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Abstract The mathematical model for transient fluid flow in porous media is based in gen-
eral on mass conservation principle. Because of the small compressibility of formation fluid,
the quadratic term of pressure gradient is always ignored to linearize the non-linear diffusion
equation. This may result in significant errors in model prediction, especially at large time
scale. In order to solve this problem, it may be necessary to keep the quadratic term in the
non-linear equations. In our study, the quadratic term is reserved to fully describe the tran-
sient fluid flow. Based on this rigorous treatment, the mathematical models are established
to analyze the transient flow behavior in a double porosity, fractal reservoir with spherical
and cylindrical matrix. In addition, Laplace transformation method is employed to solve
these mathematical models and the type curves are provided to analyze the pressure transient
characteristics. This study indicates that the relative errors in calculated pressure caused by
ignoring the quadratic term may amount to 10 % in a fractal reservoir with double porosity,
which can’t be neglected in general for fractal reservoirs with double porosity at large time
scale.

Keywords Fractal reservoir · Double porosity · Quadratic gradient · Transient flow ·
Laplace transform

1 Introduction

Fractal geometry is an effective tool to describe complex phenomenon, especially to scale the
non-uniformity and non-sequence of porous media. If the fractal theory is used to study the

Y. Yao (B)
MOE Key Laboratory of Petroleum Engineering, China University of Petroleum, Beijing 102249, China
e-mail: yaoyuedong@163.com

Y.-S. Wu · R. Zhang
Department of Petroleum Engineering, Colorado School of Mines, Golden, CO, USA
e-mail: YWu@mines.edu

R. Zhang
e-mail: rozhang@mines.edu

123



176 Y. Yao et al.

fluid flow behavior in porous media, the geometry of porous media can be described precisely,
and characterization of flow processes in porous media can be enhanced. Thus, the fractal
approach has many advantages over the traditional method to characterize complicated and
highly heterogeneous reservoirs. Among the early studies using the fractal method in porous
media application, Chang and Yortsos (1990) developed a mathematical model to analyze
the transient flow behavior of Newtonian fluid in fractal reservoirs. Chakrabarty et al. (1993a,
b) presented another mathematical model for characterizing the behavior of non-Newtonian
fluid in fractal reservoirs. These fluid flow models of fractal reservoirs make it convenient
and easy to conduct pressure transient analysis for understanding flow in complex reservoirs
(Beier 1990; Aprilian et al. 1993). Because of known flow geometry and parameters of fractal
porous media, exact solutions of the flow models can often be obtained to analyze pressure
characteristics for different flow models (Tong 1997; Ge et al. 2003; Zhang and Tong 2008).

The quadratic term of pressure gradient is traditionally ignored in almost all analytic
mathematical models and solutions in the literature for slightly compressible fluid flow in
reservoirs. There are very few studies to examine such an approximation and its applica-
bility. Nevertheless, there have been some studies concerning this approach (Mattews and
Russel 1967), especially for low permeability reservoirs. Consequently, the quadratic term
was considered in the mathematical model of single-phase flow (Finjord and Adanoy 1989),
and the effect of combined compressibility coefficient on each term was discussed. Laplace
transformation was employed to solve the nonlinear diffusion equation with the quadratic
term, and the analytic solution of bottom-hole pressure was obtained for the transient flow
in porous media (Wang and Dusseault 1991). A higher-order derivative of pressure was used
to quantitatively evaluate the effect of the quadratic term in diffusion equation (Chakrabarty
et al. 1993a, b). In addition, on the basis of Green function, a modified method of logarithmic
pressure transformation was presented to solve the diffusion equation with the quadratic term
(Jelmert 1996; Jelmert and Vik 1996). There are still several related studies (Braeuning et al.
1998; Tong et al. 2002, 2004; Tong 2003; Xue and Tong 2008; Gonzales et al. 2008; Nie and
Jia 2009), focusing on the solution method of the nonlinear diffusion equation with quadratic
term, and coefficients of fluid compressibility, wellbore storage, and skin considered in their
mathematical models. It was concluded from these studies that the linearization by ignoring
the quadratic term could result in errors.

To characterize the fluid flow behavior in fractured porous media, the double-porosity
model was introduced by Barenblatt et al. (1960). Then, an improved mathematical model
was developed by Warren and Root (1963). The mathematical model for pressure transient
analysis in naturally fractured reservoir was proposed by Swaano (1976) and Najurieta (1980).
Furthermore, the theory of type-curve analysis was presented to determine the size of frac-
ture and matrix in naturally fractured reservoir (Bourdet and Gringarten 1980). Tong and
Liu (2003) presented a pseudo-steady fracture-matrix flow model for double-porosity fractal
reservoirs with quadratic term taken into account for and derived the analytic solutions by
Laplace Transformation method.

How to handle fracture-matrix flow or interaction is the key for simulation of flow through
fractured media. Pseudo-steady flow assumption, since introduced by Warren and Root
(1963), has been used by almost all flow models, including various types of double-porosity
reservoirs and fractal media. To provide a better understanding of the transient flow behavior
in a fractal reservoir, this article uses the fully transient flow model to handle fracture-matrix
flow in a double-porosity fractal reservoir with spherical and cylindrical matrices, and the
fractal dimensionality and fractal exponent are also accounted for in the mathematical model.
The numerical solution of the semi-analytic solutions is obtained by Laplace transform and
Stehfest inversion scheme. In addition, the effect of quadratic term on pressure transient
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behavior is discussed by type-curve analysis. Finally, the sensitivity analysis is conducted to
evaluate the effect of channel flow factor, ratio of storage coefficient, fractal exponent, fractal
dimensionality, and compressibility coefficient. This study can be used for well test analysis
for a fractal, double-porosity reservoir.

2 Transient Flow Models with Spherical Matrix Block

Naturally fractured reservoirs typically are represented by the two-scale (fracture/matrix)
model of Warren and Root. The fracture network is assumed to be connected and equivalent
to a homogeneous medium of Euclidean geometry. According to naturally fractured reser-
voirs with multiple property scales and a non-Euclidean fracture network, fractal geometry
is a natural candidate for the representation of such systems. We present a formulation for a
fractal fracture network embedded into a Euclidean matrix as follows.

The matrix block and fractures of the double-porosity model is illustrated in Fig. 1, i.e.,
the matrix system consists of uniformly packed, identical spheres. On the surface of spheres,
the pressure is equal to fracture pressure. The fluid in the matrix block provides the source
item for the fracture system. The fractal dimensionality is df , embedded in Euclidean matrix
block. Based on the fractal character of fractures,

kf = k1

(
r

rw

)df−θ−d

, φf = φ1

(
r

rw

)df−d

, β = df − θ − 1 (1)

where k1 is the permeability in the fracture (r = rw), and φ1 is the porosity in the fracture
(r = rw)

The differential form of the continuous equation can be written as follows (Tong and Cai,
2002):

∂(ρφf )

∂t
+ 1

r

∂

∂r
(rρv) − q = 0 (2)

In Eq. (2), q is the flow rate per unit volume of matrix into fractures.

Fig. 1 Double porosity model with spherical matrix block

123



178 Y. Yao et al.

As to the spherical matrix block, its volume is
4πr3

1
3 , and the spherical surface area is 4πr2

1 ,
so

v = r1q/3. (3)

Based on the Darcy law

v

∣∣∣∣r=r1 = −k2

μ

∂p2

∂r

∣∣∣∣
r=r1

(4)

Inserting Eq. (3) into Eq. (4), we have,

q = − 3

r1

k2

μ

∂p2

∂r

∣∣∣∣
r=r1

(5)

Inserting Eq. (1) and Eq. (5) into Eq. (2),

∂2 p1

∂r2 + β

r

∂p1

∂r
+ c

(
∂p1

∂r

)2

+ μ

k1

(
r

rw

)θ

q = μct1

k1

(
r

rw

)θ
∂p1

∂t
(6)

We introduce dimensionless quantities, for fracture medium: rD = r/rw; for matrix: rD1 =
r/r1; other dimensionless quantities are defined as follows:

tD = k1t

(φ1ct1 + φ2ct2) μr2
w

, pDi = 2πk1h (p0 − pi )

μq
, ω = φ1ct1

φ1ct1 + φ2ct2

λ = 15
k2r2

w

k1r2
1

, α = μqc

2πk1h

The flow equations are then written in dimensionless form as follows:

∂2 pD1

∂r2
D

+ β

rD

∂pD1

∂rD
− α

(
∂pD1

∂rD

)2

− λ

5
r θ

D
∂pD2

∂rD1

∣∣∣∣
rD1=1

= ωr θ
D

∂pD1

∂tD
(7)

∂2 pD2

∂r2
D1

+ 2

rD1

∂pD2

∂rD1
− α

(
∂pD2

∂rD1

)2

= 15 (1 − ω)

λ

∂pD2

∂tD
(8)

Initial condition is

pD1|tD=0 = pD2|tD=0 = 0 (9)

Inner boundary conditions are

∂pD2

∂rD1

∣∣∣∣
rD1=0

= 0 (10)

pD2|rD1=1 = pD1 (11)

CD
∂pD1

∂tD

∣∣∣∣
rD=1

− rβ
D

∂pD1

∂rD

∣∣∣∣
rD=1

= 1 (12)

Outer boundary condition is

lim
rD→∞ pD1 = 0 (13)

We substitute the following transform:

pDi = − 1

α
ln (1 − xi ) (i = 1, 2) (14)
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In Eqs. (7)–(13), we have

∂2x1

∂r2
D

+ β

rD

∂x1

∂rD
− λ

5
r θ

D
∂x2

∂rD1

∣∣∣∣
rD1=1

= ωr θ
D

∂x1

∂tD
(15)

∂2x2

∂r2
D1

+ 2

rD1

∂x2

∂rD1
= 15 (1 − ω)

λ

∂x2

∂tD
(16)

x1|tD=0 = x2|tD=0 = 0 (17)

∂x2

∂rD1

∣∣∣∣
rD1=0

= 0 (18)

x2|rD1=1 = x1 (19)(
CD

∂x1

∂tD
+ αx1 − ∂x1

∂rD

)∣∣∣∣
rD=1

= α (20)

lim
rD→∞ x1 = 0 (21)

Through Laplace transform,

PD(rD, s) =
∞∫

0

e−sτ pD(rD, τ )dτ (22)

the solutions of the equation in the Laplace space can be obtained as

x̄1 =
αr

1−β
2

D K 1−β
θ+2

(
2

θ+2

√
s f (s)r

θ+2
2

D

)

s
[
(CDs + α)K 1−β

θ+2

(
2

θ+2

√
s f (s)

)
+ √

s f (s)K 1−β
θ+2 −1

(
2

θ+2

√
s f (s)

)] (23)

where f (s) = ω + λ
5s

{√
15(1−ω)s

λ
cth

√
15(1−ω)s

λ
− 1

}

At the wellbore, Eq. (23) can be simplified as

x̄w (s) =
αK 1−β

θ+2

(
2

θ+2

√
s f (s)

)

s
[
(CDs + α)K 1−β

θ+2

(
2

θ+2

√
s f (s)

)
+ √

s f (s)K 1−β
θ+2 −1

(
2

θ+2

√
s f (s)

)] (24)

pwD = 1

α
ln

{
1 − L−1 [x̄w (s)]

}
(25)

Using Stehfest (1970a,b) inversion to Eq. (24), we can evaluate the dimensionless pressure
from Eq. (25).

3 Results and Discussion

In the following analysis, we will use the analytic solution to discuss the nonlinear pressure
transient. Figure 2 demonstrates the variation of nonlinear dimensionless bottom-hole pres-
sures with time for different values of α. It shows that α affects the pressure curve in the
entire flow process. The impact of α is relatively small initially. As time increases, the effect
of α becomes larger and larger. As seen in Fig. 2, the pressure curves become very different
with different α. The smaller the α is, the larger the dimensionless pressure is.
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Fig. 2 The dimensionless pressure versus time based on the magnitude of α
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Fig. 3 Pressure error distribution versus time depending on α

The nonlinear and linear (as plotted In Fig. 3) solutions show very small differences in the
beginning. However, controlled by the magnitude of α, the difference increases with time.
In order to quantify the difference between the linear and nonlinear pressure solutions, we
use the following term (Chakrabarty et al. 1993a, b):

ε = 1 − pDnl

pDl
(26)

where pDnl and pDl are dimensionless nonlinear and linear solutions, respectively. From
Eq. (26), it can be seen that the bigger the term “ε” is, the larger the difference between the
linear and nonlinear pressure solutions is. The variation of pressure with each parameter is
discussed as follows.
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3.1 Effect of Combination of Compression Coefficient α

Figure 3 displays the error distribution of pressures from linear solution and nonlinear solu-
tion versus time. Initially, α has little impact on the error distribution. As the time increases,
such influence increases up to 40 %. This means that we cannot ignore the quadratic gradient
term in the fractal reservoir; otherwise, there will be a huge error.

Figure 4 shows the spatial distribution, indicating that errors will increase with the increase
in radial distance. When they reach the maximum value, the curve will be flat or start to
decline. For a long time or a large distance from the wellbore, the errors could be higher up
to 10 %. If α is large, then the error may be greater for injection of slightly compressible fluid
than for the formation with low permeability.

3.2 Effect of Fractal Reservoir Parameters

According to a naturally fractured reservoir with a non-Euclidean fracture network, Fig. 5
shows the error distribution of pressures, calculated using linear and nonlinear solutions,
which are impacted by the parameter,df throughout the process. Initially, the influence
of df is very small. As the time increases, the influence increases and as shown on
the plot, the smaller the value of df is, the more rapidly the error will increase, say
up to about 70 %. The matrix is a Euclidean object within which the fracture network
is embedded. If the fracture network is also Euclidean, then its dimension is 2 in the
dual-porosity case. The smaller the value of df of fractal structure is, the greater will
be the increase in error; it may cause too significant errors to the predicted pressure to
allow us ignore the quadratic pressure gradient term in a fractal reservoir with double
porosity.

Figure 6 shows the influence of θ on error distribution. Initially, there is little effect on
errors of pressure. As time increases, however, errors increase sharply. The greater value
of θ leads to a quicker increase in errors and starts earlier. The upper-most curve of error
distribution of Fig. 6 corresponds to θ = 0.7; the maximum error can be up to 60 %. There-
fore, the results show that we cannot ignore the quadratic gradient term in a fractal reservoir.
The curve and comparison are similar to the error distribution profile as obtained with α

(Fig. 4).
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3.3 Effect of Wellbore Storage

In a constant injection case, Fig. 7 shows curves of the nonlinear dimensionless wellbore
pressure versus time when CD = 0, 1000, the nonlinear solution is obtained with α =
0.01, 0.001. From Fig. 7, we can find that the difference of nonlinear solutions is obvious
at later time with greater CD, and it also shows that the nonlinear solution’s error between
different α values can reach 15 % when tD = 107, but there is almost no difference initially.

3.4 Effect of Double-Porosity Characteristic Parameters

Figure 8 shows the transient behavior of dimensionless borehole pressure versus time, which
is determined using the nonlinear solution with ω = 0.1, 0.01, and λ = 0.01, 0.0001. As
expected, the influence of ω is reflected initially, while the influence of λ appears during the
intermediate time, i.e., transition period.
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Fig. 8 Transient pressure behavior at well with different double-porosity parameters ω, λ

4 Transient Flow Model with Cylindrical Matrix Block

The cylinder radius is r1, the pressure distribution within the matrix block is cylindrically
symmetric, as shown in Fig. 9. Similar to the model with spherical matrix block, the differ-
ential form of the continuous equation of fracture can be written as

∂2 p1

∂r2 + β

r

∂p1

∂r
+ c

(
∂p1

∂r

)2

+ μ

K1

(
r

rw

)θ

q = μct1φ1

K1

(
r

rw

)θ
∂p1

∂t
(27)

the solution of Eq. (27) in the Laplace space is obtained as followed,

ȳ1 =
αr

1−β
2

D K 1−β
θ+2

(
2

θ+2

√
sg (s)r

θ+2
2

D

)

s
[
(α + CDs)K 1−β

θ+2

(
2

θ+2

√
sg (s)

)
+ √

sg (s)K 1−β
θ+2 −1

(
2

θ+2

√
sg (s)

)] (28)
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Fig. 9 Double-porosity model with cylindrical matrix block

As to wellbore, Eq. (28) can be simplified as

ȳw (s) =
αK 1−β

θ+2

(
2

θ+2

√
sg (s)

)

s
[
(α + CDs)K 1−β

θ+2

(
2

θ+2

√
sg (s)

)
+ √

sg (s)K 1−β
θ+2 −1

(
2

θ+2

√
sg (s)

)] (29)

where

g (s) = ω + 2

√
15 (1 − ω) s

λ

I1

(√
15(1−ω)s

λ

)

I0

(√
15(1−ω)s

λ

)

pwD = 1

α
ln

{
1 − L−1 [x̄w (s)]

}

Figure 10 shows the errors introduced by the linear solution, when compared with the exact,
nonlinear solution for constant injection rate production, which is influenced by α during
the entire transient flow period. Initially, the difference between the two solutions is small.
As time increases, however, the difference becomes significant. The bigger α is, the more
larger the difference of error is (when α = 10−2, the error reaches about 70 %). For a smaller
(when α = 10−3), the difference is about 20 %.

Figure 11 shows the error variation with df , which is similar to those with the sphere
matrix block model, that is, as regards the difference in pressures, calculated from the two
solutions, it changes with different df values. The smaller df is, the larger the error is, which
is up to about 90 %.

The matrix is a Euclidean object (i.e., of dimension d = 2 for cylindrically symmetric
reservoirs) within which the fracture network is embedded. The fracture network is non-
Euclidean. Similar to spherical matrix block, the smaller the df value of the fractal structure
is, the greater will be the error increase; it may cause too significant errors to the predicted
pressure to allow us ignore the quadratic pressure gradient term in a fractal reservoir with
double porosity. Hence, nonlinear term is more important for fractal reservoirs than those of
Euclidean geometry.
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Fig. 11 Errors in calculated pressure with different df values for the cylindrical matrix model

5 Concluding Remarks

This article presents exact solutions for transient flow in fractal-fractured reservoir with
spherical and cylindrical matrix blocks, the two double-porosity conceptual models. The
model accommodates the effect of wellbore storage as well as fractal parameters. Both the
fractal reservoir flow models are consistent with the principle of mass conservation without
ignoring quadratic pressure gradient terms. A methodology to solve the diffusion with the
nonlinear quadratic gradient terms is proposed. The typical pressure transient behavior is
analyzed using the analytic solutions. Several important conclusions can be drawn from this
study:
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(1) The new type curves for transient pressure responses in the fractal double-porosity res-
ervoir with the quadratic pressure gradient term enable us overcome the shortcomings
of the traditional type curves used for analyzing well testing data.

(2) We use the analytic solutions to study the transient flow behavior with and without
the quadratic pressure gradient terms in our fractal, double-porosity model. The study
results indicate that the quadratic gradient term does impact pressure transient. The
errors introduced by ignoring the nonlinear quadratic pressure gradient term are directly
proportional to the parameter, α, and time. The relative error in pressure predicted by
the nonlinear model is very sensitive to the four parameters: α, cD, cD, and θ . The error
increases with time.

(3) It may cause too significant errors to the predicted pressure to allow us ignore the qua-
dratic pressure gradient term in the flow governing equations, especially in a fractal
reservoir with double porosity.
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