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Abstract Many applications involve the flow of non-Newtonian fluids in porous, subsur-
face media including polymer flooding in enhanced oil recovery, proppant suspension in
hydraulic fracturing, and the recovery of heavy oils. Network modeling of these flows has
become the popular pore-scale approach for understanding first-principles flow behavior, but
strong nonlinearities have prevented larger-scale modeling and more time-dependent simu-
lations. We investigate numerical approaches to solving these nonlinear problems and show
that the method of fixed-point iteration may diverge for shear-thinning fluids unless sufficient
relaxation is used. It is also found that the optimal relaxation factor is exactly equal to the
shear-thinning index for power-law fluids. When the optimal relaxation factor is employed
it slightly outperforms Newton’s method for power-law fluids. Newton-Raphson is a more
efficient choice (than the commonly used fixed-point iteration) for solving the systems of
equations associated with a yield stress. It is shown that iterative improvement of the guess
values can improve convergence and speed of the solution. We also develop a new New-
ton algorithm (Variable Jacobian Method) for yield-stress flow which is orders of magnitude
faster than either fixed-point iteration or the traditional Newton’s method. Recent publications
have suggested that minimum-path search algorithms for determining the threshold pressure
gradient (e.g., invasion percolation with memory) greatly underestimate the true threshold
gradient when compared to numerical solution of the flow equations. We compare the two
approaches and reach the conclusion that this is incorrect; the threshold gradient obtained
numerically is exactly the same as that found through a search of the minimum path of throat
mobilization pressure drops. This fact can be proven mathematically; mass conservation is
only preserved if the true threshold gradient is equal to that found by search algorithms.
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List of Variables
F Vector of errors in pore mass balance (m3/s)
g Conductivity of pore throat (m3)
J Jacobian
k Permeability (m2)
L Length of a pore throat or network model (m)
m Consistency index (Pa sn)
M Number of pores in reduced, Variable Jacobian
n Shear-thinning index
N Number of pores in network model
P Pressure (Pa)
Q Flow rate (cm3/s)
R Radius of pore throat (cm)
v Darcy velocity (m/s)
α Shift coefficient for shear rate in porous media
ε Shift factor of approximate solution of yield-stress flow
φ Porosity
·
γ Shear rate (1/s)
γ̇R Shear rate at the wall of pore throat (1/s)
�P∗ Match pressure drop for approximate solution of yield-stress flow (Pa)
�Pm Mobilization pressure drop for yield-stress flow (Pa)
δ Numerical parameter in forward difference approximation of derivative
δ P Change in solution vector, P, for Newton’s method (Pa)
∇ PT Threshold gradient for yield-stress flow in porous media (Pa/m)
η Non-Newtonian viscosity (Pa s)
η0 Low shear rate viscosity (Pa s)
λ Weighting factor for fixed-point iteration
λopt Weighting factor that minimizes number of iterations
μ Viscosity (Pa s)
μapp Apparent Newtonian viscosity (Pa s)
μmax Maximum viscosity for yield-stress fluids (Pa s)
τ Shear stress (Pa)
τ1/2 Rheological parameter in Ellis model (Pa)
τR Shear stress at the wall of pore throat (Pa)
τ0 Yield stress (Pa)

1 Introduction

Flow of non-Newtonian fluids in porous media is important in many subsurface applications.
For example, in enhanced oil recovery polymers are used to increase sweep efficiency and
may even reduce residual oil saturation (Wang et al. 2000). Crosslinked polymer gels are
used during hydraulic fracturing operations to help carry proppant particles to the fracture;
these fluids are often reported as exhibiting a yield stress (May et al. 1997; Balhoff and
Miller 2005). Heavy oils are shown to be non-Newtonian as well which may lead to unex-
pected recovery in reservoirs. Non-Newtonian flow in porous media is also important in other
industries such as polymer processing in packed beds (Chabbra 2000) and injection molding
(Bruschke and Advani 1990).
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Pore-scale network modeling (Fatt 1956a,b,c; Blunt et al. 2002) is a tool used to investi-
gate fundamental flow behavior in porous media and to upscale macroscopic properties for
inclusion into macroscopic reservoir simulators. Network models view the porous medium
as a collection of pores connected by throats. It has been used to study many different flow
phenomena and has advanced to allow for quantitative modeling and in many cases, the
models are imaged directly from real media (Bakke and Øren 1997; Sheppard et al. 2005;
Prodanovic et al. 2006). Although network models only approximate the morphology of the
void space (and therefore the flow physics), simulations are often found to closely match
experimental data (Bryant and Pallatt 1996; Bakke and Øren 1997; Valvatne and Blunt 2004;
Balhoff and Wheeler 2009; Joekar-Niasar et al. 2010)

For modeling non-Newtonian flow, the fluid is usually described by a theoretical rheologi-
cal model. For fluids that are shear thinning (or thickening), the power-law, Ellis, and Carreau
models are popular. For fluids that exhibit a yield stress, the Bingham, Herschel–Bulkley,
and Casson models are often chosen. All of these models are typically employed because of
their relative simplicity and a closed-form expression for flow rate versus pressure drop in a
capillary tube (pore throat) can often be found. Fluids that are viscoelastic have properties of
both an elastic solid and viscous fluid, but investigation of these fluids is outside of the scope
of this study.

Flow of shear-thinning fluids in qualitative network models was performed by Sorbie
et al. (1989); Shah and Yortsos (1995), and Shah et al. (1998). In all cases the networks
were 2D or simple 3D networks. Lopez et al. (2003) performed network modeling of Car-
reau fluids using networks mapped from consolidated and unconsolidated media and showed
good agreement to experimental data. Although an analytical solution for a Carreau fluid in
a pore throat (represented as a capillary tube) is not available, they derived an approximate
expression. Balhoff and Thompson (2006) modeled the flow of power-law and Ellis fluids
in packed beds of uniform and polydisperse spheres. They also obtained good agreement
with experiments and developed a new macroscopic model for shear-thinning fluids. Sochi
and Blunt (2008) presented results for the flow of shear-thinning fluid in unconsolidated and
consolidated media and obtained good agreement with experimental data.

Yield-stress fluids are characterized by a minimum pressure gradient to yield flow and
therefore are more challenging to model. Sahimi (1993) modeled general nonlinear behavior
analogous to yield-stress flow in qualitative 2D and 3D networks. Shah et al. (1995) modeled
the flow of a Bingham fluid in 2D networks with a distribution of throat radii and obtained the
threshold gradient required to initiate flow. Balhoff and Thompson (2004) modeled the flow
of Bingham fluids in packed beds of spheres using physically-representative network models
of sphere packs. They obtained qualitative results of the flow paths at and near the threshold
gradient, determined the threshold pressure gradient, and developed macroscopic curves of
Darcy velocity and pressure gradient. They obtained a good match with some experimental
data. Balhoff (2004) extended the work to model the flow of Herschel–Bulkley fluids. Chen
et al. (2005) modeled yield-stress fluids in 2D networks and extended the work to include
multiphase flow. Sochi and Blunt (2008) and Sochi (2010) modeled Herschel–Bulkley flu-
ids in networks based on real sand packs and Berea sandstones which compared well to
experimental data. Finally, Balan et al. (2011) recently modeled foam flow in porous media
and used expressions for flow rate that required a mobilization pressure drop. Their network
model was analogous to yield-stress flow in porous media.

Despite growing interest in pore-scale modeling of non-Newtonian fluids, strong nonlin-
earities prevent its wide use in larger models, in time-dependent schemes, and in multiscale
simulations. The system of nonlinear equations that arise can be difficult to solve and compu-
tationally slow. The two most common methods employed in network modeling for solving
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the nonlinear equations are (1) fixed-point iteration and (2) Newton’s method. Fixed-point
iteration tends to be the more widely used method for non-Newtonian applications despite the
expectation that it is slower and perhaps less stable (Chapra and Canale 2010). The advantage
of fixed-point iteration is the relative simplicity and ease of coding. The alternative is to use
Newton’s method, which is the usual choice for solving systems of nonlinear equations (but
surprisingly uncommon for non-Newtonian network modeling). Newton’s method is widely
known to converge quickly (quadratic near the root) when it converges. However, it has no
general convergence criteria, can in theory converge to an undesired root, and requires com-
putation of potentially difficult partial derivatives. In this article, we test both approaches and
compare stability and speed of convergence.

Yield-stress fluids require special numerical improvements because they require a thresh-
old pressure gradient to induce flow in a porous medium. In an individual pore throat, flow
is only finite if the pressure drop exceeds the local mobilization pressure drop (�Pm). Phys-
ically, the fluid is solid in these throats and has an infinite viscosity. This formulation causes
numerical difficulties near the threshold gradient because flow rate (as well as the partial
derivative of flow rate) is zero in some throats leading to singular matrices in both the fixed
point and Newton approaches. The usual way the problem is circumvented is to impose a
high, but finite viscosity in those throats in which �P < �Pm. For example, Sochi (2010)
used the fixed-point iteration method and imposed a maximum viscosity of 1050 Pa s in the
no-flow region.

Balhoff and Thompson (2004) and then Balan et al. (2011) employed Newton’s method to
solve the nonlinear equations associated with the flow of fluids characterized by a yield stress.
The approach leads to a singular Jacobian if no adjustments are made to the flow equations.
They circumvented the problem by using an approximation of maximum, constant viscosity
in throats below the mobilization pressure drop. Their algorithm implemented a moderate
maximum viscosity, which was then used as an initial guess for a subsequent iteration with
slightly higher maximum viscosity. These iterations continued until the approximate solution
was sufficiently close to the true solution (i.e., the pressure field resulted in mass conservation
in all pores below the predetermined tolerance for the true set of nonlinear equations). Their
approach was numerically stable and convergent for all fluids and properties employed.

For flow of yield-stress fluids in porous media, the goal is often the determination of the
exact threshold pressure gradient and the qualitative pathway in which the fluid flows at the
threshold. Solution to the nonlinear equations are difficult at the threshold gradient because
nearly all throats contain unyielded flow. For example in the Balhoff and Thompson (2004)
approach, if the maximum viscosity in the approximate equations is too high, the solution
is a poor approximation to the real set of equations; if the maximum viscosity is too low,
the Jacobian is poorly conditioned. Nonetheless, both Balhoff and Thompson (2004) and
Sochi (2010) claim to successfully obtain the exact threshold pressure gradient and path by
numerical solution of the flow equations.

Alternative approaches for finding the threshold gradient involve minimum threshold path
(MTP) algorithms (Sochi and Blunt 2008) that find the connected path of pore throats that
minimizes the sum of mobilization pressure drops. Kharabaf and Yortsos (1997) introduced
the invasion percolation with memory algorithm (IPM) to find the threshold gradient, which
was also used by Chen et al. (2005). Sochi (2010) developed an algorithm, path of minimum
pressure (PMP), which was much faster but did not allow backtracking (i.e., throats on the
threshold path advanced only forward in the direction of the pressure gradient). They showed
the two methods gave similar results, but PMP sometimes had a higher threshold gradient
because of the absence of backtracking. Most importantly, they concluded both IPM and PMP
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gave much different results than their numerical algorithm and significantly underestimated
the true threshold gradient.

A goal of this study is to investigate and develop numerical approaches for solving flow
of purely viscous, non-Newtonian fluids (particularly yield-stress fluids) in network models
of porous media, and compare stability and speed of convergence. In addition, we show that
threshold pressure gradient and flow path found numerically are exactly the same as found
using search algorithms, such as IPM, which contradicts the findings of Sochi (2010).

2 Model Development

2.1 Network Generation

In this study, we utilize network models mapped from two different types of porous media:
computer-generated sphere packs and sandstones digitized from real media. The sphere packs
are obtained using a collective rearrangement algorithm (Jodrey and Tory 1985) and have the
advantage of fast generation and the ability to easily vary grain-size distribution and porosity.
Network models of sandstones are more difficult to extract and pore-level properties are fixed.
We use a network model constructed from a real, naturally occurring sandstone (Gani and
Bhattacharya 2003) that was imaged using X-ray computed microtomography (Thompson
et al. 2008).

Regardless of the medium used, it is mapped to a 3D, physically representative network
model using a modified Delaunay tessellation (Al-Raoush et al. 2003). The resulting network
captures the inherent heterogeneity and consists of pores (containing the pore volume) and
connecting throats (accounting for resistance to flow). The permeability of each network
can be varied through scaling (where the grain diameters are increased to increase perme-
ability). Simulations are conducted for a sphere pack with 1,000 grains, 38% porosity, and a
uniform grain radius 0.0529 cm. The resulting network has 4,070 pores and a permeability of
1.06 × 10−5 cm2. The sandstone has 2,487 grains, 17% porosity, and grain radius of 0.0344
cm. The network has 9,463 pores and a permeability of 1.84×10−7 cm2. Both networks have
dimensions of 1 cm × 1 cm × 1 cm.

2.2 Flow Modeling

Single phase flow in pore networks is modeled by imposing mass conservation at pores with
the connecting throats providing the resistance to flow (

∑

i
qi j = 0). If the flowing fluid is

Newtonian, a linear relationship between flow rate and the connecting throats describes flow.
A linear system of equations arises which can be directly solved to obtain pore pressures and
throat flow rates. For non-Newtonian fluids the relationship for throat flow rate is nonlinear
and a nonlinear system of equations arises. Although there are dozens of constitutive models
that can be used to describe the rheology of purely viscous non-Newtonian fluids, a few of
the more common models that have been employed in network modeling (along with flow
equations in a capillary tube) are depicted in Table 1 and studied in this study.

2.2.1 Fixed-Point Iteration

The fixed-point iteration method is implemented here using an approach similar to Lopez
et al. (2003) and Sochi (2010). We (1) guess an initial solution for pressure (e.g., solution to
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Table 1 Flow equations for various constitutive models for non-newtonian flow in a capillary tube

Model Constitutive Cylindrical throat Apparent Newtonian viscosity in
equation flow equation pore throat

Newtonian τ = μ
·
γ Qi j = π R4

8μL �P μi j,app = μ

∂ Qi j
∂ Pi

= π R4
8μL

Power-law τ = m
·

γ n Qi j = nπ R3+1/n

(3n+1)(2 mL)1/n �P1/n μi j,app = m1/n
(

3n+1
4n

) (
R�P
2 L

)1−1/n

∂ Qi j
∂ Pi

= π R3+1/n

(3n+1)(2 mL)1/n �P1/n−1

Ellis τ = η0

1+
∣
∣
∣
∣

τ
τ1/2

∣
∣
∣
∣

·
γ Qi j = π R3τR

4η0

[

1 + 4
α+3

(
τR

τ1/2

)]α−1
μi j,app = η0

[

1 + 4
α+3

(
τR

τ1/2

)]1−α

∂ Qi j
∂ Pi

= π R4
8η0 L + απ R3

η0(α+3)τ1/2

(
R

2 L

)α
�Pα−1

Bingham τ = τ0 + m
·
γ Qi j = π R4

8 mL �P μi j,app =
[

1 − 4
3

(
2 Lτ0
�PR

)
+ 1

3

(
2Lτ0
�PR

)4
] [

1 − 4
3

(
2Lτ0
�PR

)
+ 1

3

(
2 Lτ0
�PR

)4
]−1

∂ Qi j
∂ Pi

= π R4
8 mL − 2π L3τ4

0 �P−4

Herschel– τ = τ0 + m
·

γ n Qi j = π R3(
τR−τ0

)1/n+1

m1/nτ3
R

μapp,i j = m1/nτ4
R

4
(
τR−τ0

)1/n+1

Bulkley

[ (
τR−τ0

)2

1/n+3 + 2τ0
(
τR−τ0

)

1/n+2 + τ2
0

1/n+1

] [ (
τR−τ0

)2

1/n+3 + 2τ0
(
τR−τ0

)

1/n+2 + τ2
0

1/n+1

]−1

∂ Qi j
∂ Pi

≈ Qi j
(
Pi +δ

)−Qi j
(
Pi

)

δ

General fluid τ = η

( ·
γ

) ·
γ Qi j =

π R3 ·
γ
R

3 − π
3

γR∫

0
η3 ·3

γ d
·
γ μi j,app = π R4

8Qi j L

∂ Qi j
∂ Pi

≈ Qi j
(
Pi +δ

)−Qi j
(
Pi

)

δ

�P = Pi − P j , τR = �P R
2L

Newtonian equations); (2) calculate apparent, Newtonian viscosity in each throat based on
the current guess of throat pressure drop (see Table 1); (3) solve the linear system of equations
(biconjugate gradient solver used in this study) to update pore pressures; (4) repeat steps 2
and 3 using the new pressures and iterate on the solution until convergence is achieved. If
the fluid exhibits a yield stress, a maximum viscosity of 1050 Pa s is allowed as used by Sochi
(2010). Table 1 includes the apparent viscosity equations in capillary tubes (throats) for a
current guess of pressure drop for various rheological models.

2.2.2 Newton’s Method

Newton’s method is implemented as was done by Balhoff and Thompson (2004) and Balan
et al. (2011). We (1) guess an initial solution for pore pressure (e.g., solution to Newtonian
equations); (2) Calculate the Jacobian (J) of partial derivatives and the error in mass balance in
pores (F); (3) solve the system of equations JδP = −F; (4) Update the guess of pore pressures
P = P+δP; and (5) iterate until the relative error in the norm of F, ‖F‖2, is below the specified
tolerance. Table 1 shows the partial derivatives for flow in a capillary tube for various rheo-
logical models; they can be taken numerically when an analytical solution is not amenable.

For yield-stress fluids, an approximate flow equation is implemented so that small, but
finite flow occurs in unyielded throats. The flow equation is linear with a small slope below
�P* = �Pm(1+ε). Above �P* the flow equation is exactly the same as the actual equations
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(Balhoff and Thompson 2004). This allows for evaluation of a non-singular Jacobian and
a system of linear equations that can be solved robustly. The approximate equations for
Bingham flow are written as:

Q = π R4

8μL
�P

[

1 − 4

3

(
2τ0 L

�P R

)

+ 1

3

(
2τ0 L

�P R

)4
]

if �P > �P∗

Q = π R4

8μmax L
�P if �P ≤ �P∗ (1)

We refer to four types of pores that may be observed in the network for yield-stress flow.
These pores may be found at an intermediate iteration or (in some instances) at the final,
converged solution:

1. Inactive pores These pores are not part of any connected path in the network. All of the
throats connected to the pore have a pressure drop below the mobilization pressure drop
(�Pm).

2. Isolated clusters These pores are connected to other pores by throats with pressure drops
above the mobilization pressure drops. However, the isolated cluster is not part of a con-
nected path across the network. These pores are formed as a result of an incorrect guess
in a Newton iteration or because flow through the cluster is so small that it falls below
the specified tolerance.

3. Dead end pores The pores or clusters of pores are attached to a connected path, but lead
to a dead end. Mass is not conserved in these clusters of pores since flow is finite on one
end but zero on the other.

4. Connected path These pores are part of a connected path of pores spanning the inlet and
outlet of the network. Mass is conserved in the connected path(s).

Once the system of equations are solved using the approximate model equations, the solution
is used as an improved initial guess for pore pressures. The problem is re-solved by reducing
ε and using the new �P* (Balhoff and Thompson 2004) to find a more accurate pressure
field. This is continued until �P* is close to the mobilization pressure drop (�Pm) and mass
conservation is preserved (below the specified tolerance) for the “true” system of equations.
This pressure field is then taken as the solution. All of the throats with pressure drops above
the mobilization pressure drop are “open” to flow; these throats should form connected paths
across the network (otherwise mass balance would not be preserved locally). At the threshold
pressure gradient, a single path of throats is open that connects the inlet and outlet of the
network.

Upon convergence, some throats may appear open that are not part of the connected path
(isolated clusters). This is physically impossible as it would violate mass balance (flow into
any pore from a throat must exit through others). Close inspection shows that in these situa-
tions, flow rates are so small that they are below the specified tolerance for mass conservation
and �P is only infinitesimally greater than the mobilization pressure drop. These isolated
throats do not affect the numerical value of Darcy velocity or global mass balance in the
network, but may give misleading values of the number of throats open and/or the flow paths.
A search for any isolated throats is performed and they are discarded. It should be noted that
these isolated pores/throats cannot be discarded in the iterative routine if local mass balance
on the pore is above the specified tolerance, even if global mass balance (total flow into the
network model equals flow out of the model) is found.
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2.2.3 Variable Jacobian Newton’s Method

The traditional Newton’s method converges easily if the imposed pressure gradient is signifi-
cantly higher than the threshold pressure gradient. It is near the threshold gradient that the sys-
tem of nonlinear equations becomes difficult to solve. The method then requires many Newton
iterations, each involving the solution of a large system of poorly conditioned linear equa-
tions. Near the threshold gradient, most of the throats are closed to flow (i.e., �P < �Pm) and
significant computation time is wasted on updating pressure in pores connecting these throats.

Here, we develop the Variable Jacobian Method which adaptively reduces the size of the
Jacobian in each Newton iteration. Based on the current guess of pore pressures, the N × N
Jacobian of partial derivatives (J) and the error in pore mass balance (F) is formed using the
true Bingham or Herschel–Bulkley equations (Eq. 1 is not necessary for the variable Jaco-
bian method). Many pores in the network may be only connected to throats that are closed
to flow (inactive pores); therefore the entire row and column of the Jacobian corresponding
to that pore is zero. We reduce the size of the Jacobian by removing all rows and columns
corresponding to these “inactive” pores. The corresponding rows of F are also removed. The
resulting M × M (where M < N ) Jacobian can be 1–2 orders of magnitude smaller than
the full Jacobian (and better conditioned) which makes solution of JδP = −F much faster
and easier. The pore pressures are updated and the procedure repeated in the next Newton
iteration with potentially a different-size, reduced Jacobian. The procedure is repeated until
‖F‖2 < tol. It should be noted that by reducing the tolerance, the Jacobian size can sometimes
be reduced even further, but this may require more iterations on the linear solver.

For an intermediate guess of pore pressures, two types of active pores appear in the
network: (1) those on a connected path from the inlet to the outlet (2) those that form an
isolated cluster (formation of the Jacobian as described above and shrinking it, we have
automatically discarded inactive pores). Thereby we are left with only isolated clusters and
connected paths. Iteration on those pore pressures will, by mass balance, dictate a constant
pressure on the isolated clusters. In addition, a unique solution, compatible with the boundary
conditions, is found on the percolating clusters. The constant pressure solution for the isolated
clusters, however, will be non-unique as they are boundary value problems with pure
Neumann boundary conditions.

This causes the Jacobian matrix to be singular and solution to the system of equations
(JδP = −F) will be composed of two parts: a unique solution for the connected path and a
non-unique solution for the isolated clusters. The non-unique part (obtained using an iterative
linear solver) results in perturbations in the pressure values in the isolated pores which cause
these pores to either (1) become inactive or (2) re-arrange and possibly become part of a
connected path. If the pores become inactive, and we converge, the solution is unique. If the
isolated clusters re-arrange, we continue the iterative process until they also become inactive
or become part of a connected path. In either case the final solution will be unique, no isolated
clusters will be present, and both local and global mass balance will be preserved. It should be
noted that the intermediate iterations depend on the iterative linear solver employed; however,
the final connected path(s) will be the same. Convergence occurs for all pressure gradients
at and above the threshold gradient.

2.3 Threshold Path Algorithms

The threshold pressure gradient can be found using the previously described numerical
techniques for solving flow in the network. This entails iterating on the applied pressure
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gradient to determine the smallest pressure gradient that yields flow and forms a single flow
path in the network. This approach was used in Balhoff and Thompson (2004); Sochi and
Blunt (2008), and Balan et al. (2011). An alternative approach for finding the threshold
gradient involves search algorithms for finding a minimum path of mobilization pressure
drops.

∇ PT = 1

L

∑

min

�Pm,i j (2)

A number of search algorithms can be employed including invasion percolation with mem-
ory (IPM) and path of minimum pressure (PMP). Both methods were used by Sochi and
Blunt (2008) to find the threshold path. Other methods could be borrowed from graph theory
such as the well-known Djikstra’s algorithm (Ahuja et al. 1993) and the Floyd–Warshall
(F–W) algorithm (Ahuja et al. 1993). The details of these methods are given in the ref-
erences, but are summarized here for completeness. Essentially the algorithms search all
potential connecting paths between source and destination and find the one that has the
smallest sum of mobilization pressure drops (Eq. 3). F–W is an “all pairs” algorithm so
it determines the minimum path for any two pores in the entire network. As a result, it is
slow and not practical for the current application (but still accurate). Djikstra’s algorithm
finds the minimum path between a single source and single destination. Therefore, for our
application, we must loop through all inlet pores and all exit pore combinations to find
the minimum of all source/destination combinations. IPM is a variant of Djikstra’s algo-
rithm but faster because it finds the minimum of all source/destinations. Finally, PMP is
potentially the fastest algorithm because it only checks for throats that are in the direc-
tion of the pressure gradient, but because it does not allow backtracking it may lead to
inaccuracies (Sochi 2010). F–W, Djikstra, and IPM all result in the same, true minimum
path.

3 Results and Discussion

3.1 Fixed Point versus Newton

Stability and speed of convergence were investigated for the two approaches (fixed-point
iteration and Newton’s method) for solving the systems of nonlinear equations. Table 2
summarizes the computation time and number of iterations for fixed-point iteration versus
Newton for power-law flow. Not surprisingly, Newton is the much faster method when no
relaxation (λ) on fixed-point iteration is used and also requires far less iterations.

Table 2 also shows that fixed-point iteration (without relaxation) does not converge at all
if the power-law index (n) is less than 0.5. For power-law indices below 1/2, convergence can
be obtained through relaxation; pressures are updated by weighting the old and new guesses:

Pk = λPk + (1 − λ) Pk−1 (3)

where a value of λ < 1 improves convergence. It should be noted that several authors (Sorbie
et al. 1989; Lopez et al. 2003; Sochi and Blunt 2008) present solution of shear-thinning fluids
without mention of convergence problems or the need of a relaxation strategy. It is possible
that one is implemented and not stated. Many of the presented results have shear-thinning
indices above or near 0.5 and the more practical Carreau or Ellis models are often used
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Table 2 Summary of computational efficiency (seconds) for power-law flow in the network model of the
sphere pack and sandstone

Network n FP (λ = 1) FP (λopt = n) Newton

Sphere 0.9 3.2 (8) 1.6 (4) 2.7 (3)

0.75 6.7 (17) 2.0 (4) 3.6 (4)

0.501 2000 (4976) 2.8 (7) 5.3 (6)

0.499 DNCa 2.9 (7) 5.3 (6)

0.25 DNC 6.2 (10) 9.9 (9)

0.1 DNC DNC 46 (22)

Sandstone 0.9 18 (5) 9.8 (3) 9.6 (2)

0.75 464 (132) 16 (4) 14 (3)

0.501 >5000 25 (7) 24 (5)

0.499 DNC 21 (6) 24 (5)

0.25 DNC DNC 81 (17)

0.1 DNC DNC 103 (21)

The number of iterations is included in parenthesis
a DNC indicates “does not converge”

Fig. 1 a Iterations required for convergence versus λ for various power-law indices in the sphere pack. The
minimum, λopt , was always found to be exactly equal to the power-law index and bλopt as a function of
shear-thinning index for a power-law fluid in the network model created from a sphere pack

in place of a power-law fluid. These fluids have Newtonian plateaus which may add some
stability to the problem that could allow convergence slightly below n = 1/2.

In general, relaxation strategies similar to that depicted in Eq. 3, require that the optimal
λ(λopt) be found by trial and error. However, for power-law fluids we have found that λopt is
exactly equal to the power-law index, n, as shown in Fig. 1a,b. Although the figure is shown
for the sphere pack, the same relationship has been observed for several other networks. For
yield-stress fluids, no universal equation for λopt has been found; it must be determined by
trial and error.

As shown in Tables 2 and 3, Newton’s method outperformed fixed-point iteration if no
relaxation was used, but fixed-point slightly outperformed Newton if λopt was employed for
power-law fluids. Although Newton’s method is not guaranteed to converge in general, no
problems were found provided the system of linear equations (JδP = −F) converges.

123



Numerical Algorithms for Network Modeling 373

Table 3 Summary of computational efficiency (seconds) for Bingham flow in the network model of the
spherepack and sandstone

Network ∇ P/∇ PT FP (λ = 1) Newton Variable Jacobian

Sphere 5.0 51 (23) 22 (9) 8.9 (8)

2.0 DNCa 62 (26) 34 (16)

1.50 DNC 69 (29) 41 (25)

1.25 DNC 50 (21) 37 (35)

1.1 DNC 40 (17) 19 (23)

1.01 DNC 69 (29) 18 (21)

Sandstone 5.0 DNC 100 (21) 49 (22)

2.0 DNC 133 (26) 53 (29)

1.50 DNC 101 (20) 52 (28)

1.25 DNC 170 (35) 54 (32)

1.1 DNC 184 (38) 74 (44)

1.01 DNC 337 (69) 62 (45)

The number of iterations is included in parenthesis
a DNC indicates “does not converge”

Fig. 2 Size of the Jacobian (M) with the number of iterations at various ratios of the pressure gradient to
threshold gradient for the sandstone. The total number of pores (N) is 6,057

For yield-stress fluids, Newton’s method is the preferred method over fixed-point iteration.
Convergence of fixed-point iteration was difficult or impossible unless the pressure gradient
was much higher than the threshold gradient. However, the new Variable Jacobian Method
was also implemented and shown to be by far the superior approach over either fixed point
or the traditional Newton method (Table 3) in terms of computation time. It converged in all
cases tested and identical results for pore pressures were obtained as found using fixed-point
iteration and Newton’s method with a full Jacobian. The relatively small computation time
is attributed to the small systems of linear equations that are solved (compared to the full
Jacobian) during the Newton iterations, better condition number, and the lack of a need of
an outer iteration on ε as was used in the traditional Newton’s method with a full Jacobian.
Fig. 2 shows that Jacobian size varies with each iteration and is also dependent on the pressure
gradient.
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Table 4 Summary of threshold gradient (Pa/cm) obtained via numerical solution and using search algorithms

Network Variable Jacobian F–W Djikstra IPM PMP

SP_xa 55.95 55.95 55.95 55.95 55.95

(13 s) (6.1 × 103 s) (130 s) (0.39 s) (0.39 s)

SP_y 56.65 56.65 56.65 56.65 56.65

(24 s) (6.1 × 103 s) (130 s) (0.38 s) (0.39 s)

SP_z 49.75 49.75 49.75 49.75 49.75

(20 s) (6.1 × 103 s) (140 s) (0.38 s) (0.39 s)

SS_xb 50.80 50.80 50.80 50.80 53.82

(59 s) (2.2 × 104 s) (315 s) (0.65 s) (0.61 s)

S_y 65.28 65.28 65.28 65.28 69.17

(95 s) (2.2 × 104 s) (113 s) (0.63 s) (0.53 s)

SS_z 69.93 69.93 69.93 69.93 73.08

(119 s) (2.2 × 104 s) (218 s) (0.63 s) (0.54 s)

Computation times listed in seconds. Yield stress was 1 Pa
a SP is the network model generated from the sphere pack
b SS is the network model generated from the sandstone

Fig. 3 Threshold path found via for a the sphere pack and b the sandstone in the x-, y-, and z-directions,
respectively. The fluid had rheological properties m = 1 Pa s and τ0 = 1 Pa. Identical results were found using
IPM, F–W, Djikstra, and the numerical approaches. The threshold path is in black and the boundary pores are
in color

3.1.1 Threshold Gradient Determination for Yield-Stress Flow

Table 4 summarizes the threshold pressure gradients obtained for the networks using numer-
ical algorithms (Newton’s and fixed point) and the search algorithms (F–W, Djikstra, IPM,
PMP). The solution using the numerical flow equations gives the exact same threshold gra-
dient as F–W, Djikstra, and IPM. Likewise, the connecting flow path of throats across the
network at the threshold gradient is exactly the same for all approaches. Figure 3 shows the
flow path at the threshold pressure gradient in the sphere pack and sandstone.

Table 4 also shows that PMP method overestimates the threshold gradient for the sand-
stone. This is expected; as Sochi (2010) points out, PMP is only an approximate method
because “backtracking” is not allowed. In the heterogeneous sandstone, the true flow path
occasionally tracks in the direction opposite of the imposed pressure gradient. The more
homogenous sphere pack does not require any backtracking and therefore PMP gives the
same results as the more rigorous methods (IPM, Djikstra, and F–W). It should also be noted
that the threshold path and pressure gradient are exactly the same regardless of the flow model
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(Bingham, Herschel–Bulkley, Casson, etc.) implemented. This was discussed in Balan et al.
(2011). Flow yields in a throat when the pressure drop exceeds �Pm; at the threshold gradient
flow is infinitesimal and dynamic effects are not relevant (Chen et al. 2005). Therefore, the
constitutive model used to describe flow above the throat mobilization pressure drop has no
impact on the solution.

The agreement of the threshold flow path between IPM and numerical solution is in stark
contrast to the conclusions presented by Sochi and Blunt (2008) and Sochi (2010). Sochi
(2010) presents results that show both IPM and PMP significantly underestimate the numer-
ical threshold gradient (by a factor of 2–3). An explanation for the disparity is provided in
which it is claimed that (1) the threshold gradient of the entire network should be equal to the
threshold gradient of the bottleneck (most resistant throat) of the path, (2) dynamic effects
(viscosity) which is relevant above the threshold gradient affect the numerical solution at the
threshold gradient, and (3) the tortuous path that fluid travels increases the threshold gradient.

However, those conclusions cannot be correct and violate basic material balance princi-
ples. Let us assume that the “true” threshold gradient (∇PT,numerical) were in fact greater than
the threshold found from the minimum-path search algorithm (∇PT,MTP). This condition
requires that the pressure drop across at least one throat along the true threshold flow path is
greater than the throat mobilization pressure drop (�Pm), meaning flow must be finite in that
throat(s). For mass balance to be preserved, flow would have to then be finite in connecting
throats across the network (to insure flow in equals flow out of every pore in the network).
But at the true threshold gradient, flow only first yields and is infinitesimal (q = 0+). It is
impossible then for the pressure gradient to be above the minimum-path pressure gradient
and not yield flow.

In reality, the threshold gradient found via numerical solution (which conserves mass)
must be equal to the gradient that minimizes the sum of mobilization pressure drops (as we
found in Table 4). At the threshold pressure gradient, the pressure drop across each throat
along the threshold flow path is exactly equal to the mobilization pressure drop in those
throats. A mathematical proof is provided in the appendix which shows that the threshold
gradient is equal to the sum of mobilization pressure drops on the threshold path.

It is unknown why Sochi (2010) obtains a numerical threshold gradient much higher than
predicted by the search algorithms, but we propose one possible explanation. Above the
threshold gradient, it is possible to obtain a pressure field during the iterative procedure that
gives a single flow path across the network in addition to several isolated clusters of pores
that do not form a path. If the applied pressure difference across the network is exactly equal
to the sum of mobilization pressure drops on that path, the flow rate will be 0+ along that
path and global mass balance is preserved. However, the result would only be an illusion
of convergence because mass is not conserved locally in the isolated pore clusters. Mass
balance must be preserved locally at all pores (at least below a specified, small tolerance)
and if iterations were continued until this condition is met, one would find that a new path
forms which yields at a lower pressure gradient—the same flow path and threshold gradient
found from search algorithms.

4 Conclusions

A pore-scale network model has been used to investigate the numerical accuracy and effi-
ciency of several algorithms used to study non-Newtonian flow in porous media with emphasis
on shear-thinning fluids with and without a yield stress. The main conclusions of this study
are summarized as follows:

123



376 M. Balhoff et al.

• Fixed-point iteration does not always converge unless a sufficient relaxation coefficient
(λ) is used that weights the old and new guesses of pore pressures. For power-law fluids,
relaxation must be used for n < 1/2. Moreover, it is found that the optimum relaxation
(λopt) for power-law fluids is exactly equal to the shear-thinning index, n. No universal
relationship was found for yield-stress fluids.

• Fixed-point iteration slightly outperforms Newton’s method for power-law fluids if λopt is
employed. Fixed point usually did not converge for yield-stress fluids unless the pressure
gradient was much higher than the threshold gradient. In these cases, a Newton strategy
(traditional or variable) is faster and should be employed.

• A new Variable Jacobian Method is employed for the flow of yield-stress fluids. The
method addresses the strong nonlinearities and slow computations observed for yield-
stress flow by discarding inactive pores and reducing the size of the Jacobian in each
Newton iteration. It is faster and more robust than either the fixed point or full Jacobian
Newton algorithms for yield-stress problems.

• The threshold pressure gradient found using minimum-path search algorithms (e.g., IPM,
Djikstra, and F–W) is exactly the same as found from numerical approaches for solving
the nonlinear yield-stress flow equations. This is in stark contrast to the conclusions
made by Sochi (2010). Local mass balance on each pore (as opposed to only global mass
balance) must be preserved to insure convergence to the correct solution.
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Appendix

Definition (simple path) In graph theory a path is a sequence of vertices with one edge
between two consecutive vertices. A path with no repeated vertices is called a simple path.

Definition (minimum percolation potential) Define the minimum percolation potential of a
flowing system A to be the value of the following limit:

lim �PA = �PmA
qA→0+

Remark �PA(qA) : R
+ ∪ {0} → R

+ ∪ {0} is a continuous, monotonically increasing func-
tion. Also for any system A we have: �PA < �PmA ⇒ qA = 0.

Lemma Lemma given a finite serial sequence of elements (ek)
N
k=1, if the elemental fluxes and

potentials are denoted by qek ,�Pek and the minimum percolation potential of each element
by �Pmek

then ∀R
+

� ε̄, ∃R
+

� σ such that the following holds:

0 < qek < σ,∀k ⇒ 0 <

N∑

k=1

�Pek (qek ) −
N∑

k=1

�Pmek
< ε̄

Proof For every element ek we can write the following. Let R � ε̄ > 0 be arbitrary, then
∃R+σk such that:

0 < qek < σek ⇒ 0 < |�Pek − �Pmek
| = �Pek − �Pmek

<
ε̄

N
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Taking σ = min{σek }N
k=1 we have:

0 < qek < σ,∀k ⇒ 0 < �Pek − �Pmek
<

ε̄

N

Summing the right hand side of the above implication over k we get:

0 < qek < σ,∀k ⇒ 0 <

N∑

k=1

�Pek (qek ) −
N∑

k=1

�Pmek
< ε̄

�
Corollary Given system A as a finite serial sequence of elements (ek)

N
k=1, the percolation

potential of the system is the following:

�PmA =
N∑

k=1

�Pmek

Proof Since in such a system we have qe1 = qe2 = . . . = qeN = qA and
∑N

k=1 �Pek (qA) =
�PA(qA), using lemma above let R � ε̄ > 0 be arbitrary, then ∃R

+
� σ̄ such that:

0 < qek < σ,∀k ⇒ 0 <

N∑

k=1

�Pek (qek ) −
N∑

k=1

�Pmek
< ε̄

Which in combination with the foregoing yields:

0 < qA < σ ⇒ 0 < �PA(qA) −
N∑

k=1

�Pmek
< ε̄

This means that lim
qA→0+ �PA = ∑N

k=1 �Pmek
. �

Theorem Given a finite network system A, let the following be the set of all percolation
(simple) paths through the system (we will drop the word “simple” herein) :

D = {li = (ei
k)

Ni
k=1 : i = 1, 2, ...}

Each path i is a sequence of elements (ei
k)

Ni
k=1. Let F : D → R

+ be the following map:

F(li ) =
Ni∑

k=1

�Pm
ei
k

= �Pmli

The minimum percolation potential of A is:
�PmA = inf �(F)

Proof The network is finite, therefore D and hence �(F) is finite. Thus, �(F) has a min-
imum �Pmlg

corresponding to at least one path lg . For all values of qA, lg is open to flow,
otherwise the corresponding �PA is bigger than �Pmlg

an thus it must be flowing which is
a contradiction.

Now pick arbitrarily R
+

� ε̄, then for lg, from lemma, ∃R
+

� σ̄ such that:

0 < qeg
k

< σ,∀k ⇒ 0 <

Ng∑

k=1

�Peg
k
(qeg

k
) −

Ng∑

k=1

�Pm
e
g
k

< ε̄
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Also for any network we have qA ≥ qei
k
∀k, i , and every qA corresponds to a flux sequence

in lg as (q∗
eg

k
)

Ng
k=1 for which we have �PA = ∑Ng

k=1 �Peg
k
(q∗

eg
k
). Now we can write:

i f 0 < qA < σ ⇒ 0 < q∗
eg

k
< σ,∀k

⇒ 0 <

Ng∑

k=1

�Peg
k
(q∗

eg
k
) −

Ng∑

k=1

�Pm
e
g
k

< ε̄ ⇒ 0 < �PA −
Ng∑

k=1

�Pm
e
g
k

< ε̄

Thus,

lim
qA→0+ �PA =

Ng∑

k=1

�Pm
e
g
k

= �Pmlg
= inf �(F)

�
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