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Abstract In this article, we study double-diffusive convection in a horizontal porous
medium saturated by a nanofluid, for the case when the base fluid of the nanofluid is itself
a binary fluid such as salty water. The model used for the nanofluid incorporates the effects
of Brownian motion and thermophoresis, while the Darcy model is used for the porous
medium. The thermal energy equations include the diffusion and cross-diffusion terms. The
linear stability is studied using normal mode technique and for non-linear analysis, a mini-
mal representation of the truncated Fourier series analysis involving only two terms has been
used. For linear theory analysis, critical Rayleigh number has been obtained, while non-linear
analysis has been done in terms of the Nusselt numbers.
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List of Symbols

Latin Symbols
C Solute concentration
DB Brownian diffusion coefficient
DT Thermophoretic diffusion coefficient
d Dimensional layer depth
kT Effective thermal conductivity of porous medium
km Thermal diffusivity of porous medium
K Permeability
Le Thermo-solutal Lewis number
Ln Thermo-nanofluid Lewis number
NA Modified diffusivity ratio
NB Modified particle-density increment
NCT Soret parameter
NTC Dufour parameter
p Pressure
g Gravitational acceleration
Ra Thermal Rayleigh-Darcy number
Rm Basic density Rayleigh number
Rn Nanoparticle concentration Rayleigh number
Rs Solutal Rayleigh number
t Time
T Nanofluid temperature
Tc Temperature at the upper wall
Th Temperature at the lower wall
v Nanofluid velocity
(x, y, z) Cartesian coordinates

Greek Symbols
βC Solutal volumetric coefficient
βT Thermal volumetric coefficient
ε Porosity
μ Viscosity of the fluid
ρf Fluid density
ρp Nanoparticle mass density
γ Thermal capacity ratio
φ Nanoparticle volume fraction
ψ Stream function
α Wave number
ω Frequency of oscillations

Subscripts
b Basic solution
f Fluid
p Particle
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Superscripts
* Dimensional variable
′ Perturbation variable

Operators

∇2 ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 .

∇2
1

∂2

∂x2 + ∂2

∂z2 .

1 Introduction

“Nanofluids,” a term first used by Choi (1995), refers to fluid suspensions of solid nano-sized
particles in conventional heat transfer fluids. By conventional heat transfer liquids, we mean
water, ethylene glycol, engine oils, etc. Nanoparticles can be metal particles such as those of
Cu, Fe, Ag, or Au or metallic oxides or non-metallic oxide particles—Cuo, Al2O3, TiO, SiO,
having dimensions in the range 1–100 nm. Significant features of nanofluids over base-fluids
include enhanced thermal conductivity, greater viscosity, enhanced value of critical heat flux.
Of these the most talked about is the enhanced thermal conductivity, a phenomenon which
was first reported by Masuda et al. (1993). Choi (1999), and his team at Energy Technol-
ogy Division, Argonne National Laboratory, supported by the US Department of Energy,
reported the use of nanofluids in a wide variety of industries ranging from transportation,
HVAC, and energy production and supply to electronics, textiles and paper production. All
of these industries deal with heat transfer in some or the other way, and thus have a strong
need for improved heat transfer mediums. This could possibly be nanofluids, because of
some potential benefits over normal fluids—large surface area provided by nanoparticles for
heat exchange, reduced pumping power due to enhanced heat transfer, minimal clogging,
innovation of miniaturized systems leading to savings of energy and cost. Choi’s results have
been supported by other researchers from time to time. Eastman et al. (2001) reported an
increase of 40% in the effective thermal conductivity of ethylene-glycol with 0.3% volume
of copper nanoparticles of 10 nm diameter. Further 10–30% increase of the effective ther-
mal conductivity in alumina/water nanofluids with 1–4% of alumina was reported by Das et
al. (2003). These reports led Buongiorno and Hu (2005) to suggest the possibility of using
nanofluids in advanced nuclear systems. Another recent application of the nanofluid flow is
in the delivery of nano-drug as suggested by Kleinstreuer et al. (2008)

There have been many attempts to account for the reason for the observed abnormal behav-
ior of nanofluids by Vadasz (2005, 2006), Eastman et al. (2004), and others. Of these, the
efforts significant are being listed here. Eastman et al. (2004), accounted that despite several
attempts, a satisfactory explanation for the abnormal enhancement in thermal conductivity
and viscosity in nanofluids is yet to be found. Buongiorno (2006) conducted an extensive
study of convective transport in nanofluids, but focused on explaining the further heat trans-
fer enhancements observed during convective situations. Though several authors attribute
the abnormal increase observed to dispersion of suspended nanoparticles, but, to this, Bu-
ongiorno, disagrees. He discards suspension, particle rotation, dispersion, and turbulence as
significant agents for heat transfer enhancements, He went further to suggest a new model
based on the mechanics of nanoparticles/base-fluid relative velocity. He took the absolute
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velocity of nanoparticles to be the sum total of the base-fluid velocity and a relative velocity,
(which he calls a slip velocity). Considering seven slip mechanisms—Inertia, Brownian dif-
fusion, thermophoresis, diffusophoresis, Magnus effects, fluid drainage, and gravity settling,
he concluded that in the absence of turbulent effects, Brownian diffusion, and thermophoresis
dominate. Based on these two effects, he derived the conservation equations. Tzou (2008a)
and Tzou (2008b) studied the onset of convection in a horizontal layer uniformly heated from
below, for a nanofluid with the help of transport equations of Buongiorno, and found that
as a result of Brownian motion and thermophoresis of nanoparticles, the critical Rayleigh
number is to be much lower, by one to two orders of magnitude, as compared to that of an
ordinary fluid. Kim et al. (2004, 2006, 2007) also investigated the onset of convection in a
horizontal nanofluid layer and modified the three quantities, namely the thermal expansion
coefficient, the thermal diffusivity and the kinematic diffusivity that appear in the definition
of the Rayleigh number.

Convection in porous media finds its applications in modern science and engineering,
including food and chemical processes, rotating machineries like nuclear reactors, petro-
leum industry, biomechanics and geophysical problems. Convection in porous medium has
been studied by many authors including Horton and Rogers (1945); Lapwood (1948); Nield
(1968); Rudraiah and Malashetty (1986); Murray and Chen (1989); Malashetty (1993); Vafai
(2005); Nield and Bejan (2006); Bhadauria (2007a,b, 2008), to name a few. Since nanofluids
are being looked upon as great coolants of the future, studies need to be conducted involving
nanofluids in porous media and without it. Recently, Kuznetsov and Nield (2010a) studied
the onset of thermal instability in a porous medium saturated by a nanofluid, using Brinkman
model and incorporating the effects of Brownian motion and thermophoresis of nanoparti-
cles. They found that the critical thermal Rayleigh number can be reduced or increased by
a substantial amount, depending on whether the basic nanoparticle distribution is top-heavy
or bottom-heavy, by the presence of the nanoparticles. The same Horton–Rogers–Lapwood
Problem was investigated by Nield and Kuznetsov (2009a,b) for the Darcy Model. Kuznetsov
and Nield (2010b,c) also studied local thermal non-equilibrium and flow past vertical plate
for nanofluids. Agarwal et al. (2011); Bhadauria et al. (2011) studied the same problem
of thermal instability in a rotating porous layer saturated by a nanofluid for top-heavy and
bottom-heavy suspension for the Darcy model and for the Brinkman model for bottom-heavy
suspension. Bhadauria and Agarwal (2011a,b) studied natural convection in a rotating porous
layer saturated by a nanofluid using the Brinkman’s model, and local thermal non-equilibrium
effects in a nanofluid saturated porous layer using Brinkman’s Model for linear and non-lin-
ear conditions. Also Agarwal and Bhadauria (2011) studied local thermal non-equilibrium
effects on a nanofluid saturated porous layer using Darcy model for linear and non-linear
conditions.

For the preparation of nanofluids, instead of using a pure liquid as basefluid, when a
binary liquid is used, it is termed as a binary nanofluid. These binary liquids can be salty
water, ferrofluid etc. These binary nanofluids find their utility as a working fluid in absorp-
tion refrigeration, as a solution in electro or electroless plating and as a transfer medium in
medical treatment (2006). Onset of convection in binary fluids has been studied by Kim et
al. (2006) and Kuznetsov and Nield (2010d, 2011). In case of nanofluids, we come across
two different Soret effects: one induced by the solute, while the other being contributed by
the nanoparticles. So this problem is of a triple-diffusion type problem involving heat, the
nanoparticles, and the solute. In this study, we tend to investigate the contribution of both
the Soret effects in convection in binary nanofluids. Assuming that the nanoparticles being
suspended in the binary nanofluid using either surfactant or surface charge technology, pre-
venting the agglomeration and deposition of these on the porous matrix, in this article, we
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Non-linear Convective Transport 33

study the linear and non-linear double-diffusive convection in a porous medium saturated by
nanofluid, using Horton–Roger–Lapwood problem based on the Darcy’s Model.

2 Governing Equations

We consider a porous layer saturated by a nanofluid, confined between two horizontal bound-
aries at z = 0 and z = d , heated from below and cooled from above. The boundaries are
impermeable and perfectly thermally conducting. The porous layer is extended infinitely in
x and y directions, and z axis is taken vertically upward with the origin at the lower bound-
ary. Th,Ch and Tc,Cc are the temperatures and solute concentrations at the lower and upper
walls respectively, the former being greater. The conservation equations for the total mass,
momentum, thermal energy, solute concentration and nanoparticles, come out to be as below.
A detailed derivation of these has been dealt by Buongiorno (2006); Tzou (2008a,b), and
Nield and Kuznetsov (2009a,b, 2010a,b);

∇ · vD = 0 (1)

0 = −∇ p − μ

K
vD + [φρp + (1 − φ)ρ(1 − βT(Tf − Tc)− βC(Cf − Cc))]g (2)

(ρc)m
∂T

∂t
+ (ρc)f vD · ∇T = k∇2T + ε(ρc)p[DB∇φ · ∇T

+ DT

Tc
∇T · ∇T ] + ρcDTC∇2C (3)

∂C

∂t
+ 1

ε
vD · ∇C = DSm∇2C + DCT∇2T (4)

∂φ

∂t
+ 1

ε
vD · ∇φ = DB∇2φ + DT

Tc
∇2T (5)

where vD = (u, v, w) is the fluid velocity. In these equations, ρ is the fluid density, ε is
porosity, K is permeability. DB and DT denote the Brownian diffusion coefficient and ther-
mophoretic diffusion respectively. We assume the flow to be slow to neglect an advective term
and a Forchheimer quadratic drag term from the momentum equation. In the above equations,
both Brownian transport and thermophoresis coefficients are taken to be time independent, in
tune with the recent studies that neglect the effect of thermal transport attributed to the small
size of the nanoparticles (as per recent arguments by Keblinski and Cahil 2005). Further,
thermophoresis and Brownian transport coefficients are assumed to be temperature-indepen-
dent due to the fact that the temperature ranges under consideration are not far away from
the critical value, and the volume averages over a representative elementary volume.

Assuming the temperature, the solutal concentrations, and the volumetric fraction of the
nanoparticles to be constant at the boundaries, we get the boundary conditions to be

v = 0, T = Th, C = Ch, φ = φ1 at z = 0, (6)

v = 0, T = Tc, C = Cc φ = φ0 at z = d. (7)

where φ1 is greater than φ0. The dimensionless variables are considered as given below:

(x∗, y∗, z∗) = (x, y, z)/d, t∗ = tkT/γ d2

(u∗, v∗, w∗) = (u, v, w)d/kT, p∗ = pK/μkT

φ∗ = φ − φ0

φ1 − φ0
T ∗ = T − Tc

Th − Tc
C∗ = C − Cc

Ch − Cc
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where kT = km

(ρc)f
, γ = (ρcp)m

(ρcp)f
. The Eqs. 1–7, on non-dimesionalizing, take the form

(after dropping the asterisk sign)

∇ · v = 0 (8)

0 = −∇ p − v − Rmêz + RaT êz − Rnφêz + (Rs/Le)Cêz (9)

γ
∂T

∂t
+ v · ∇T = ∇2T + NB

Ln
∇φ · ∇T + NA NB

Ln
∇T · ∇T + NTC∇2C (10)

∂C

∂t
+ 1

ε
v · ∇C = 1

Le
∇2C + NCT∇2T (11)

∂φ

∂t
+ 1

ε
v · ∇φ = 1

Ln
∇2φ + NA

Ln
∇2Tf (12)

v = 0, T = 1, C = 1, φ = 1 at z = 0, (13)

v = 0, T = 0, C = 0, φ = 0 at z = 1. (14)

Here

Ln = kT

DB
is the thermo-nanofluid Lewis number,

Ra = ρgβT K d(Th − Tc)

μkT
is the thermal Rayleigh number,

Rs = ρgβC K d(Ch − Cc)

μDSm
is the solutal Rayleigh number,

Rm = [ρpφ0 + ρ(1 − φ0)]gK d

μkT
is the basic density Rayleigh number,

Rn = (ρp − ρ)(φ1 − φ0)gK d

μkT
is the nanoparticle concentration Rayleigh number,

NA = DT(Th − Tc)

DBTc(φ1 − φ0)
is the modified diffusivity ratio,

NB = ε(ρc)p(φ1 − φ0)

(ρc)f
is the modified particle density increment,

Le = kT

DS
is the thermo-solutal Lewis number,

NTC = DTC(Ch − Cc)

kT(Th − Tc)
is the Dufour parameter,

NCT = DCT(Th − Tc)

kT(Ch − Cc)
is the Soret parameter.

3 Basic Solution

The quantities at the basic state vary only in the z direction as we assume the nanofluid to be
at rest at the basic state, and will be given by

v = 0, p = pb(z), T = Tb(z), C = Cb(z), φ = φb(z) (15)
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Substituting Eq. 15 in Eqs. 11–14, we get

d2Tb

dz2 + NB

Ln

dφb

dz

dTb

dz
+ NA NB

Ln

(
dTb

dz

)2

+ NTC
d2Cb

dz2 = 0 (16)

Kuznetsov and Nield (2010a) showed by using an order of magnitude analysis that the second
and third terms in Eq. 16 are small, hence we have:

d2Tb

dz2 = 0,
d2Cb

dz2 = 0,
d2φb

dz2 = 0, (17)

The boundary conditions for solving Eq. 17 are obtained from Eqs. 13 and 14 as:

Tb = 1, Cb = 1, φb = 1, at z = 0, (18)

Tb = 0, Cb = 0, φb = 0, at z = 1. (19)

The remaining solution pb(z) at the basic state can be obtained by integrating Eq. (9) for pb

after substituting Tb,Cb and φb from Eq. (17). Solving Eq. (17), subject to conditions (18)
and (19), we obtain:

Tb = 1 − z (20)

Cb = 1 − z (21)

φb = 1 − z. (22)

4 Stability Analysis

Imposing perturbations on the basic state as given below:

v = v′, p = pb + p′, T = Tb + T ′, C = Cb + C ′, φ = φb + φ′. (23)

For simplicity, we consider the case of two dimensional rolls, assuming all physical quantities
to be independent of y. Substituting the above expression (23) in Eqs. 9–12, and using the
expressions (20–22), eliminating the pressure and introducing the stream function we obtain:

∇2
1ψ − α

[
Ra
∂T

∂x
− Rn

∂φ

∂x
+ Rs

Le

∂C

∂x

]
= 0 (24)

γ
∂T

∂t
+ ∂ψ

∂x
= ∇2

1 T + NTC∇2
1 T + ∂(ψ, T )

∂(x, z)
(25)

∂C

∂t
+ 1

ε

(
∂ψ

∂x

)
= 1

Le
∇2

1 C + NCT∇2
1 + 1

ε

∂(ψ,C)

∂(x, z)
(26)

∂φ

∂t
+ 1

ε

(
∂ψ

∂x

)
= 1

Ln
∇2

1φ + NA

Ln
∇2

1 T + 1

ε

∂(ψ, φ)

∂(x, z)
(27)

We solve Eqs. 24–27 subjecting them to stress-free, isothermal, iso-solutal, iso-nanoconcen-
tration boundary conditions:

ψ = ∂2ψ

∂z2 = T = C = φ = 0 at z = 0, 1. (28)
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Then using normal mode technique, the expressions for the Rayleigh numbers for stationary
and oscillatory convection and the frequency of oscillation, ω, are given by

Rast = Rs NCT − Rnδ2 NA

Ln
+

(
δ2

α2 + RnLe

εδ2 − Rs

εδ2

) [
εδ2(1 − NCT NTCLe)

ε − LeNTC

]
(29)

Raosc = Rsδ4 NCT

δ4 + ω2 Le2 − Rnδ2 NA

Ln
+

(
δ2

α2 + T6δ
2

δ4 + ω2 Le2

) (
T1T3 − T4ω

2

T 2
3 − ω2 Le2ε2

)

+
(

ω2T6Le

δ4 + ω2 Le2

) (
T5 − ω2γ ε2 Le2

T 2
3 − ω2 Le2ε2

)
(30)

ω2 =
−X2 +

√
X2

2 − 4X1 X3

2X1
(31)

where

X1 = γ εLe4 δ
2

α2

X2 = δ6γ εLe2

α2 − Rsδ2ε2 Le3 NCT − T6T4Le + T6δ
2γ ε2 Le2 − T5Le2 δ

2

α2

X3 = Rsδ2 NCT LeT 2
3 + T1T6T3Le − T5T6δ

2 − T5
δ2

α2

and

δ2 = π2 + α2, T1 = εδ4(1 − LeNCT NTC), T2 = εδ2(γ + Le), T3 = δ2(ε − LeNTC),

T4 = εLe(γ T3 − T2), T5 = T2T3 − εT1Le, T6 = 1

ε
(RnLe − Rs)

It is quite obvious from Eq. 31 that oscillatory convection is possible only when

X2
2 − 4X1 X3 > 0 (32)

To perform a local non-linear stability analysis, we take the following Fourier expressions:

ψ =
∞∑

n=1

∞∑
m=1

Amn sin(mαx) sin(nπ z) (33)

T =
∞∑

n=1

∞∑
m=1

Bmn(t) cos(mαx) sin(nπ z) (34)

φ =
∞∑

n=1

∞∑
m=1

Cmn(t) cos(mαx) sin(nπ z) (35)

C =
∞∑

n=1

∞∑
m=1

Dmn(t) cos(mαx) sin(nπ z) (36)
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Further, we take the modes (1,1) for stream function, and (0,2) and (1,1) for temperature,
solute concentration and nanoparticle concentration, to get

ψ = A11(t) sin(αx) sin(π z) (37)

T = B11(t) cos(αx) sin(π z)+ B02(t) sin(2π z) (38)

φ = C11(t) cos(αx) sin(π z)+ C02(t) sin(2π z) (39)

C = D11(t) cos(αx) sin(π z)+ D02(t) sin(2π z) (40)

where the amplitudes A11(t), B11(t), B02(t),C11(t),C02(t), D11(t), and D02(t) are func-
tions of time and are to be determined. Substituting Eqs. 37–40 in Eqs. 24–27, taking the
orthogonality condition with the eigenfunctions associated with the considered minimal
model, we get

A11(t) = α

δ2

[
RnC11(t)− RaB11(t)− Rs

Le
D11(t)

]
(41)

dB11(t)

dt
= − 1

γ
{δ2 B11(t)+ αA11(t)+ παA11(t)B02(t)+ δ2 NCT D11(t)} (42)

dB02(t)

dt
= 1

2γ

{
απ A11(t)B11(t)− 8π2 B02(t)− 8π2 NTC D02(t)

}
(43)

dC11(t)

dt
= −

{
απ

ε
A11(t)C02(t)+ α

ε
A11(t)+ δ2

[
C11(t)

Ln
+ NA

Ln
B11(t)

]}
(44)

dC02(t)

dt
= 1

2

{
απ

ε
A11(t)C11(t)− 8π2

[
C02(t)

Ln
+ NA

Ln
B02(t)

]}
(45)

dD11(t)

dt
= −

{
απ

ε
A11(t)D02(t)+ α

ε
A11(t)+ δ2

[
D11(t)

Le
+ NCT B11(t)

]}
(46)

dD02(t)

dt
= 1

2

{
απ

ε
A11(t)D11(t)− 8π2

[
D02(t)

Ln
+ NA

Ln
B02(t)

]}
(47)

The above system of simultaneous autonomous ordinary differential equations is solved
numerically using Runge–Kutta–Gill method. Further the six-mode differential Eqs. 42–47
has an interesting property in phase space:

∂ Ḃ11

∂B11
+ ∂ Ḃ02

∂B02
+ ∂ ˙C11

∂C11
+ ∂ ˙C02

∂C02
+ ∂ Ḋ11

∂D11
+ ∂ Ḋ02

∂D02

= −
[
δ2 + 4π2 + δ2

Ln
+ 4π2

Ln
+ δ2

Le
+ 4π2

Le

]
< 0 (48)

which indicates that the system is dissipative and bounded. One may also conclude that the
trajectories of the Eqs. 41–47 will be confined to the finiteness of the ellipsoid. Thus, the
effect of the parameters Rn, Ln, NA, Rs, Leεp, NCT, NTC on the trajectories is to attract
them to a set of measure zero, or to a fixed point to say.
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5 Heat and Nanoparticle Concentration Transport

The thermal Nusselt number, Nuf (t) is defined as

Nuf (t) = Heat transport by (conduction + convection)

Heat transport by conduction

= 1 +

⎡
⎢⎢⎣

∫ 2π/αc
0

(
∂T

∂z

)
dx

∫ 2π/αc
0

(
∂TB

∂z

)
dx

⎤
⎥⎥⎦

z=0

(49)

Substituting expressions (20) and (38) in Eq. 49, we get

Nuf (t) = 1 − 2πB02(t) (50)

Similarly the nanoparticle concentration Nusselt number, Nuφ(t), and the solute concentra-
tion Nusselt number, Nu(solute) are found to be:

Nuφ(t) = (1 − 2πC02(t))+ NA(1 − 2πB02(t)) (51)

NuC (t) = (1 − 2πD02(t))+ NCT(1 − 2πB02(t)) (52)

6 Results and Discussion

In Fig. 1, we draw linear stability curves showing the stationary and oscillatory modes of con-
vections. In the figure, we see that the region of over stability over-lies the region of damped
oscillations, i.e., at the start of instability, stationary or aperiodic pattern of motion prevails.
Therefore, we can say that the Principle of Exchange of stabilities is valid (Chandrashekhar
1961; Drazin and Reid 1981). This can be explained as; since stationary motion is prevalent
at the onset of convection, the restoring forces provoked are not strong enough to prevent the
system from tending away from equilibrium.

Fig. 1 Linear stability curve showing stationary and oscillatory modes of convection
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Non-linear Convective Transport 39

Figure 2 shows the effect of various parameters on the neutral stability curves for Rn =
4, Ln = 50, NA = 5, Rs = 5, Le = 0.75, NCT = 1, NTC = 0.001 and ε = 0.4, with a
variation in one of these parameters. From our calculations we found that thermo-nanofluid
Lewis number Ln, thermo-solutal Lewis number Le, Soret parameter NCT, Dufour parame-
ter NTC and porosity ε have a stabilizing effect on the system, i.e., an increase in their value
increases the critical Rayleigh number for stationary convection thus delaying the onset of
convection. On the other hand, nanoparticle Rayleigh number Ra, solutal Rayleigh number
Rs, and modified diffusivity ratio NA have destabilizing effects on the system. However, we
have included only three graphs in Fig. 2 corresponding to the parameters NCT, NTC and Rs.

In Fig. 3a, b, we have shown the variation of critical thermal Rayleigh number Racr for
stationary convection with respect to the nanoparticle concentration Rayleigh number Rn.
From the figures, we observe that for small values of Rn, the value Racr is high, which
decreases on increasing nanoparticle concentration Rayleigh number. From Fig. 3a, b, we
find that on increasing the values of Soret parameter NCT and Dufour parameter NTC the
value of Racr increases. However, from Fig. 3c, we see that on increasing the value of solutal
Rayleigh number Rs the value of Racr decreases. Results were also calculated for other
varameters and it was found that on increasing the values of thermo-nanofluid Lewis number
Ln and thermo-solutal Lewis number Le the value of Racr increases while it decreases on
increasing the modified diffusivity ratio NA.

Figure 4a–c display the variation of critical thermal Rayleigh number Racr with respect
to the thermo-nanofluid Lewis number Ln. It is observed from the figure that for small val-
ues of Ln, we have smaller values of Racr which increase with increasing thermo-nanofluid
Lewis number Ln. Also it is evident from the Fig. 4a, b that on increasing the values of Soret
parameter NCT and Dufour parameter NTC the value of Racr increases, however, it decreases
on increasing the value of solutal Rayleigh number Rs.

Figure 5a–c depict the variation of critical thermal Rayleigh number Racr with the mod-
ified diffusivity ratio NA. From Fig. 5, it is clear that corresponding to small values of NA,
we have large value of Racr which decreases with increasing modified diffusivity ratio NA.
Further the effect of various parameters is found to be the same as in the Figs. 3 and 4.

The nature of Nusselt numbers, Nuφ, Nu(solute) and Nu, as a function of time t , for
Rn = 4, Ln = 50, NA = 5, Ra = 4, Rs = 20, Le = 0.75, NCT = 0.75, NTC = 0.001, ε= 0.4
and γ = 2.5 with a variation in the value of one of these parameters, is shown in Figs. 6, 7,
and 8, respectively. These figures indicate that initially, when time is small, there occurs large
scale oscillations in the values of Nuφ, Nu(solute) and Nu indicating an unsteady rate of
nanoparticle concentration, solute concentration and heat transfer. As time passes by, these
approach to steady values, corresponding to a near conduction instead of convection stage.

It is to be noted in these figures that the value of Nuφ starts from 6, Nu(solute) starts
from 1.75 and the value of Nu starts from 1. The expressions for these are

Nuf (t) = 1 − 2πB02(t)

Nuφ(t) = (1 − 2πC02(t))+ NA(1 − 2πB02(t))

NuC (t) = (1 − 2πD02(t))+ NCT(1 − 2πB02(t))

At t = 0, the values of B02(t),C02 and D02(t) are all zero corresponding to conduction stage,
resulting in these value of Nuφ, Nu(solute) and Nu, as we take NA = 5 and NCT = 0.75
for our calculations.

It is seen from Figs. 6, 7, and 8 that the effect of the parameters concentration Rayleigh
number Rn, thermo-nanofluid Rayleigh number Ln, modified diffusivity ratio NA, solutal
Rayleigh number Rs, is to increase the extent of oscillations in the figures. The vibrations
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Fig. 2 Neutral stability curves
for different values of a NCT, b
NTC, c Rs

(a)

(b)

(c)
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Fig. 3 Variation of critical
Rayleigh number, Rac, with
concentration Rayleigh number,
Rn, for different values of a
NCT, b NTC, c Rs

(a)

(b)

(c)
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Fig. 4 Variation of critical
Rayleigh number, Rac, with
Lewis number, Ln, for different
values of a NCT, b NTC, c Rs

(a)

(b)

(c)
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Fig. 5 Variation of critical
Rayleigh number, Rac, with
modified diffusivity ratio, NA,
for different values of a NCT, b
NTC, c Rs

(a)

(b)

(c)
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(a)

(c)

(b)

(d)

(e)

Fig. 6 Variation of concentration Nusselt number Nuφ with time t for different values of a Rn, b Ln, c NA,
d Ra, and e Rs

are enhanced on increasing the values of these parameters. This implies that an increase
in their value increases the rate of nanoparticle concentration, rate of solute concentration
and the amount of heat transferred. The results corresponding to Soret parameter NCT and
thermal capacity ratio γ were also obtained and found to have the similar effects as the above
parameters. While it is to be noted that the effect of the parameters thermal Rayleigh number
Ra (Figs. 6d, 7, 8d), thermo-solutal Lewis number Le, Dufour parameter NTC is to decrease
the vibrations, i.e., to inhibit the rate of nanoparticle concentration, solute concentration and
the heat transfer. Whereas, the effect of porosity ε, is to decrease the rate of nanoparticle
concentration but to enhance the rate of solute concentration transfer and heat transfer.
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(a)

(c)

(b)

(d)

(e)

Fig. 7 Variation of solute Nusselt number Nu(solute) with time t for different values of a Rn, b Ln, c NA,
d Ra, and e Rs

Figure 9 shows the comparison of the value of Rayleigh number Ra for nanofluid with
ordinary fluid in double-diffusive convection. It is observed that the critical Rayleigh num-
ber is lower in case of nanofluids as compared to ordinary fluids. This abnormality can be
attributed to the two new parameters, Soret and Dufour parameters, along with the modified
diffusivity ratio, arising due to the triple diffusion condition being encountered in binary nano-
fluids. These two parameters lower the Rayleigh number for stationary convective transport
in nanofluids.
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(a)

(c)

(b)

(d)

(e)

Fig. 8 Variation of thermal Nusselt number Nu(solute) with time t for different values of a Rn, b Ln, c NA,
d Ra, and e Rs

7 Conclusions

We considered linear stability analysis in a horizontal porous medium saturated by a nano-
fluid, heated from below and cooled from above, using Darcy model which incorporates the
effect of Brownian motion along with thermophoresis, under non-equilibrium conditions.
Further bottom-heavy suspension of nanoparticles has been considered. Linear analysis has
been made using normal mode technique. Then the effect of various parameters on the onset
of thermal instability has been found. The results have been presented graphically. We draw
the following conclusions:
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Fig. 9 Comparison of the value of Rayleigh number Ra for nanofluid with ordinary fluid in double-diffusive
convection

1. The effect of the Ln, Le, NCT, NTC, ε is to stabilize the system, while NA, Rs tend to
destabilize the system.

2. The effect of time on Nusselt numbers is found to be oscillatory, when t is small.
However, when time t becomes very large Nusselt number approaches the steady value.
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