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Abstract Non-Newtonian fluid flow through porous media is of considerable interest in
several fields, ranging from environmental sciences to chemical and petroleum engineering.
In this article, we consider an infinite porous domain of uniform permeability k and porosity
φ, saturated by a weakly compressible non-Newtonian fluid, and analyze the dynamics of
the pressure variation generated within the domain by an instantaneous mass injection in
its origin. The pressure is taken initially to be constant in the porous domain. The fluid is
described by a rheological power-law model of given consistency index H and flow behav-
ior index n; n,< 1 describes shear-thinning behavior, n > 1 shear-thickening behavior; for
n = 1, the Newtonian case is recovered. The law of motion for the fluid is a modified Darcy’s
law based on the effective viscosity μe f , in turn a function of φ, H, n. Coupling the flow law
with the mass balance equation yields the nonlinear partial differential equation governing
the pressure field; an analytical solution is then derived as a function of a self-similar variable
η = r tβ (the exponent β being a suitable function of n), combining spatial coordinate r and
time t . We revisit and expand the work in previous papers by providing a dimensionless gen-
eral formulation and solution to the problem depending on a geometrical parameter d , valid
for plane (d = 1), cylindrical (d = 2), and semi-spherical (d = 3) geometry. When a shear-
thinning fluid is considered, the analytical solution exhibits traveling wave characteristics, in
variance with Newtonian fluids; the front velocity is proportional to t (n−2)/2 in plane geome-
try, t (2n−3)/(3−n) in cylindrical geometry, and t (3n−4)/[2(2−n)] in semi-spherical geometry. To
reflect the uncertainty inherent in the value of the problem parameters, we consider selected
properties of fluid and matrix as independent random variables with an associated probability
distribution. The influence of the uncertain parameters on the front position and the pressure
field is investigated via a global sensitivity analysis evaluating the associated Sobol’ indices.
The analysis reveals that compressibility coefficient and flow behavior index are the most
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influential variables affecting the front position; when the excess pressure is considered,
compressibility and permeability coefficients contribute most to the total response variance.
For both output variables the influence of the uncertainty in the porosity is decidedly lower.

Keywords Non-Newtonian · Porous medium · Self-similar solution · Sobol’ indices ·
Polynomial chaos expansion

1 Introduction

Non-Newtonian fluid flow through porous media is of considerable interest in petroleum and
environmental engineering.

In reservoir engineering, heavy and waxy oils often display significant non-Newtonian
behavior. Several fluids used to enhance oil recovery from underground reservoirs exhibit
shear-dependence of viscosity and other distinctly non-linear effects. During water flood-
ing operations, chemical additives, polymeric solutions or foams are routinely added to the
injected water to improve the overall sweeping efficiency and minimize the instability effects;
surfactants are also added to the water phase to decrease the surface tension between the aque-
ous and oil phases. Fracturing agents and drilling muds with complex rheologic behavior are
also commonly used in low-permeability formations.

In environmental applications, liquid pollutants and wastes may migrate in the subsur-
face and penetrate underground reservoirs, leading to groundwater contamination; several of
those, such as suspensions, solutions and emulsions of various substances, certain asphalts
and bitumen, greases, sludges, and slurries, are distinctly non-Newtonian. Non-linear fluid
flow in porous media may also be relevant in soil remediation processes involving the removal
of liquid pollutants via chemical (often polymerization) reactions.

The scientific and engineering relevance of the aforementioned applications has generated
a large body of literature, aimed at an understanding of non-Newtonian fluid flow in porous
media. For exhaustive reviews on this topic, see Savins (1969), Goldstein and Entov (1994),
Shenoy (1995), as well as the more recent one by Chhabra et al. (2001), mainly geared toward
man-made porous media.

Available approaches to describe non-Newtonian flow in porous media may be broadly
classified as pore-scale network models and continuum models (Sochi 2010).

In the first case, the space between pores is modeled as a network of channels with ideal-
ized geometry. Relations describing the transport properties at the channel scale are upscaled
to compute effective properties at a larger scale. Pore-scale models, while fully incorporating
basic laws, rely on an idealized representation of the porous medium geometry.

Continuum models, on the other hand, incorporate a closed-form, relatively simple con-
stitutive equation at the Darcy scale describing the relation between pressure gradient and
specific flux; this relation is often a modification of Darcy’s law. Ignoring the physics of flow
at pore level, continuum models have been criticized as unable to represent time-dependent
effects and to model flow of yield-stress fluids.

Different formulations of the modified Darcy law for non-Newtonian fluids have been
proposed (Bird et al. 1960; Christopher and Middleman 1965; Kozicki 1967; Teeuw and
Hesselink 1980; Pearson and Tardy 2002), particularly for pseudoplastic fluids described by
a power-law model. Many of these models have been derived using a capillary representation
of the porous medium, and include a constant related to its tortuosity.

In turn, these formulations have been used for large-scale reservoir modeling, in conjunc-
tion with the continuity equation. While in complex geometries a solution of the flow problem
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often requires a numerical approach (Wu and Pruess 1998), analytical solutions in simple
geometries readily allow sensitivity analysis. In the 1980s and 1990s, Pascal and coworkers
studied, in a series of papers (see Pascal and Pascal 1997 for a partial list of references), flow
within natural porous media saturated by non-Newtonian fluids described by a power-law
rheology; consequently, the applicable flow law is a modified nonlinear Darcy’s law. In all
these papers, the nonlinear flow problem is solved via the adoption of a self-similar variable,
widely employed in engineering mathematics (Barenblatt 1996). The adoption of a self-sim-
ilar solution allows derivation of closed-form solutions for transient problems, albeit with
limitations on the type of initial and boundary conditions allowed.

In this article, we revisit and expand previous work by Pascal (1991a,b) on the dynamics
of the pressure variation generated within an infinite porous domain, initially at uniform
pressure and saturated by a weakly compressible non-Newtonian fluid, by an instantaneous
mass injection in the origin. We do so by providing a dimensionless formulation of the prob-
lem depending on a geometrical parameter d , valid for plane (d = 1), cylindrical (d = 2),
and semi-spherical (d = 3) geometry; we then derive a self-similar solution to the problem
which generalizes previous results. The closed-form solution thus obtained is a function of
the problem parameters, regrouped into dimensionless groups; some of the former, most
notably the fluid flow behavior index, and the domain properties (permeability, porosity, and
porous medium compressibility coefficient) are amenable to uncertainty; in turn, this renders
uncertain the output variables, i.e., the pressure front position and velocity and the pressure
distribution within the domain. To analyze the sensitivity of the output variables to parameter
uncertainty, we conduct a global sensitivity analysis (GSA) with the computation of Sobol’
indices; the latter are evaluated by means of the polynomial chaos expansion (PCE) tech-
nique, introduced in the engineering field by Ghanem and Spanos (1991) in the context of
the stochastic finite elements analysis.

2 Problem Formulation

We consider an infinite porous domain, initially saturated by a weakly compressible non-
Newtonian fluid, and analyze the dynamics of the pressure variation generated within the
domain by an instantaneous mass injection.

The pressure is taken to be uniform in the porous domain at time t = 0, when a given
fluid mass m0 is instantaneously injected at a well located in the domain origin (Fig. 1); we

Fig. 1 Domain schematic

123



66 V. Di Federico, V. Ciriello

consider plane (d = 1), cylindrical (d = 2), and semi-spherical (d = 3) geometry. Hence,
the domain thickness is s for d = 1, 2, while the well radius is zero for d = 1, and rw for
d = 2, 3; correspondingly, the injection face is δs2 for d = 1 (δ being the ratio between the
transversal and the vertical dimension of the area perpendicular to flow), 2πsrw for d = 2,
and 2πr2

w for d = 3.
The fluid is described by the rheological power-law model, given for simple shear flow by

τ = H γ̇ |γ̇ |n−1 , (1)

in which τ is the shear stress, γ̇ is the shear rate, H is the fluid consistency index, and n is the
flow behavior index (a positive real number). When n < 1, the model describes pseudoplastic
behavior, whereas n > 1 represents dilatant behavior; n = 1 means Newtonian fluid; in the
latter case, H reduces to Newtonian viscosity μ.

The flow law for the fluid is a modified Darcy’s law taking into account the nonlinearity
of the rheological equation, proposed by Bird et al. (1960) and later adopted by other authors
(Savins 1969; Shenoy 1995; Di Federico et al. 2010). Thus, the flow and continuity equation
for injection (∂p/∂r < 0) are, respectively:

v =
(

− k

μef

∂p

∂r

)1/n

, (2)

∂v

∂r
+ (d − 1) v

r
= − (

φ · c0 + cp
) ∂p

∂t
, (3)

where r is the spatial coordinate, t is the time, v is the Darcy velocity, p is the pressure, c0

is the fluid compressibility coefficient, cp is the porous medium compressibility coefficient,
φ is the porosity, k is the permeability coefficient, μef is the effective viscosity; in turn, the
latter is a function of φ, H, n, according to (Pascal and Pascal 1985)

k

μef
= 1

2H

(
nφ

3 + n

)n (
8k

φ

)(1+n)/2

. (4)

Substituting Eq. 2 in Eq. 3, one obtains:

∂2 p

∂r2 + (d − 1) n

r

∂p

∂r
= n

(
φ · c0 + cp

) (μef

k

)1/n
(

∂p

∂r

)(n−1)/n
∂p

∂t
. (5)

The initial condition throughout the domain is

p(r, t = 0) = p0, (6)

while the mass conservation law requires that the fluid mass m0 released into the domain at
t = 0 is conserved:

m0 = ωs3−dρ
(
φ · c0 + cp

) l(t)∫
0

(p − p0) · rd−1dr, (7)

where ρ is fluid density. In (7), the well radius rw is taken to be zero for d = 2, 3; the
factor ω takes the value δ for d = 1, and the value 2π for d = 2, 3; l(t) represents the
distance at which the pressure perturbation induced by the mass injection propagates within
the porous domain. For first-type boundary conditions at the origin in lieu of (7), Pascal and
Pascal (1985) showed that for n < 1, a pressure front propagates from the origin into the
domain with finite velocity; the pressure front separates the portion of the domain affected
by pumping/injection from that left still undisturbed; at and beyond the compression front,
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the Darcy velocity is null and the fluid remains at the constant pressure p0; thus, at any given
time t < ∞, l(t) is finite.

For n < 1, if l(t) is the front position and u (t) = φdl/dt is its velocity, one has

p [l (t) , t] = p0, (8)(
∂p

∂r

)
r=l(t)

= 0, (9)

l (t = 0) = 0. (10)

For n ≥ 1, no pressure front exists, and l(t) → ∞ for any t ; hence one would need to
consider the boundary condition lim

r→∞ p(r) = p0 in lieu of Eqs. 8–10.

In the following, we consider only the case of pseudoplastic fluid flow (n < 1), which is
undoubtedly more common in field applications (Pearson and Tardy 2002).

In the mathematical statement of the problem given by (5–10), in principle all parameters
(fluid properties, injected mass, domain geometry, porous medium properties) are subject to
uncertainty, and thus amenable to a statistical treatment. However, the uncertainty associ-
ated with some of them, namely the fluid flow behavior index n (difficult to determine for
non-Newtonian fluids), and the domain properties (permeability k, porosity φ, and porous
medium compressibility coefficient cp) is decidedly larger; hence in the following we will
treat n, k, φ, cp as random variables with a given mean value and probability distribution,
while the remaining variables will be considered as deterministic.

3 Dimensionless Variables

In the following, we define dimensionless variables and groups relevant to the problem at
hand; our choice of dimensionless quantities takes into account the nature of random vari-
ables of the permeability k and the porous medium compressibility coefficient cp. In terms
of notation, dimensionless variables are defined via capital letters as follows:

(R, S, L , T, P, P0, V, U, M0, K , Cp)

=
(

r

L̂
,

s

L̂
,

l

L̂
,

t

T̂
,

p

P̂
,

p0

P̂
,
vT̂

L̂
,

uT̂

L̂
,

m0

ρ L̂3
,

k

〈k〉 ,
cp

〈cp〉

)
(11)

where L̂ is a generic length scale, P̂ = 1/〈cp〉 the pressure scale, and T̂ is a timescale, given
by

T̂ =
(

H1/n L̂(n+1)/n/P̂1/n 〈k〉(n+1)/2n
)

. (12)

With L̂ ≈ 10 m, P̂ = 1/〈cp〉 ≈ 109 Pa, H ≈ 1 Pa sn, 〈k〉 ≈ 10−12 m2, one has T̂ ≈ 103 s
for n = 0.5.

With the help of Eq. 4, this recasts Eqs. 2 and 5, respectively, in the following dimensionless
forms:

V = χ
1/n
n

φ(1−n)/2n

(
−∂ P

∂ R

)1/n

, (13)

∂2 P

∂ R2 + (d − 1) n

R

∂ P

∂ R
= n A

(
−∂ P

∂ R

)(n−1)/n
∂ P

∂T
, (14)
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where

χn = 8(1+n)/2

2

(
n

3 + n

)n

, (15)

A = (rcφ + Cp)
φ(1−n)/2n

χ
1/n
n K (1−n)/2n

, (16)

where rc = c0/〈cp〉 is the ratio between the fluid compressibility and the mean value of the
porous medium compressibility. For a Newtonian fluid equations, (15)–(16) yield χn = 1
and A = (rcφ + Cp), while Eq. 14 reduces to the usual porous medium equation.

Equations 6, 8–10 expressing initial and boundary conditions are formally unchanged,
except that dimensionless quantities (capital letters) replace dimensional ones. The condi-
tion given by Eq. 7 becomes instead

M0 = ωS3−d(rcφ + Cp)

L(T )∫
0

(P − P0) · Rd−1dR. (17)

4 Solution of the Problem

We seek a self-similar solution of the form (Barenblatt 1996; Pascal 1991a,b)

P = P0 + T −α f (η); η = RT −β . (18)

With (18), the conditions at the pressure front (8) and (9) transform into

P(η1) = P0, (19)(
dP

dη

)
(η1) = 0, (20)

in which the position of the moving interface is given by

η1 = LT −β . (21)

Adopting (18) shows that in order to reduce (14) to an ODE in η requires

α

(
1 − 1

n

)
= −1 + β

(
1 + 1

n

)
. (22)

In this case, (14) yields

d

dη

[
ηd−1

(
−d f

dη

)1/n
]

= A

(
αηd−1 f + βηd d f

dη

)
. (23)

Now taking α = dβ in (23) leads to

α = dn

n + 1 + d (1 − n)
, β = n

n + 1 + d (1 − n)
(24)

d

dη

[
ηd−1

(
−d f

dη

)1/n
]

= A
d

dη
(βηd f ). (25)
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Equation 25 is easily integrated with the boundary condition (20), yielding
(

−d f

dη

)1/n

= Aβη f. (26)

A further integration, considering (18) and (19), gives the pressure field for η < η1 as

P(η, T ) = P0 + BT −dβη
(1+n)/(1−n)
1

[
1 −

(
η

η1

)1+n
]1/(1−n)

,

B =
[

1 − n

1 + n
(Aβ)n

]1/(1−n)

. (27)

With (18), (21), (24), and (27), the boundary condition (17) transforms into

M0 = ωS3−d(rcφ + Cp)Bη
[1+n+d(1−n)]/(1−n)
1

1∫
0

τ d−1(1 − τ 1+n)1/(1+n)dτ. (28)

Integration of (28) (Gradshteyn and Ryzhik 2000, Eq. 3.251.1, p. 322) yields the value of the
self-similar variable at the pressure front as

η1 =
[

M0

ωS3−d
(
rcφ + Cp

)
B E

](1−n)/[1+n+d(1−n)]

, (29)

E = 1 − n

1 + n + d (1 − n)

� [d/(1 + n)] · � [(2 − n)/(1 − n)]

� [(1 + n + d (1 − n))/((1 + n) (1 − n))]
, (30)

in which � (·) is the gamma function. Once η1 is determined via (29), the pressure field in
fully known through (27). The velocity for η < η1 is then given by

V = χ
1/n
n

φ(1−n)/2n

(
1 − n

1 + n
Aβ

)1/(1−n)

T −[(1+d)]/[1+n+d(1−n)]η
(
η1+n

1 − η1+n
)1/(1−n)

.(31)

Finally, the front position and velocity are respectively

L (T ) = η1T n/[1+n+d(1−n)], U (T ) = nφ

1 + n + d (1 − n)
η1T −[1+d(1−n)]/[1+n+d(1−n)].

(32)

5 Discussion of Results

In this section, we discuss the behavior of the variables of interest as functions of the dimen-
sionless parameters describing fluid properties, geometry and injection rate. Preliminarily, we
conduct a succinct literature review on the typical ranges of variation of all input parameters
involved, to deduce the corresponding intervals for dimensionless quantities.

The flow behavior index n is found to vary between 0.2 and 1 in laboratory and field appli-
cations (Di Federico et al. 2010 and references therein), with a significant numbers of cases
in the midrange of this interval; the fluid consistency index H is inversely proportional to the
flow behavior index, and takes values between 0.27 and 3.24 Pa sn for solutions of polymers
in liquids with n = 0.41 ÷ 0.96 (Christopher and Middleman 1965, Park et al. 1975). The
fluid compressibility coefficient c0 lies in the range 1 ÷ 5 × 10−9 Pa−1 (Pascal 1991b) in
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reservoir applications; for brine compressibility in CO2 storage applications, lower values in
the range 3 ÷ 6 × 10−10 Pa−1, depending on depth and salinity (Thibeau and Mucha 2011),
are usually considered. The aquifer compressibility coefficient cp has typically a somewhat
larger interval of variation than c0, varying between 10−9and 10−7 Pa−1 in the aquitards cited
by Ostendorf et al. (2010), and between 10−10and 10−8 Pa−1 for limestones and sandstones,
depending on their degree of consolidation (Thibeau and Mucha 2011). Porosity φ may vary
in the range 0.10÷0.40, and permeabilities span a few orders of magnitude, ranging typically
between 10−14and 10−10 m2. Finally, typical pressures in field applications vary between 1
and 10 MPa in CO2 injection projects, and in the range 5-40 MPa in reservoir engineering.

Hence, values of the ratio rc = c0/
〈
cp

〉
may take values ranging from 0.005 (fluid com-

pressibility negligible with respect to porous medium compressibility) to 500 (porous medium
compressibility negligible with respect to fluid compressibility); in the following, a value
rc = 1 will be considered. We further assume to lead our analysis for the geometrical refer-
ence case S = 1, and take for the sake of simplicity ω = δ = 2π when d = 1, (plane case),
in order to be able to compare results for different values of d , using the cylindrical geometry
(d = 2) as the reference case.

The output variables of interest are essentially the dimensionless pressure front position
L (T ) and the dimensionless pressure in the domain in excess of the initial value �P (η, T ) =
P (η, T ) − P0.

A traditional sensitivity analysis, conducted considering deterministic values of model
parameters in their whole range of variability (Di Federico and Ciriello 2011), revealed that
the front position is a markedly increasing function of flow behavior index n and is inversely
dependent on d . The pressure front advances at a slower rate for larger values of the com-
pressibility coefficients, for a higher injected mass and a lower porosity; the increase of the
front velocity for less compressible media is compounded for smaller values of the geomet-
rical parameter d . When pressure in excess of the initial value is considered, it is seen that
switching from plane to radial and from radial to spherical geometry brings about an almost
order of magnitude reduction. An increase in compressibility implies a significant decrease
in excess pressure, especially at early times.

Here we take a different approach considering a hypothetical case study (i.e., a specific
fluid and porous medium) and selected properties of fluid and matrix modeled as independent
random variables. We choose uniform distributions to represent the uncertainty connected
to them as specified in Table 1, where a variability of ±50% around the mean value was
selected for the permeability; ±25% for the compressibility and porosity; ±10% for the flow
behavior index.

The influence of the uncertainty parameters on the front position and the pressure field
is investigated by means of a GSA with the computation of Sobol’ indices (Appendix A.1).
The indices are defined by means of the PCE technique (Appendix A.2) to minimize the
computational cost of the analysis.

Table 1 Intervals of variability
of the selected uniformly
distributed random parameters

Random parameter Distribution

φ U(0.15–0.25)

K U(0.50–1.50)

Cp U(0.75–1.25)

n U(0.45–0.55)
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Fig. 2 Total sensitivity indices (T SI ) of each random parameter (n, K , Cp, φ) with respect to the front
position L(T ) versus time T for cylindrical geometry (d = 2), S = 1, and rc = 1

Fig. 3 Total variance and partial variances (V ) due to each random parameter (n, K , Cp, φ) with respect to
the front position L(T ) versus time T for cylindrical geometry (d = 2), S = 1, and rc = 1

First we observe that in all our computations the total and principal sensitivity indices were
practically coincident, indicating the absence of interactions between the random parameters;
for this reason the calculation of the second-order Sobol’ indices yields negligible results.

Figure 2 depicts the total sensitivity indices of each random parameter with respect to the
front position as a function of dimensionless time. It is seen that, with the exception of very
early times, the most influential variable is the aquifer compressibility coefficient Cp. In any
case, its importance decreases in time after reaching a maximum value; the reverse is true
for the flow behavior index n, whose total sensitivity index is high for very early times, then
decreases reaching a minimum, then increases almost linearly with time for T > 1. As far as
the porosity and the permeability are concerned, the trend of the respective total sensitivity
indices is very similar, and its value is always between 10 and 25%. Figure 3 illustrates the
corresponding behavior of the variances as a function of time. We find that the total vari-
ance increases, as expected, with time; the larger contribution to the total variance is due to
compressibility, next to flow behavior index, then to permeability and porosity; the variance
of flow behavior index, initially low, increases in a linear fashion and almost reaches that of
compressibility.
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Fig. 4 Total sensitivity indices (T SI ) of each random parameter (n, K , Cp, φ) with respect to the excess
pressure �P versus radial distance R for cylindrical geometry (d = 2), T = 1, S = 1, and rc = 1

Fig. 5 Total variance and partial variances (V ) due to each random parameter (n, K , Cp, φ) with respect to
the excess pressure �P versus radial distance R for cylindrical geometry (d = 2), T = 1, S = 1, and rc = 1

Figure 4 shows the total sensitivity indices of each random parameter with respect to
excess pressure as a function of space for fixed time T = 1. Figure 5 does the same for
the variances. Close to the injection point, permeability and compressibility are the most
influential variables, while the sensitivity to flow behavior index and porosity is low; as the
distance from the injection point increases, compressibility becomes more important, until its
sensitivity index is nearly one for R ∼= 1.25. For R > 1.25, the importance of compressibility
decreases in time, though it remains by far the most influential variable.

The total variance of the excess pressure decreases with increasing distance from the
injection point, and approaches zero at the expected front position for T = 1. Close to the
injection point, the larger contribution to the total variance is due to permeability and flow
behavior index; the variance of compressibility increases linearly with distance and becomes
dominant for R > 1; the porosity variance is low everywhere.

Results for a different value of time (T = 0.1) showed an overall trend of sensitivity
indices and variances akin to that for T = 1.

An analogous analysis (not shown) conducted for plane (d = 1) and spherical (d = 3)

geometry revealed that the behavior over time of sensitivity indices and variances of each
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random parameter with respect to the front position was remarkably similar to that derived
for the radial case, with minor differences linked to the higher values of the flow behavior
index sensitivity index at very early and late times as the parameter d increases from 1 to 3.
When the sensitivity indices with respect to the excess pressure were considered as a function
of d , the importance of compressibility, though remaining the highest, was seen to decrease
as d increases.

The results of the GSA via PCE have been compared with those deriving from a traditional
Monte Carlo scheme to verify the accuracy of the proposed method.

6 Conclusions

In this article, we examined, with an analytical approach, the dynamics of pressure diffusion
in unsteady non-Newtonian flows through porous media generated within the domain by
an instantaneous mass injection in its origin. Via the adoption of a self-similar variable, we
obtained a generalized closed-form solution, valid for plane, cylindrical, and semi-spherical
geometry.

Expressing the model equations in dimensionless form, it was found that the variables of
interest are functions of flow geometry, injected mass, fluid behavior index and dimensionless
compressibility, and medium porosity.

For pseudoplastic fluids, we confirmed the existence of a pressure front traveling with finite
velocity. Evaluation of the front position showed that the front advances farther in plane than
in cylindrical or semi-spherical geometry; for a lower porosity, a larger flow behavior index,
a lower compressibility, and a higher injected mass.

A GSA was conducted considering the fluid flow behavior index, and selected domain
properties (permeability, porosity, and porous medium compressibility coefficient) as inde-
pendent random variables having uniform distributions. The compressibility coefficient is
the most influential variable affecting the evolution of the front position with time, followed
by the flow behavior index.

The variation in space of the excess pressure at given time is most affected by the perme-
ability near the injection point, while the influence of the compressibility prevails closer to
the front position.

A Appendix: Sensitivity Analysis Via Sobol’ Indices

Because of the impossibility to characterize exhaustively the entire input parameter space of
a given mathematical model, GSA is useful to evaluate the resulting effects on the uncertainty
associated with model predictions. Moreover, the ability to identify the most influential input
random variables with respect to the variance of the response allows to address investigations
in order to improve the accuracy of model results (Saltelli et al. 2000).

A.1 Sobol’ Indices and ANOVA Representation

Among the possible choices of global sensitivity measures, the Sobol’ indices have been
widely used since they provide accurate information for a wide class of models (Sobol 1993;
Archer et al. 1997). The ANOVA representation of a model, made by a finite set of terms
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dependent on a growing number of uncertain variables (Archer et al. 1997), is useful for the
definition of Sobol’ indices.

Let y = f (x) denote a scalar model function defined in I n (the n-dimensional unit hyper-
cube), domain of the uncertain model parameters. If f (x) is integrable over I n , the following
representation may be introduced:

f (x) = f0 +
∑

i

fi (xi ) +
∑
i< j

fi j (xi , x j ) + · · · f12...n(x1, x2, . . . xn), (A.1)

1∫
0

fi1...is

(
xi1 , . . . xis

)
dxk = 0, k = i1, . . . , is, (A.2)

where 1 ≤ i1 < . . . < is ≤ n(s = 1, . . . , n) are the indices specifying the parameters
upon which each term depends and the 2n summands in (A.1) are orthogonal functions
that can be expressed as integrals of f (x), e.g. f0 = ∫

f (x)dx is the mean of the model,
fi (xi ) = ∫

f (x)�k 
=i dxk − f0 and so on. Therefore condition (A.2) renders representation
(A.1), which is typically termed ANOVA decomposition, unique.

Now if f (x) is square integrable, so are all the terms in (A.1). Then the total variance of
the model, due to the uncertainty of its input parameters, is defined as:

V =
∫

In

f 2(x) · dx − f 2
0 . (A.3)

Introducing the decomposition (A.1) into (A.3) allows to subdivide the total variance into
the contributions Vi1...is , called partial variances:

V =
n∑

s=1

n∑
i1<...<is

Vi1...is , with Vi1...is =
∫

In

f 2
i1...is

dxi1 . . . dxis (A.4)

Now the generic s-order Sobol’ index Si1...is is defined by the ratio (Sobol 1993):

Si1...is = Vi1...is /V, (A.5)

it is immediate to verify that the sum of all indices up to n-order is equal to one. Among
these, the first order indices Si , or principal sensitivity indices, describe the share of total
variance due to the uncertainty of each parameter, when individually considered. The total
sensitivity indices, on the other hand, evaluate the overall effect of a parameter, when all its
possible interactions with other parameters are considered:

STi =
∑
ηi

Si1,...is , ηi = {(i1, . . . is) : ∃k, 1 ≤ k ≤ s, ik = i} . (A.6)

A complete GSA requires the estimation of 2n integrals; this is generally done by Monte
Carlo simulations (Sobol 2001); the computational cost associated with this procedure is
prohibitive when the model is complex and the number of uncertain parameters is large
(Sudret 2008).

A. 2 PCE method

The PCE theory, developed in the 30s (Wiener 1938), may be considered a viable and con-
venient method for Sobol’ indices estimation.
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Let S denote a stochastic model with a finite number M of input random variables. The
PCE S̃ of S is defined by a polynomial basis in the Hilbert space containing the response:

S(X1, . . . X M ) ∼= S̃ (ζ1, . . . ζM ) =
P−1∑
j=0

s j� j (ζ1, . . . ζM ) with P = (M + p)!
M !p! , (A.7)

where � j denotes the j-order multivariate orthogonal polynomial, and {ζi }M
i=1 is the set of

independent random variables, whose probability distribution function is linked to the choice
of the polynomial basis (Xiu and Karniadakis 2002); s j are the polynomial coefficients.

Note that the applicability of the method is independent from the distribution of the input
random variables of the model S gathered in X. In fact, if such distribution doesn’t match
the required distribution for the use of the chosen polynomial basis, is sufficient to apply an
isoprobabilistic transform to tie X and ζ .

To settle the PC expansion, it is necessary to define the coefficients s j ; one possibility
consists in a regression method based on the minimization of the variance of a residual ε

defined as the difference between the surrogate model response, S̃, and the exact solution
given by the original model (Sudret 2008):

ε = S(X) − S̃(ζ ) = S(X) −
P−1∑
j=0

s j� j (ζ ). (A.8)

The vector of the unknown coefficients ς results then:

ς = Min

{
E

[(
S (X (ζ )) − S̃ (ζ )

)2
]}

. (A.9)

where E [·] denotes the expected value.
Is useful to rewrite (A.9) as:

ς =
(
�T �

)−1 · �T · S′,� i j = � j

(
ζ i

)
; i = 1, . . . N ; j = 0, . . . P − 1, (A.10)

where N is the number of regression points, S′ is the vector denoting the model response at
these N points, while the product �T � defines the so-called information matrix.

The optimal set of regression points is constituted by the integration points of the Gaussian
quadrature (Huang et al. 2007). Solution of (A.10) requires a minimum number of points
equal to P . On the other hand, since the points choice is conditioned, generally one has
N > P; in this case the information matrix is not singular.

Note that the entire variability of the original model is conserved, being embedded in the
set of PCE coefficients. Hence, once the coefficients are available, the Sobol’ indices can be
analytically defined without further computational costs.

Gathering, as in (A.1), the terms in the expansion according to the variables they depend
on, it is easy to isolate the different influences on the response (Sudret 2008):

S̃(ζ ) = s0 +
n∑

i=1

∑
α∈ϕi

sα�α(ζi )

+
n∑

1≤i1<...<is≤n

∑
α∈ϕi1,...,is

sα�α(ζi1 , . . . , ζis )+ . . .

+
∑

α∈ϕ1,2...n

sα�α(ζ1, . . . , ζn) (A.11)
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where ϕ explains in subscript the set of input parameters each multidimensional polynomial
really depends on.

In this sense, the PC expansion is similar to the ANOVA representation of the model, but
computationally more advantageous. In fact, given the orthogonality of the polynomial basis,
it is immediate to observe that the mean of the response coincides with the coefficient associ-
ated to the zero-grade term, while the total variance, calculated with the surrogate model, is:

VS̃ = Var

⎡
⎣P−1∑

j=0

s j� j (ζ )

⎤
⎦ =

P−1∑
j=1

s2
j E

[
�2

j (ζ )
]
. (A.12)

Finally, the Sobol’ indices can be derived as:

Si1,...is =
∑

α∈ϕi1,...,is
s2
α E

[
�2

α

]
VS̃

. (A.13)

The expected value of the squares of polynomials appearing in (A.13) may be evaluated as
illustrated in Abramowitz and Stegun (1970).
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Chhabra, R.P., Comiti, J., Machač, I.: Flow of non-Newtonian fluids in fixed and fluidised beds. Chem. Eng.

Sci. 56, 1–27 (2001)
Christopher, R.H., Middleman, S.: Power-law flow through a packed tube. I&EC Fundam. 4(4), 422–426 (1965)
Di Federico, V., Pinelli, M., Ugarelli, R.: Estimates of effective permeability for non-Newtonian fluid flow in

randomly heterogeneous porous media. Stoch. Environ. Res. Risk Assess. 24, 55–69 (2010)
Di Federico, V., Ciriello, V.: Non-Newtonian flow through porous media due to an instantaneous mass injec-

tion. In: Proceedings AIMETA 2011, Italian Association of Theoretical and Applied Mechanics, Bologna,
12–15 September 2011, pp. 1–9 (2011)

Ghanem, R.G., Spanos, P.D.: Stochastic finite elements—a spectral approach. Springer, Berlin (1991)
Goldstein, R.V., Entov, V.M.: Quantitative Methods in Continuum Mechanics. Wiley, New York (1994)
Gradshteyn, I.S, Ryzhik, I.M.: Table of Integrals, Series and Products. Academic Press, San Diego (2000)
Huang, S., Sankaran, M., Ramesh, R.: Collocation-based stochastic finite element analysis for random field

problems. Probab. Eng. Mech. 22, 194–205 (2007)
Kozicki, W., Hsu, C.J., Tiu, C.: Non-Newtonian flow through packed beds and porous media. Chem. Eng.

Sci. 22, 487–502 (1967)
Ostendorf, W., DeGroot, D.J., Judge, A.I., LaMesa, D.F.: Method to characterize aquitards above leaky aquifers

with water supply wells. Hydrogeol. J. 18, 595–605 (2010)
Park, H.C., Hawley, M.C., Blanks, R.F.: The flow of non-Newtonian solutions through packed beds. Polym.

Eng. Sci. 15(11), 761–773 (1975)
Pascal, H.: On non-linear effects in unsteady flows through porous media. Int. J. Nonlinear Mech. 26(2),

251–261 (1991a)
Pascal, H.: On propagation of pressure disturbances in a non-Newtonian fluid flowing through a porous

medium. Int. J. Nonlinear Mech. 26(5), 475–485 (1991b)
Pascal, H., Pascal, F.: Flow of non-Newtonian fluid through porous media. Int. J. Eng. Sci. 23(5),

571–585 (1985)
Pascal, J.P., Pascal, H.: Nonlinear effects on some unsteady non-Darcian flows through porous media. Int. J.

Nonlinear Mech. 32(2), 361–376 (1997)
Pearson, J.R.A., Tardy, P.M.J.: Models of non-Newtonian and complex fluids through porous media. J.

Non-Newton Fluid Mech. 102(2), 447–473 (2002)

123



Generalized Solution for 1-D Non-Newtonian Flow 77

Saltelli, A., Chan, K., Scott, EM.: Sensitivity Analysis. Wiley, New York (2000)
Savins, J.G.: Non-Newtonian flow through porous media. Ind. Eng. Chem. 6(10), 18–47 (1969)
Shenoy, A.V.: Non-Newtonian fluid heat transfer in porous media. Adv. Heat Transf. 24, 102–190 (1995)
Sobol, I.M.: Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. 1,

407–414 (1993)
Sobol, I.M.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo

estimates. Math. Comput. Simul. 55, 271–280 (2001)
Sochi, T.: Flow of Non-Newtonian fluids in porous media. J. Polym. Sci. B 48, 2437–2767 (2010)
Sudret, B.: Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 93,

964–979 (2008)
Teeuw, D., Hesselink, F.T.: Power-law flow and hydrodynamic behavior of biopolymer solutions in porous

media. In: Proceedings of Fifth International Symposium on Oilfield and Geothermal Chemistry, SPE
Paper 8982, pp. 73–86 (1980)

Thibeau, S., Mucha, V.: Have we overestimated saline aquifer CO2 storage capacities?. Oil Gas Sci. Technol.
Rev. IFP Energ. Nouv. 66(1), 81–92 (2011)

Wiener, N.: The homogeneous chaos. Am. J. Math. 60, 897–936 (1938)
Wu, Y.S., Pruess, K.: A numerical method for simulating non-Newtonian fluid flow and displacement in porous

media. Adv. Water Res. 21, 351–362 (1998)
Xiu, D., Karniadakis, G.E.: The Wiener-Askey polynomial chaos for stochastic differential equations. J. Sci.

Comput. 24(2), 619–644 (2002)

123


	Generalized Solution for 1-D Non-Newtonian Flow  in a Porous Domain due to an Instantaneous Mass Injection
	Abstract
	1 Introduction
	2 Problem Formulation
	3 Dimensionless Variables
	4 Solution of the Problem
	5 Discussion of Results
	6 Conclusions
	A Appendix: Sensitivity Analysis Via Sobol' Indices
	A.1 Sobol' Indices and ANOVA Representation
	A. 2 PCE method

	References


