohler number χ ≥ 0. Equations (2.13–2.15) are to be solved for the stress free,
isothermal, and isosolutal boundary conditions

w = ∂2w

∂z2 = T = S = 0, atz = 0, 1 (2.16)

The stress-free boundary conditions are chosen for mathematical simplicity, without quali-
tatively important physical effect being lost. The use of stress-free boundary conditions is a
useful mathematical simplification but is not physically sound. The correct boundary condi-
tions for a viscous binary fluid are to impose rigid–rigid boundary conditions but then the
problem is not tractable analytically.

3 Linear Stability Analysis

In this section, we predict the thresholds of both marginal and oscillatory convections using
linear theory. The eigenvalue problem defined by Eqs (2.13–2.15) subject to the boundary
conditions (2.16) is solved using the time-dependent periodic disturbances in a horizontal
plane. Assuming that the amplitudes of the perturbations are very small, we write

⎛

⎝
w

T
S

⎞

⎠ =
⎛

⎝
W (z)
� (z)
� (z)

⎞

⎠ exp [i (lx + my)+ σ t] , (3.1)

where l,m are horizontal wavenumbers andσ is the growth rate. Infinitesimal perturbations of
the rest state may either damp or grow depending on the value of the parameter σ . Substituting
Eq. (3.1) into the linearized version of Eqs. (2.13–2.15) we obtain

[(
D2

ξ
− a2

)
+ T aD2

]
W (z)+ RaTa2�− RaSa2� = 0 (3.2)

[
σ − (

D2 − ηa2)]�− λW = 0, (3.3)
[
σ − 1

Le
(D2 − a2)+ χ

]
�− χ�− W = 0, (3.4)

where D = d/dz and a2 = l2 + m2.
We assume the solutions of Eqs. (3.2–3.4) satisfying the boundary conditions (2.16) in

the form
⎛

⎝
W (z)
�(z)
�(z)

⎞

⎠ =
⎛

⎝
W0

�0

�0

⎞

⎠ Sinnπ z, (n = 1, 2, 3, . . . . . .). (3.5)

The most unstable mode corresponds to n = 1(fundamental mode). Therefore, substituting
Eq. (3.5) with n = 1 into Eqs. (3.2–3.4), we obtain an expression for thermal Rayleigh
number in the form
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RaT =
(
δ2

1 + π2T a
) (
σ + δ2

2

)

λa2 + RaS

λ

(
σ + δ2

2 + λχ

σ + δ2 Le−1 + χ

)

(3.6)

where δ2 = π2 + a2, δ2
1 = π2ξ−1 + a2 and δ2

2 = π2 + ηa2. The growth rate σ is in general
a complex quantity such that σ = σr + iσi. The system with Re (σ ) < 0 is always stable,
while for Re (σ ) > 0, it will become unstable. For neutral stability, we have Re(σ ) = 0.

3.1 Stationary Mode

For the validity of principle of exchange of stabilities (i.e., steady case), we have σ = 0
(i.e.,σr = σi = 0) at the margin of stability. Then the Rayleigh number at which marginally
stable steady mode exists becomes

RaSt
T =

(
δ2

1 + π2T a
) (
δ2

2

)

λa2 + RaS

λ

(
δ2

2 + λχ

δ2 Le−1 + χ

)

(3.7)

The minimum value of the Rayleigh number RaSt
T occurs at the critical wavenumber a = aSt

c
where aSt

c = √
r satisfies a polynomial equation

a0r4 + a1r3 + a2r2 + a3r + a4 = 0,

where a0 = η, a1 = 2η
(
π2 + Leχ

)
,

a2 = π2 (
LeRaS(η − 1)+ π2(η − ξ−1 − T a)

) + Leηχ(2π2 + Leχ)+ LeRaSχ(Leη − λ),

a3 = −2π4ξ−1 (
π2 + Leχ

)
(1 + T aξ) , a4 = −π4ξ−1 (

π2 + Leχ
)2
(1 + T aξ) .

In the absence of rotation, Eq. (3.7) reduces to

RaSt
T =

(
δ2

1

) (
δ2

2

)

λa2 + RaS

λ

(
δ2

2 + λχ

δ2 Le−1 + χ

)

,

given by Malashetty and Biradar (2011). In the absence of a chemical reaction parameter
(i.e., χ = 0), and, Further (λ = 1), Eq. (3.7) reduces to

RaSt
T =

(
δ2

1 + π2T a
)
(δ2

2)

a2 +
(
δ2

2 RaS

δ2 Le−1

)

.

This is exactly the one given by Malashetty and Heera (2008). Further in absence of both
rotation and chemical reaction parameter Eq. (3.7) reduces to

RaSt
T = 1

a2

(
a2 + π2

ξ

) (
ηa2 + π2) +

(
ηa2 + π2

a2 + π2

)
LeRaS. (3.8)

This is the result obtained by Malashetty and Swamy (2010) for the onset of stationary
double-diffusive convection in an anisotropic porous layer. Further, for an isotropic porous
media, that is when ξ = η = 1, Eq. (3.8) reduces to the classical result of Nield and Bejan
(2006)

RaSt
T = 1

a2 (a
2 + π2)2 + LeRaS, (3.9)

with critical values RaSt
T,c = 4π2 + LeRaS and aSt

c = π . In the case of single component
convection in an anisotropic porous medium, RaS = 0; the expression for stationary Rayleigh
number given by Eq. (3.8) reduces to
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RaSt
T = 1

a2 (a
2 + π2

ξ
)(ηa2 + π2), (3.10)

which is the one obtained by Storesletten (1998) for the case of a single component fluid-
saturated anisotropic porous. Further, for an isotropic porous medium, ξ = η = 1, the above
Eq. (3.10) reduces to the classical result

RaSt
T = 1

a2

(
a2 + π2)2

,

with critical values RaSt
T,c = 4π2 and aSt

c = π obtained by Horton and Rogers (1945), and
Lapwood (1948)

3.2 Oscillatory Mode

We now set σ = iσi, in Eq. (3.6) and clear the complex quantities from the denominator, to
obtain

RaT = Δ1 + iσiΔ2, (3.11)

where

Δ1 =
(
δ2

1 + π2T a
) (
δ2

2

)

λa2 + RaS

λ

(
σ 2

i + (
λχ + δ2

2

) (
δ2 Le−1 + χ

)

σ 2
i + (

δ2 Le−1 + χ
)2

)

,

Δ2 =
(
δ2

1 + π2T a
)

λa2 + RaS

λ

(
χ (1 − λ)+ δ2 Le−1 − δ2

2

σ 2
i + (

δ2 Le−1 + χ
)2

)

.

Since RaT is a physical quantity, it must be real. Hence, from Eq. (3.11) it follows that either
σi = 0 (oscillatory onset) or Δ2 = 0 (σi �= 0, oscillatory onset).

For oscillatory onset Δ2 = 0(σi �= 0) and this gives a expression for the frequency of
oscillation in the form

σ 2
i = a2 RaS(

δ2
1 + π2T a

)
(
δ2

2 − δ2 Le−1 − χ (1 − λ)
) − (

δ2 Le−1 + χ
)2
. (3.12)

Now Eq. (3.11) with Δ2 = 0, gives

RaOsc
T =

(
δ2

1 + π2T a
) (
δ2

2

)

λa2 + RaS

λ

(
σ 2

i + (
λχ + δ2

2

) (
δ2 Le−1 + χ

)

σ 2
i + (

δ2 Le−1 + χ
)2

)

. (3.13)

The analytical expression for oscillatory Rayleigh number given by Eq. (3.13) is minimized
with respect to the wavenumber numerically, after substituting for σ 2

i (> 0) from Eq. (3.12),
for various values of the physical parameters in order to know their effects on the onset of
oscillatory convection.

4 Finite-Amplitude Analysis

In this section, we consider the nonlinear analysis using a truncated representation of Fourier
series considering only two terms. Although the linear stability analysis is sufficient for
obtaining the stability condition of the motionless solution and the corresponding eigenfunc-
tions describing qualitatively the convective flow, it can neither provide information about
the values of the convection amplitudes, nor regarding the rate of heat transfer. To obtain
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this additional information, we perform the nonlinear analysis, which is useful to understand
the physical mechanism with minimum amount of mathematics and is a step forward toward
understanding the full nonlinear problem.

For simplicity of analysis, we confine ourselves to the two-dimensional rolls, so that
all the physical quantities are independent of y. We introduce stream function ψ such that
u = ∂ψ/∂z, w = −∂ψ/∂x into the Eq. (2.9), eliminate pressure and non-dimensionalize
the resulting equation and Eqs. (2.8–2.11) using the transformations (2.12) to obtain

(
∂2

∂x2 + 1

ξ

∂2

∂z2

)
ψ − T a1/2 ∂V

∂z
+ RaT

∂T

∂x
− RaS

∂S

∂x
= 0, (4.1)

(
1

ξ

∂V

∂z
+ T a1/2 ∂

2ψ

∂z2

)
= 0, (4.2)

∂T

∂t
−

(
η
∂2

∂x2 + ∂2

∂z2

)
T − λJ (ψ, T )+ λ

∂ψ

∂x
= 0, (4.3)

∂S

∂t
− 1

Le
∇2S − J (ψ, S)+ ∂ψ

∂x
− χ (T − S) = 0. (4.4)

Here, J (., .) is the Jacobian with respect to the independent variables x, z. The first effect
of non-linearity is to distort the temperature and concentration fields through the interaction
of ψ, T and also ψ, S. The distortion of these fields will corresponds to a change in the
horizontal mean, i.e. a component of the form sin(2π z) will be generated. Thus a minimal
Fourier series which describes the finite amplitude-free convection is given by,

ψ = A(t) sin(ax) sin(π z), (4.5)

T = B(t) cos(ax) sin(π z)+ C(t) sin(2π z), (4.6)

S = D(t) cos(ax) sin(π z)+ E(t) sin(2π z), (4.7)

V = F(t) sin(ax) cos(π z)+ G(t) sin(2πx), (4.8)

where the amplitudes A(t), B(t),C(t), E(t), F(t), andG(t) are to be determined from the
dynamics of the system.

Substituting Eqs. (4.5–4.8) into Eqs. (4.1–4.4) and equating the coefficients of like terms
we obtain the following non-linear autonomous system of differential equations

dA

dt
= −δ2

1 A + πT a1/2 F − a RaT B + a RaS D, (4.9)

dB

dt
= −λa A − δ2

2 B − λπa AC, (4.10)

dC

dt
= −4π2C + πaλ

2
AB, (4.11)

dD

dt
= −Aa − δ2 D

Le
− πa AE + χ (B − D) , (4.12)

dE

dt
= πa AD

2
− 4π2 E

Le
+ χ (C − E) , (4.13)

dF

dt
= − Fπ

ξ
− π2T a1/2 A. (4.14)

The non-linear system of autonomous differential equations is not suitable to analytical
treatment for the general time-dependent variable and we have to solve it using a numerical
method. However, one can make qualitative predictions as discussed below. The system
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of Eqs. (4.9–4.14) is uniformly bounded in time and possesses many properties of the full
problem. Thus, volume in the phase space must contract. In order to prove volume contraction,
we must show that flow field has a constant negative divergence. Indeed,

∂

∂A

(
dA

dt

)
+ ∂

∂B

(
dB

dt

)
+ ∂

∂C

(
dC

dt

)
+ ∂

∂D

(
dD

dt

)
+ ∂

∂E

(
dE

dt

)
+ ∂

∂F

(
dF

dt

)
=

−
[
δ2

1 +δ2
2 +4π2+ 1

Le
(δ2+4π2)+ π

ξ
+2χ

]
,

(4.15)

which is always negative and therefore the system is bounded and dissipative. As a result, the
trajectories are attracted to a set of measure zero in the phase space; in particular they may
be attracted to a fixed point, a limit cycle or, perhaps, a strange attractor. From Eq. (4.15) we
conclude that if a set of initial points in phase space occupies a region V (0) at time t= 0,
then after some time t , the end points of the corresponding trajectories will fill a volume

V (t) = V (0) exp

[
−

(
δ2

1 + δ2
2 + 4π2 + 1

Le
(δ2 + 4π2)+ π

ξ
+ 2χ

)
t

]
. (4.16)

This expression indicates that the volume decreases exponentially with time. We can also
infer that, the large values of Damkohler number and very small Lewis number (Le < 1)
tend to enhance dissipation.

From qualitative predictions we look into the possibility of an analytical solution. In the
case of steady motions, Eqs. (4.1–4.3) can be solved in closed form. Setting the left hand
sides of Eqs. (4.9–4.14) equal to zero, we get

−δ2
1 A + πT a1/2 F − a RaT B + a RaS D = 0, (4.17)

−λa A − δ2
2 B − λπa AC = 0, (4.18)

−4π2C + πaλ

2
AB = 0, (4.19)

−Aa − δ2 D

Le
− πa AE + χ(B − D) = 0, (4.20)

πa AD

2
− 4π2 E

Le
+ χ(C − E) = 0, (4.21)

− Fπ

ξ
− π2T a1/2 A = 0. (4.22)

Writing B,C, D, E, F, and G in terms of A, using Eqs. (4.18–4.22) and substituting these

in Eq. (4.17), with A2

8 = r we get

b1r2 + b2r + b3 = 0, (4.23)

where r = A2
1

8 and
where

b1 = 4a4 Le2π2λ2(δ2
1 + π2T aξ),

b2 = 4a4 Leπ2λ(RaS − LeRaT)+ 4a2π2λ2(δ2
1 + π2T aξ)(δ2 + Leχ)

+a2λ2 Leχ(δ2
1 + π2T aξ)(δ2 + Leχ)+ 4a2 Le2π2δ2

1δ
2
2,

b3 = (4π2+Leχ)(δ2
2(δ

2
1 +π2T aξ)(δ2+Leχ)+a2(RaSLe(χλ+δ2

2)− RaTλ(δ
2+Leχ))),
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The required root of Eq. (4.23) is given by

r = 1

2b1

(
−b2 + (

b2
2 − 4b1b3

)1/2
)
. (4.24)

When we let the radical in the above equation to vanish, we obtain the expression for finite
amplitude Rayleigh number RaF

T, which characterizes the onset of finite-amplitude steady
motions. The finite-amplitude Rayleigh number can be obtained in the form

RaF
T = 1

2c1

(
−c2 + (

c2
2 − 4c1c3

)1/2
)
, (4.25)

where the constants c j
′s are not presented here for brevity.

In the study of convection in fluids, the quantification of heat and mass transport is impor-
tant. This is because the onset of convection, as Rayleigh number is increased, is more readily
detected by its effect on the heat and mass transport. In the basic state, heat and mass transport
is by conduction alone. We now proceed to find the Nusselt number and Sherwood number.

If H and J are the rate of heat and mass transport per unit area, respectively, then

H = −κTz

〈
∂Ttotal

∂z

〉

z=0
, and J = −κS

〈
∂Stotal

∂z

〉

z=0
, (4.26)

where the angular bracket corresponds to a horizontal average and

Ttotal = T0 −�T
z

d
+ T (x, z, t), and Stotal = S0 −�S

z

d
+ S(x, z, t). (4.27)

Substituting Eqs. (4.6) and (4.7) in Eq. (4.27) and using the resultant equations in Eq. (4.26),
we get

H = κTz�T

d
(1 − 2πC)andJ = κS�S

d
(1 − 2πE) . (4.28)

The Nusselt number and Sherwood number are defined by

Nu = H

κTz�T /d
= (1 − 2πC) , and Sh = J

κS�S/d
= (1 − 2πE) . (4.29)

Writing C and E in terms of A, and substituting in Eq. (4.29), we obtain

Nu = 1 + 2r

r + δ2
2/a

2λ2
, (4.30)

Sh = 1 + 2

(
4π2a2r Le2

(
a2rλ2 + δ2

2 + χλ
) + a2r Leχλ2

(
δ2 + Leχ

)

(
a2rλ2 + δ2

2

) ((
4π2 + Leχ

) (
δ2 + Leχ

) + 4π2a2r Le2
)

)

. (4.31)

The second-term on the right-hand side of Eq. (4.31) represent the convective contribution
to heat and mass transport, respectively. The expressions for Nusselt number and Sherwood
number given by Eqs. (4.30) and (4.31) are evaluated for different values of the parameters
and the results are discussed in next section.

5 Results and Discussion

The effect of rotation on the onset of double-diffusive reaction–convection in an anisotropic
porous layer, which is heated and salted from below, is investigated analytically using the
linear and nonlinear theories. In the linear stability theory the expressions for the stationary,
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Fig. 1 Neutral stability curves for differents values of Taylor number T a

oscillatory Rayleigh number and for frequency of oscillation are obtained analytically. The
nonlinear theory provides the quantification of heat and mass transports and also explains
the possibility of the finite amplitude motions.

The neutral stability curves in the RaT − a plane for Taylor number is shown in Fig. 1.
From this figure it is clear that the neutral curves are connected in a topological sense.
This connectedness allows the linear stability criteria to be expressed in terms of the critical
Rayleigh number, RaTc below which the system is stable and unstable above.

The effect of Taylor number Ta on the marginal stability curves for the fixed values of
mechanical anisotropy parameter, thermal anisotropy parameter, Damkohler number, solute
Rayleigh number, Lewis number and normalized porosity parameter, is depicted in Fig. 1.
We observe from this figure that the minimum of Rayleigh number for both stationary and
oscillatory states increases with the Taylor number, indicating that the effect of rotation is to
enhance the stability of the system in both stationary and overstable modes.

In Figs. 2, 3, 4, 5, 6, and 7, we show the critical Rayleigh number for stationary, oscillatory,
and finite-amplitude modes as function of the Taylor number for different values of the
mechanical anisotropy parameter, thermal anisotropy parameter, Damkohler number, solute
Rayleigh number, Lewis number, and normalized porosity parameter, respectively. We find
that all of the quantities namely, the critical Rayleigh number for stationary, oscillatory, and
finite-amplitude modes are increasing functions of the Taylor number. It is clear that for the
parameters chosen for these figures, the steady finite-amplitude convection sets in prior to
the oscillatory and stationary convection.

In Fig. 2, we display the variation of RaTc with Taylor number T a for different values of
mechanical anisotropy parameter ξ for the fixed values of other parameters. It is important to
note that the critical Rayleigh number RaTc decreases with the increase of ξ for stationary and
oscillatory modes. Where as it is important to note from this figure that the critical Rayleigh
number RaTc for finite-amplitude mode decreases with the increase of ξ for small values of
Taylor number T a, and for the moderate and large values of T a, the critical Rayleigh number
increases with increasing ξ . However, contrary to its usual influence on the onset of convection
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Fig. 3 Variation of critical Rayleigh with Taylor number T a for different values of thermal anisotrpoy
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in the absence of rotation, the mechanical anisotropy parameter ξ show contrasting effect
on finite amplitude at moderate and high rotation rates. Thus, the mechanical anisotropy
parameter ξ has dual effect on finite-amplitude mode in the presence of rotation.

The variation of the critical Rayleigh numbers for stationary, oscillatory, and finite-
amplitude modes with Taylor number for different values of the thermal anisotropy para-
meter is shown in Fig. 3. We find that the critical Rayleigh number increases with increasing
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Fig. 4 Variation of critical Rayleigh with Taylor number T a for different values of Damkholer number χ

thermal anisotropy parameter for all the cases namely stationary, oscillatory, and finite-
amplitude convection. Figure 4 shows the variation of critical stationary, oscillatory, and
finite-amplitude Rayleigh numbers with Taylor number for different values of the Damkohler
numberχ . We observe from Fig. 4 that the critical Rayleigh numbers for oscillatory and finite-
amplitude modes increase with Damkohler number indicating that the effect of increasing
chemical reaction parameter is to inhibit the oscillatory and finite-amplitude convection. This
is because the chemical reaction term couples together the temperature and concentration
fields to inhibit double diffusive effects. On the other hand, increasing the chemical reaction
parameter advances the onset of stationary convection.

The variation of RaTc with T a for different values of solute Rayleigh number RaS

and Lewis number Le on the onset criteria is shown in Figs. 5 and 6, respectively.
We observe from these figures that the effect of RaS is to delay the onset of convec-
tion while the effect of Le is to delay stationary and finite-amplitude convection and
advance the oscillatory convection. That is the solute Rayleigh number makes the sys-
tem more stable while the Lewis number is responsible for the advancement of oscillatory
convection.

Figure 7 depicts the effect of normalized porosity parameter on the critical stationary,
oscillatory, and finite-amplitude Rayleigh numbers. We find that the effect of increasing
the normalized porosity parameter is to decrease the critical Rayleigh number for stationary,
oscillatory, and finite-amplitude mode. As normalized porosity parameter increases, the ther-
mal “lag” effect (double-advective behavior in the terminology of Phillips (2009) is reduced.
This makes advective heat transfer more effective and so makes it easier for the destabilizing
thermal buoyancy gradient to produce convection.

In Fig. 8, we display the Nusselt number and the Sherwood number for different values of
the governing parameter. This figure indicates that the rate of heat and mass transfer across
a convective porous layer is limited in the present model by an upper bound value of 3. This
limitation is due to the severely truncated two-term Fourier series representation used for the
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Fig. 6 Variation of critical Rayleigh with Taylor number T a for different values of Lewis number Le

variables. Better results can only be obtained by including more terms in the Fourier series
representation, which allows the variation of wavenumber as the value of Rayleigh number
varies.

The Taylor number reduces both heat and mass transfer and its effect is more significant
on heat transfer (Fig. 8).

123



Onset of Double-Diffusive Reaction–Convection 255

10 100 1000
0

2000

4000

6000

8000

10000

1

1

1

0.4

0.4

0.4

λ = 0.1

0.2

0.2

0.2

λ = 0.1

η = 0.5, ξ = 0.3, Ra
S
 = 100

 Le = 20,  χ = 2

T,c

Log
10

Ta

 Stationary
 Oscillatory
 Finite amplitude

Ra

Fig. 7 Variation of critical Rayleigh with Taylor number T a for different values of normalized porosity
parameter λ

2.01.51.0
1.0

1.5

2.0

2.5

3.0

η = 0.5, ξ = 0.3, Ra
S
 = 100

 Le = 2, λ = 0.4, χ = 2

Ra
T
/RaF

Tc

 Nu
 Sh

Ta = 50,100,200

N
u/

Sh

Fig. 8 Variation of Nusselt number and Sherwood number with critical Rayleigh numberfor different values
of Taylor number T a

6 Conclusions

The onset of rotating double-diffusive reaction–convection in an anisotropic horizontal
porous layer saturated with binary mixture, which is heated and salted from below, is investi-
gated analytically using both linear and nonlinear theories. The usual normal mode technique
is used to solve the linear problem. The truncated two-term Fourier series method is used
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to carry out the finite amplitude analysis. In the case of linear theory, the thresholds of both
stationary and oscillatory convection are derived as functions of Taylor number, mechani-
cal anisotropy parameter, thermal anisotropy parameter, Damkohler number, Lewis number,
solute Rayleigh number, and normalized porosity parameter. The Taylor number T a has
a stabilizing effect on the system. When the horizontal permeability is high (ξ > 1), the
system is more unstable; while vertical permeability is high (ξ < 1), the system is more
stable than in the isotropic case. When the horizontal component of thermal diffusivity is
dominant (η > 1), the system becomes more stable; while the vertical component of thermal
diffusivity is dominant (η < 1), the system becomes more unstable. The effect of increas-
ing the Damkohler number χ is to advance the onset of stationary convection and delay
the onset of oscillatory and finite amplitude convection. The effect of solute Rayleigh num-
ber is to delay, stationary, oscillatory, and finite-amplitude convection. It is found that the
effect of increasing Lewis number is to delay the onset of stationary convection and advance
the onset of oscillatory and finite-amplitude convection. The critical Rayleigh numbers for
stationary, oscillatory, and steady finite-amplitude modes are increasing functions of Tay-
lor number. Increasing the normalized porosity parameter advances stationary, oscillatory,
and finite-amplitude convection. Heat and mass transfer decreases with increasing Taylor
number.
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