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Abstract The onset of convection and its nonlinear regimes in a heated from below two-
layer system consisting of a horizontal pure fluid layer and porous medium saturated by
the same fluid is studied under the conditions of static gravitational field. The problem is
solved numerically by the finite-difference method. The competition between the long-wave
and short-wave convective modes at various ratios of the porous layer to the fluid layer
thicknesses is analyzed. The data on the nature of convective motion excitation and flow
structure transformation are obtained for the range of the Rayleigh numbers up to quintuple
supercriticality. It has been found that in the case of a thick porous layer the steady-state
convective regime occurring after the establishment of the mechanical equilibrium becomes
unstable and gives way to the oscillatory regime at some value of the Rayleigh number. As
the Rayleigh number grows further the oscillatory regime of convection is again replaced by
the steady-state convective regime.

Keywords Convection · Nonlinear regime · Porous medium · Two-layer system

1 Introduction

The present work is devoted to studying the onset and development of convection in a system
of two horizontal layers of a pure fluid layer and porous medium saturated by the same fluid
in a static gravitational field. The convective flows in the fluid and porous layers are widely
distributed in various natural and technological processes, which explains a keen interest of
researchers in such flows. Thermocirculation of water in lakes and coastal areas, currents in
geysers and hot springs, groundwater flows are known to be due to convection. In industry, this
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26 E. Kolchanova et al.

problem is commonly encountered while dealing with granulated insulation materials, heat
exchangers for nuclear reactors, crystallization, and reservoir water circulation processes.

The onset of convection in a two-layer system consisting of the fluid layer and porous
medium saturated by the same fluid in a static gravity field was first investigated by Nield
(1977) under the conditions of the free upper and solid lower boundaries and a constant
heat flux at both boundaries. The problem was solved in the framework of the Darcy model
using the Beavers–Joseph boundary condition specified at the interface between the fluid
and porous layers (Beavers and Joseph 1967) to take into account the jump in the tangential
velocities at the interface. The analytical formula for the critical Rayleigh number determining
the stability boundary for the equilibrium state of the system is derived. The critical wave
number is supposed to be zero due to thermally insulated boundaries.

The stability of mechanical equilibrium in a three-layer system consisting of a porous
layer sandwiched between two fluid layers of equal thickness was studied in Nield (1983) and
Pillatsis et al. (1987). Nield (1983) considered the case when the top and bottom boundaries
of the system were assumed solid. Pillatsis et al. (1987) described the system with free upper
and lower boundaries, at which a constant heat flux was set, similarly as Nield (1977) did.
The stability diagrams for various Darcy numbers and layer thickness ratios were obtained.
It was shown that in the case of solid boundaries the stability threshold is larger than in the
case of free boundaries.

To our knowledge, the stability of equilibrium in a two-layer system of a fluid and porous
medium saturated by the same fluid in the case when the upper and lower solid boundaries
were isothermal was first investigated by Sun (1973). A convective fluid flow in porous
medium was described by the Darcy model using the Beavers–Joseph boundary condition
at the interface between the fluid and porous layers. It was found that a decrease in the fluid
layer thickness leads to a growth of the critical porous Rayleigh number. The obtained data
was confirmed by the experimental results, which were also provided by Sun (1973). The
authors focused only on the case of large-scale perturbations extending through the bulk of
the fluid and porous layers.

The bimodal nature of the neutral curves for the system of horizontal layers of the fluid and
porous medium saturated by the fluid was first discovered by Lyubimov and Muratov (1977).
They investigated a three-layer system, consisting of a fluid layer sandwiched between the
two porous layers. Different constant temperatures were imposed at the top and bottom solid
boundaries. Treatment of the problem was based on the Darcy model with the boundary
condition of zero tangential fluid velocity at the interface between layers. It was found that
in the case of large fluid layer thicknesses, the neutral curves were unimodal and the short-
wave perturbations generally located in the fluid layer were most dangerous. With decreasing
relative thickness of the fluid layer, the neutral curves became bimodal. The reconstruction of
neutral curves for variable permeability of the porous medium was also studied. The stability
diagram on the plane of parameters (layer thickness ratio and permeability of the porous
medium) involving the region of bimodal neutral curves was obtained.

The bimodal nature of neutral curves was later found by Chen and Chen (1988) while
solving the linear stability problem for a two-layer system of the fluid and porous medium
saturated by the same fluid. They described the fluid motion in a porous medium in the
framework of the Darcy model using the Beavers–Joseph boundary condition at the interface
between the fluid and porous layers. The stability of the system equilibrium was investigated
at various values of the Darcy number, the ratio of the fluid to porous layer thicknesses and the
ratio of the fluid to porous medium thermal conductivities. The critical value of the thickness
ratio, at which the nature of the most dangerous perturbations changed and a transition from
the long-wave to the short-wave perturbations occurred, was defined.
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The Onset and Nonlinear Regimes of Convection 27

Various methods for description of the convective fluid motion in porous medium and
boundary conditions at the interface between the fluid and porous layers were compared in
the papers by Hirata et al. (2006, 2007a,b) in the context of the linear stability problem for
the equilibrium stability in a two-layer system of a fluid and porous medium saturated by
the fluid in the static gravity field. Hirata et al. (2006, 2007a) studied the linear stability
problem using the following approaches: (1) one-domain approach, in which the convective
fluid flow was described by a single equation for both media and the medium properties were
assumed dependent on the coordinates; (2) two-domain approach, in which the fluid flow
in the porous layer was described by the Darcy model using the Beavers–Joseph boundary
condition at the interface between the layers; (3) two-domain approach, in which the fluid flow
in the porous medium was described by the Brinkman model allowing for viscous diffusion
of the momentum and using the tangential stress continuity condition at the interface between
the layers. Hirata et al. (2007b) applied a two-domain approach, in which the Brinkman model
was used to describe the convective fluid filtration in porous medium. However, instead of
the boundary condition of tangential stress continuity they used the stress jump boundary
conditions for tangential stresses offered by Ochoa-Tapia and Whitaker (1995a,b). According
to numerical simulations Hirata et al. (2007b), the value of the coefficient determining the
tangential stress jump at the interface between the layers strongly affects the position of
neutrals curves for small wave lengths and virtually has no effect on the stability boundary
of equilibrium with respect to the long-wave perturbations.

Numerical calculations for the heat flux rate and supercritical convective flow structures
in a two-layer system of the fluid and porous medium saturated by the fluid in the static
gravity field were carried out by Chen and Chen (1992). In this work, the fluid flow in the
porous layer was described by the Darcy equation supplemented by the Brinkman term for
viscous diffusion of the momentum and Forchheimer term for the inertial effects manifesting
themselves at high velocities of the convective fluid flow in the porous medium. The calcula-
tions were conducted up to the twentyfold supercriticality. The steady-state convection was
observed over the entire range of the examined parameters. It was found that with increas-
ing ratio of the fluid layer thickness to that of the porous layer the nature of the Nusselt
number dependence on the supercriticality changes: a sharp increase in the heat flux with
the growth of supercriticality occurred at small values of the thickness ratio and a moderate
growth of the heat flux was observed at the thickness ratio exceeding some critical value. The
obtained values of the heat flux at the thickness ratios of 0.1 and 0.2 were in good agreement
with the experimental data (Chen and Chen 1989). The competition between the long-wave
and short-wave modes of convection near the threshold of the equilibrium stability was not
analyzed.

Papers by Lyubimov et al. (2002, 2004) were devoted to the question of convection mode
competition in a three-layer system consisting of two porous layers separated by a pure fluid
layer in the static gravity field for the case of small supercriticalities. The fluid motion was
described by the Darcy model using the boundary condition of zero tangential fluid velocity
at the interface between the layers. The authors used the layer thickness ratio, at which the
minimal critical Grashof numbers of the short-wave and long-wave instabilities have close
values. It has been found that already at low supercriticalities, the long-wave convection
becomes unstable with respect to the short-wave perturbations. With the growth of super-
criticality, the large-scale vortex, extending through the fluid layer and both porous layers,
was replaced by a few small vortexes located in the fluid layer. A transition regime, which
is a superposition of the long-wave and short-wave modes of instability, was investigated
by Lyubimov et al. (2004). Here, the authors also derived a relationship between the maxi-
mum stream function and the Grashof number for various wave numbers. The calculations
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Fig. 1 System configuration

showed that with increasing supercriticality the intensity of the steady-state solutions near
the threshold grows according to the square-root law.

In this paper, we explore the supercritical convective regimes and the nature of convection
excitation in a two-layer system consisting of a fluid layer and porous medium saturated
by the same fluid in the static gravity field. Here, our main concern is with studying the
competition between the long-wave and short-wave convective modes near the threshold of
the equilibrium stability and the nonlinear development of long-wave and short-wave modes.
In Sect. 2, we discuss the problem formulation and governing equations with the boundary
conditions, Sect. 3 is concerned with the numerical method of the problem solution, and in
Sect. 4, the results of the study are presented. In Sect. 5, we discuss the main interesting
results of this paper.

2 Problem Statement. Governing Equations and Boundary Conditions

Consider the problem of the onset of convection and its nonlinear regimes in a two-layer
system containing a horizontal pure fluid layer of thickness hf and an underlying porous
layer of thickness hm, saturated by the fluid in the static gravity field (Fig. 1). The top and
the bottom boundaries of the system are solid planes at different constant temperatures. We
restrict our discussion to a plane problem, which implies that the layers are uniform along
the z-axis.

The convective flow in the fluid layer is described by the free thermal convection equations
in the Boussinesq approximation, and in the porous layer saturated by the fluid, it is described
by the free convective filtration equation in the Darcy–Boussinesq approximation. Thus, the
equations for the velocity, temperature, and pressure fields in the fluid layer are written as

∂v

∂t
+ (v∇)v = − 1

ρ
∇ pf + ν�v + gβTγ (1)

∂T

∂t
+ (v∇)T = χf�T (2)

div v = 0 (3)
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The Onset and Nonlinear Regimes of Convection 29

and in the porous layer

1

m

∂u

∂t
+ 1

m2 (u∇)u = − 1

ρ
∇ pm − ν

K
u + gβϑγ (4)

b
∂ϑ

∂t
+ (u∇)ϑ = χeff�ϑ (5)

div u = 0. (6)

Here v is the convective flow velocity in the fluid layer, u is the convective filtration velocity in
the porous medium, pf , pm are the pressures in the fluid and porous layers without hydrostatic
pressure, T, ϑ are the deviation of temperature in the fluid and porous layers from its mean
value,ρ, ν are the fluid density and kinematic viscosity,β is the thermal expansion coefficient,
g is the acceleration of gravity, m is the porosity, K is the permeability of the porous medium,
b is the ratio of the porous medium heat capacity to that of the fluid per unit volume, χf , χm

are the thermal diffusivities of the fluid and porous medium, χeff is the effective thermal
diffusivity (the ratio of the porous medium thermal conductivity to the fluid heat capacity
per unit volume), χeff = bχm, γ is the vertical axis unit vector. Indexes: f is the fluid, m is
the porous medium.

Since the convective filtration velocities in the porous medium are generally small, the
terms 1

m
∂u
∂t ,

1
m2 (u∇)u in the left-side part of the momentum equation for the porous layer (4)

can be considered negligible in comparison with the drag force. Further, the equations will
be written without regard to these two terms.

The system of Eqs. (1)–(6) is supplemented with the following boundary conditions. The
no-slip condition is fulfilled at the top boundary of the two-layer system, the impermeability
condition is fulfilled at the bottom boundary, and both boundaries are assumed to have
different constant temperatures

y = hf : vx = vy = 0, T = −
f , (7)

y = −hm: uy = 0, ϑ = 
m.

The boundary conditions at the interface between the fluid and porous layers are the conti-
nuity of the vertical velocity component, the jump in the tangential fluid velocity component
and the balance of the normal stresses

y = 0: vy = uy, vx = 0, T = ϑ, (8)

κf
∂T

∂y
= κm

∂ϑ

∂y
, pf = pm.

Let us clarify the last boundary condition. In the case of relatively small permeability of the
porous medium, the viscous momentum diffusion is usually neglected (Darcy–Boussinesq
approximation), so that in the general form the balance of normal stresses can be written as

pf − 2νρ
∂vy

∂y
= pm. (9)

The derivative ∂vy/∂y is equal to zero because of the zero jump in the tangential component
of the fluid velocity at the interface and the continuity equation.

Nondimensionalization of the equations with respect to the fluid layer parameters is per-
formed by introducing the length, time, temperature, velocity, and pressure scales [r ] = hf =
L , [t] = L2/χf , [T ] = [ϑ] = Af L , [v] = [u] = χf/L , [pf ] = [pm] = ρνχf/L2.
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The obtained system of non-dimensional equations for the fluid layer is written as

1

Pr

∂v

∂t
+ 1

Pr
(v∇)v = −∇ pf +�v + RaT γ (10)

∂T

∂t
+ (v∇)T = �T (11)

div v = 0 (12)

and for the porous layer

−εf∇ pm − u + εf Raϑγ = 0 (13)

b
∂ϑ

∂t
+ (u∇)ϑ = κ�ϑ (14)

div u = 0 (15)

with the boundary conditions

y = 1: vx = vy = 0, T = −1,

y = −h: uy = 0, ϑ = h/κ. (16)

y = 0: vy = uy, vx = 0, T = ϑ,

∂T

∂y
= κ

∂ϑ

∂y
, pf = pm.

Here, as it follows from the heat flux continuity condition, κf Af = κm Am or κ = κm/κf =
Af/Am, where κf , κm are the thermal conductivities of the fluid layer and porous medium
saturated by the fluid, Af , Am are the vertical equilibrium temperature gradients in the fluid
and porous layers. The problem includes the following non-dimensional parameters

εf = K

L2 , Pr = ν

χf
, Ra = gβAf L4

νχf
, κ = κm

κf
, b = (ρcp)m

(ρcp)f
, h = hm

hf
.

Introduce the stream functions for flows in the fluid and porous layers and the vorticity of
the flow in the fluid layer

vx = ∂ψ

∂y
, vy = −∂ψ

∂x
, ux = ∂ϕ

∂y
, uy = −∂ϕ

∂x
, � = rot v.

The system of equations in terms of the stream functions and vorticity for the fluid layer
is

∂�

∂t
+ ∂ψ

∂y

∂�

∂x
− ∂ψ

∂x

∂�

∂y
= Pr

(
��+ Ra

∂T

∂x

)
(17)

∂T

∂t
+ ∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y
= �T (18)

� = −�ψ (19)

and for the porous layer

�ϕ + εf Ra
∂ϑ

∂x
= 0 (20)

b
∂ϑ

∂t
+ ∂ϕ

∂y

∂ϑ

∂x
− ∂ϕ

∂x

∂ϑ

∂y
= κ�ϑ. (21)
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The Onset and Nonlinear Regimes of Convection 31

Let us discuss the boundary condition of the normal stress continuity at the interface
between the fluid and porous layers at y = 0: pf = pm. Using the horizontal projections
of the momentum equations for the fluid and porous layers (10) and (13) and taking into
account the smallness of the Darcy number εf and the inertial terms compared to the viscous
term and the drag force of the porous matrix we get the normal stress continuity condition
defined as

εf
∂2vx

∂ y2 + ux = 0,

or in terms of the stream functions

εf
∂3ψ

∂ y3 + ∂ϕ

∂y
= 0.

Thus, the boundary conditions in terms of the stream functions take the following form:

y = 1: ψ = 0, T = −1,

y = −h: ϕ = 0, ϑ = h/κ. (22)

y = 0: ψ = ϕ,
∂ψ

∂y
= 0, T = ϑ,

∂T

∂y
= κ

∂ϑ

∂y
, εf

∂3ψ

∂ y3 + ∂ϕ

∂y
= 0.

3 Numerical Method

The problem (17)–(22) was solved numerically by the finite-difference method. Numerical
calculations were based on the explicit finite-difference scheme. All spatial derivatives were
approximated by the central differences. Poissons equation (19) was solved by the method of
successive over-relaxation. Computations were carried out for the grid cells, the horizontal
size of which was equal to the most dangerous perturbation wavelength λ, according to the
data of the linear stability analysis. The periodicity condition f (−λ/2, y, t) = f (λ/2, y, t)
was imposed at the side boundaries of the computational domain x = ±λ/2 for all functions.
The program was tested by comparing the numerical results with the available data obtained
for the case of pure fluid convection in a heated from below horizontal porous layer saturated
by the fluid under gravity conditions. The main calculations were conducted at fixed values
of parameters κ, b, Pr, εf: κ = 1, b = 1, Pr = 6.7, εf = 10−3.

4 Numerical Results

It is known (Lyubimov and Muratov 1977; Chen and Chen 1988) that at some values of
parameters the neutral curves of the linear mechanical equilibrium stability in a heated from
below two-layer system of a pure fluid layer and porous medium saturated by the fluid are
bimodal. Figure 2 shows the equilibrium–stability neutral curves at κ = 1, b = 1, Pr =
6.7, εf = 10−3 and various ratios of the porous layer to the fluid layer thicknesses h. As it
is seen from the graph, at small thickness ratios the neutral curve has one minimum (curve
5) and the short-wave perturbations, occurring in the fluid layer and poorly penetrating the
porous medium, are most dangerous (since the fluid moving in a porous medium experiences
the resistance of porous matrix, the perturbations begin to penetrate the porous medium only
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Fig. 2 Equilibrium–stability
neutral curves at various
thickness ratios:
1 − h = 8, 2 − h = 5, 3 − h = 3,
4 − h = 2.5, 5 − h = 2

Fig. 3 Diagram εf − h; the range
of the bimodal neutral curves
existence is located between the
curves 1 and 3 (the shaded region
stands for most dangerous
short-wave perturbations)

at large porous layer thickness). With increasing porous layer thickness, the critical Rayleigh
number and the critical wave number corresponding to the short-wave minimum are nearly
constant (short-wave perturbations are located in the fluid layer and the fluid layer thickness
is set to be unit, i.e., it is one and the same for all h). However, the neutral curve gets one more
minimum at small wave numbers (see curve 4). With a further increase in h, the minimum
falls below the short-wave value and the long-wave perturbations become most dangerous
(see curves 3, 4, and 5).

Figure 3 shows the transformation of the neutral curves with the change of εf and h for
κ = 1.43. The range of the bimodal neutral curves existence is located between the curves 1
and 3. Besides, in the range between the curves 1 and 2, the long-wave minimum is lower than
the short-wave one and in the range between the curves 2 and 3, the short-wave minimum is
lower. Curve 2 corresponds to the case of close values of critical Rayleigh number.
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The Onset and Nonlinear Regimes of Convection 33

Fig. 4 Equilibrium–stability
neutral curves at various types
of boundary conditions

Fig. 5 The long-wave (λ = 16, curve 1) and short-wave (λ = 3, curve 2) instability modes. a The dependence
of the maximum absolute stream function on the Rayleigh number. b The dependence of the Nusselt number
on the Rayleigh number

To study the effect of the boundary conditions at the interface on the results of linear
stability analysis we have performed the calculations using the Beavers–Joseph condition at
various values of the constant αBJ instead of the condition of zero tangential component of
the fluid velocity. These calculations show that the short-wave perturbations localized in the
clear liquid layer are more affected by the boundary conditions type and the effect of the
boundary conditions on the long-wave perturbations developing in both layers is rather weak
(see Fig. 4).

The numerical results obtained by solving the nonlinear problem at various thickness
ratios are presented in Figs. 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, and 17.

Figure 5a shows the dependence of the maximum absolute stream function � on the
Rayleigh number and Fig. 5b represents the dependence of the Nusselt number on the
Rayleigh number in the case when the ratio of the porous layer thickness to the fluid
layer thickness is equal to 8. In this case, the lowest instability level is related with the
long-wave perturbations. The results were obtained on the uniform grid with square cells

123



34 E. Kolchanova et al.

Fig. 6 The stream function for
the long-wave mode of
steady-state solutions at
Ra = 536 (near the point of
stability loss of a steady-state
solution). The contour values for
streamlines are of the same
interval equal to 0.2

Fig. 7 The long-wave mode of steady-state solutions at Ra = 540 (immediately after the loss of steady-state
solution stability). a The dependence of the maximum absolute stream function on time. b The dependence
of the maximum absolute stream function on time within 1.5th of the oscillation period determined by the
minimum frequency

Fig. 8 The Fourier spectrum
of maximum absolute stream
function oscillations for the
long-wave mode of steady-state
solutions at Ra = 540
(immediately after the loss of
steady-state solution stability)
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The Onset and Nonlinear Regimes of Convection 35

Fig. 9 Stream functions for the long-wave mode of steady-state solutions at Ra = 540 (immediately after
the loss of steady-state solution stability) and various time intervals within 1.5th of the oscillation period
determined by the minimum frequency, at points presented in Fig. 6b: a t = 503.0 (point 1), b t = 504.2
(point 2), c t = 506.6 (point 3), d t = 509.6 (point 4). The contour values for streamlines are of the same
interval equal to 0.2

Fig. 10 The long-wave mode of steady-state solutions at Ra = 600 (after the loss of steady-state solution
stability). a The dependence of the maximum absolute stream function on time. b The dependence of the
maximum absolute stream function on time within the 1.5th of oscillation period determined by the minimum
frequency

(hx = hy = H). The long-wave branch is obtained at H = 0.1 and the short-wave branch—
at H = 0.04. The selection of the computational grid was based on test computations
performed on various grids under the requirement of the optimal relation between the com-
putational time and accuracy. It is readily seen from Fig. 5a that soft excitation of convection
is observed for both the long-wave and short-wave instability modes and the intensity of
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Fig. 11 The Fourier spectrum of
the maximum absolute stream
function oscillations for the
long-wave mode of steady-state
solutions at Ra = 600 (after the
loss of steady-state solution
stability)

motion grows with increasing supercriticality according to the square-root law. Moreover,
the long-wave mode grows much faster than the short-wave mode.

Let us analyze the behavior of solutions at finite supercriticalities. First, we will consider
the solutions for the long-wave instability mode. The structure of the steady-state flow for
this mode at Ra = 536 is shown in Fig. 6. As it is seen from the graph, the steady-state flow
has the structure of large-scale convective rolls occupying both layers and involving small
additional vortexes of opposite direction formed in the fluid layer at the interface between
the rolls in the downstream region.

At the Rayleigh number of about 538, the steady-state solution given in Fig. 6 becomes
unstable and is replaced by the oscillatory regime. Figure 7a, b shows the types of oscillations
that occur after the loss of stability of the steady-state regime at Ra = 540.

The Fourier spectrum and the data on the rearrangement of the flow structure during
oscillations at Ra = 540 are illustrated in Figs. 8 and 9 (the time moments for depicted flow
structures are denoted by dots in Fig. 7b). As is evident from the figure, the spectrum includes
a set of high and low frequencies. The basic oscillations in the spectrum are determined by
the high frequency and a change in the amplitude of these oscillations corresponds to the low
frequency (Fig. 7b). During oscillations a reconnection of additional vortexes takes place. The
intensity of one of the vortexes gradually decreases (Fig. 9a, b) and it reconnects with another
vortex, the intensity of which starts to grow (Fig. 9c). Then process is repeated (Fig. 9d).

The oscillation of the maximum absolute stream function at Ra = 600 is illustrated in
Fig. 10a, b. It can be readily seen that the oscillation amplitude rises as the Rayleigh number
increases. The oscillation spectrum is shifted toward the region of lower frequencies (Fig. 11).

Figure 12 shows rearrangement of the fluid flow structure at time intervals marked by
dots in Fig. 10b. The intensity of one of the vortexes located in the fluid layer starts to grow
(Fig. 12a, b) then it is separated from the basic large-scale roll and reconnects with another
vortex formed in the fluid (Fig. 12c–f). After this, the process is repeated.

According to computations, the fluid flow again becomes stationary at Ra = 750. More-
over, in the fluid layer near the interface between the rolls in the downstream domain a
small additional vortex of the same direction as the basic one is formed in each basic vortex
extending through both layers (Fig. 13).
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Fig. 12 Stream functions for the long-wave mode of steady-state solutions at Ra = 600 (after the loss of
steady-state solution stability) and various time intervals within 1.5th of oscillation period determined by the
minimum frequency, at points presented in Fig.10b: a t = 202.0 (point 1), b t = 212.0 (point 2), c t = 214.0
(point 3), d t = 215.0 (point 4), e t = 216.5 (point 5), f t = 217.0 (point 6). The contour values for streamlines
are of the same interval equal to 0.2

Fig. 13 The stream function for
the long-wave mode of
steady-state solutions at
Ra = 750. The contour values
for streamlines are of the same
interval equal to 0.2

Numerical simulations of the nonlinear convective regimes using the Beavers–Joseph
condition at various values of the constant αBJ show that the increase of αBJ results in the
decrease of the Rayleigh number range where the oscillatory regime takes place (see Fig. 14).
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Fig. 14 The dependence of the
maximum absolute stream
function on the Rayleigh number
for the long-wave instability
mode at various types of
boundary conditions

Fig. 15 Stream functions for the short-wave mode of steady-state solutions at various Rayleigh numbers:
a Ra = 1,500, b Ra = 2,500, c Ra = 3,500, d Ra = 4,500. The contour values for streamlines are of the
same interval equal to 0.2

Note that the results obtained forαBJ = 0.78 are in a good agreement with the results obtained
with the condition of zero tangential component of the fluid velocity at the interface.

Figure 15 presents the numerical data on the changes in the fluid flow structure with a
growth of the Rayleigh number for the short-wave instability mode. The calculations show
that for this instability mode the steady-state solution exists for the whole range of the
Rayleigh numbers examined here, and the oscillatory regime does not occur. As you can see
from Fig. 15, with increasing Rayleigh number the fluid flow starts to penetrate the porous
layer and at sufficiently great Ra a large-scale vortex is formed inside the two-layer system.
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Fig. 16 The dependence of the maximum absolute stream function on the Rayleigh number: a for finite
supercriticalities, b near the threshold

The formation of the large-scale vortex is accompanied by a change in the slope of curve
2 (Fig. 5a) showing the dependence of the maximum absolute stream function for the short-
wave mode of steady-state solutions on the Rayleigh number and also by a change in the slope
of curve 2 (Fig. 5b) illustrating the Nusselt number as a function of the Rayleigh number for
this instability mode.

Now, we consider the behavior of solutions for the layer thickness ratio, at which the values
of the threshold Rayleigh numbers for the short-wave and long-wave instability modes are
close. Preliminary calculations show that the long-wave vortex is unstable and even at low
supercriticalities falls into small short-wave vortexes located in the fluid layer. Therefore, we
consider the case when the threshold of the equilibrium stability with respect to the long-
wave perturbations is slightly below the stability threshold with respect to the short-wave
perturbations.

Figure 16a shows the dependence of the maximum absolute stream function on the
Rayleigh number in the case when the ratio of the porous layer thickness to the fluid layer
thickness is equal to 3 [the dimensions of the computational domain correspond to the size of
the long-wave vortex with the wave number k = π/4.5 associated with the minimum critical
Rayleigh number for neutral perturbations (see Fig. 2)]. The part of the curve describing this
dependence at Rayleigh numbers near the instability threshold is shown in Fig. 16b.

Figure 17 illustrates the rearrangement of the fluid flow structure with the growth of
Rayleigh number. The flow structure shown in this figure corresponds to the values of the
Rayleigh number marked by triangles in Fig. 16b. As one can see from the figure, the for-
mation of a large-scale long-wave vortex occupying both layers occurs when the Rayleigh
number reaches its threshold value. An increase in the supercriticality leads to the appearance
of additional short-wave vortexes in the fluid layer. With a further growth of the Rayleigh
number the long-wave vortex losses its stability and breaks down into a few small short-wave
vortexes located in the fluid layer.

5 Conclusions

We have studied the convection excitation in a two-layer system composed of the horizontal
fluid and porous layers under the gravity conditions. We consider two cases of the layer
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Fig. 17 Steady-state flow structures near the threshold in the case of the competition between the long-wave
and short-wave convective modes at h = 3 and various Rayleigh numbers: a Ra = 1, 320, b Ra = 1, 321,
c Ra = 1, 322, d Ra = 1, 324, e Ra = 1, 326, f Ra = 1, 328, g Ra = 1, 330, h Ra = 1, 331, i Ra = 1, 332.
The contour values for streamlines are of the same interval equal to 0.005

123



The Onset and Nonlinear Regimes of Convection 41

thickness ratio: (1) h = 8 when the long-wave perturbations are most dangerous, according
to the linear stability theory; (2) h = 3 when according to the linear stability theory, the
critical Rayleigh numbers determining thresholds of the equilibrium stability with respect to
the long-wave and short-wave perturbations take close values. The calculations show that in
both cases the convection is softly generated.

In the case of the predominant long-wave convective mode (h = 8), when perturbations
take the form of large-scale rolls occupying the bulk of both layers, a steady-state convective
regime is first to appear. Then the regime losses its stability and gives place to an oscillatory
regime at Ra = 538. The basic vortexes covering both layers are nearly stagnant. All changes
occur mainly in the fluid layer where small additional vortexes of the opposite direction and
time-dependent intensity appear at the interface between the rolls in the downstream domain.
The types of oscillations for the maximum absolute stream function in the computational
domain and Fourier spectra of oscillations at various Rayleigh numbers have been found. It
has been shown that at the Rayleigh number equal to about 750, the oscillatory regime is
again replaced by the steady-state convective regime. The numerical data of the fluid flow
restructuring for the short-wave instability mode has also been obtained for h = 8. The
computations show that the steady-state vortexes located in the fluid layer are formed at
small supercriticalities and with increasing the Rayleigh number the fluid flow begins to
penetrate the porous medium. The oscillatory regime for the short-wave instability mode is
not discovered.

For the layer thickness h = 3, the exploration of the long-wave and short-wave mode
competition shows that even at small supercriticalities the long-wave vortex becomes unstable
and breaks down into small-scale short-wave vortexes located in the fluid layer. The obtained
data is qualitatively confirmed by the results presented in papers (Lyubimov et al. 2002, 2004),
in which the authors numerically investigated the problem of the convection excitation in a
three-layer system consisting of a fluid layer confined between two porous layers saturated
by the fluid.
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