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Abstract In recent years, the effective stress approach has received much attention in the
constitutive modeling of unsaturated soils. In this approach, the effective stress parameter is
very important. This parameter needs a correct definition and has to be determined properly.
In this paper, a thermodynamic approach is used to develop a physically-based formula
for the effective stress tensor in unsaturated soils. This approach accounts for the hydro-
mechanical coupling, which is quite important when dealing with hydraulic hysteresis in
unsaturated soils. The resulting formula takes into account the role of interfacial energy and
the contribution of air–water specific interfacial area to the effective stress tensor. Moreover,
a bi-quadratic surface is proposed to represent the contribution of the so-called suction stress
in the effective stress tensor. It is shown that the proposed relationship for suction stress is
in agreement with available experimental data in the full hydraulic cycle (drying, scanning,
and wetting).

Keywords Effective stress parameter · Entropy inequality · Interfacial energy ·
Hydro-mechanical coupling · Air water specific interfacial area ·
Suction stress characteristic surface (SSCS)

1 Introduction

1.1 Effective Stress Approach

The concept of effective stress was introduced by Terzaghi (1936) as one of the fundamental
concepts of saturated soil mechanics. Since then, many attempts have been made to extend
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this concept to unsaturated soils (see e.g., Bishop 1959; Bishop and Blight 1963; Kohgo
et al. 1993; Khalili and Khabbaz 1998; Khalili et al. 2004; Nuth and Laloui 2008a; Laloui
and Nuth 2008; Khalili and Zargarbashi 2010; among many others). The effective stress is
a combination of the total stress and the fluid phase pressures inside a porous material; it
is the stress that governs the mechanical behavior of the porous material (in our case, soil).
According to Khalili et al. (2004), the concept of effective stress “converts a multi-phase
multi-stress state porous medium to a mechanically equivalent, single-phase, single-stress
state continuum allowing the application of the principles of continuum solid mechanics.”
That is why there has been a great appeal to extend this concept to unsaturated soils where
more than one fluid phase exists.

In the pioneering work of Bishop (1959), the following formulation was introduced for
the effective stress in unsaturated soil mechanics:

σ ′
i j = (σi j − Paδi j )+ χ Pcδi j (1)

where σi j is the total stress tensor, Pa is the air pore pressure, χ is the so-called effective
stress parameter, and Pc is the matric suction (capillary pressure), and δi j denotes the unit
tensor. One of Bishop’s recommendations for the effective stress parameter was to set it equal
to the degree of saturation of water (or the wetting phase in general). Since then, this simple
suggestion has been used in many studies such as the works of Schrefler (1984), Jommi and
di Prisco (1994), and more recently Laloui and Nuth (2008).

After Bishop’s proposal for the effective stress formula, during the past five decades, there
has been much debate on the application of effective stress concept as well as the appropriate
choice of effective stress parameter and its formulation in unsaturated soils. This debate has
led to different approaches, advantages and disadvantages of which have been presented in a
comprehensive review elsewhere (Nuth and Laloui 2008a). Recently, it has been shown that
the effective stress approach can model the unsaturated soil behavior provided that it is used
within a proper constitutive framework (Loret and Khalili 2000; Khalili et al. 2004; Nuth
and Laloui 2008a; Alonso et al. 2010). Nonetheless, there are still open questions to which
the current study is devoted. Despite the recent progress on the application of effective stress
approach for modeling the behavior of unsaturated soils, the most proper choice of effective
stress parameter is not clearly known. Results of recent studies show that the effective stress
parameter cannot be simply taken as the degree of saturation (see e.g., Khalili and Zargarbashi
2010; Alonso et al. 2010; Pereira et al. 2010). The focus of these studies has been on finding
alternative formulas for the effective stress parameter.

Recently, published studies have shown the importance of hydro-mechanical coupling,
the effect of hydraulic hysteresis on the effective stress, as well as the role of bonding
phenomenon. Hence, the essential question is whether other terms should be present in the
effective stress formulation. To the best of authors’ knowledge, there is no comprehensive
theoretical work in the literature to address this question, specifically from a thermodynamic
standpoint. In particular, previous thermodynamic approaches have not fully investigated
the variation of the effective stress for a complete hydraulic cycle. In a full hydraulic cycle,
air–water interfaces are expected to play a major role and additional terms are required to
take into account their influence.

In a porous medium, the interplay of all phases and interfaces governs the overall mechan-
ical behavior. However, in the current formulations, while the fluid phase pressures and their
corresponding saturation appear in the effective stress formulation, there is no term related
to interfaces. But, one would intuitively expect fluid–fluid and solid–fluid interfaces to con-
tribute to the effective stress formulation as well. The trends and phenomena observed in
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recent experiments confirm this expectation. These phenomena are briefly reviewed in the
following section.

In what follows, we focus on the role of fluid–fluid interfaces in effective stress formula-
tion. But as discussed in “Appendix B”, solid–fluid interfaces can also contribute to effective
stress formulations, particularly, when grains are considered to be deformable.

1.2 Review of Recent Experimental Evidences: Role of Various Physical Phenomena

1.2.1 Role of Hydraulic History

The importance of hydraulic history in hydro-mechanical behavior of unsaturated soils has
been understood only recently (Khalili and Zargarbashi 2010; Uchaipichat 2010a,b). These
studies show that the value of the effective stress parameter at a given matric suction is
different when different hydraulic paths (drainage or imbibition) are followed to reach that
matric suction.

Experimental studies of Khalili and Zargarbashi (2010) confirmed that the effective stress
parameter is not equal to the degree of saturation unless there is an additional term in the
effective stress formulation. They showed that the effective stress parameter can decrease
following a wetting scanning curve, where the degree of saturation remains nearly constant.
There is no theoretical investigation on this important phenomenon and its underlying mech-
anisms. Khalili and Zargarbashi (2010) conjectured that this phenomenon can be attributed
to the effect of air–water interface but they did not indicate how air–water interface can be
included in the effective stress formulation.

1.2.2 Role of Capillary Forces (Bonding Phenomenon)

Air–water interfaces are also expected to play a role in the description of bonding effects and
capillary forces. Capillary forces are exerted by the contractile skin on the soil grains. The
outcome is an increase in the inter-granular forces which resist grain sliding under external
forces. This physical effect of capillary forces has been called bonding effect in the literature
(Nuth and Laloui 2008a); here, we refer to it as the bonding phenomenon.

Previous micro-mechanical investigations of a wet granular medium have indicated that
capillary forces need to be incorporated in the formulations of the mechanics of unsaturated
soils (Chateau and Dormieux 2002; Lu and Likos 2006). Thus, one would expect the capillary
forces to make significant contributions to the effective stress tensor in partially saturated
soils. However, since their contribution is not fully known and it is hard to measure, they are
usually overlooked in the effective stress formulations.

It is noteworthy that the importance of bonding phenomenon was already understood at
the early stages of soil mechanics. Terzaghi (1943) devoted a chapter to capillary forces in his
famous textbook (Theoretical Soil Mechanics, Chapter 14). Illustrations on the contribution
of capillary forces date back to 1960s, for instance, in works of Blight (1961) and Matyas and
Radhakrishna (1968). More fascinating, it was conjectured that the bonding phenomenon is
related to the amount of air–water interface (Blight 1961; Matyas and Radhakrishna 1968).
However, they did not elaborate on how the bonding effects should be measured or how such
dependency could be specified. Their suggestion has never been examined by the soil mechan-
ics community as air–water interface itself was an unfamiliar state variable and could add
to the complexity of the problem description. Therefore, both early works and recent micro-
mechanical studies point out the importance of capillary forces in the mechanical behavior
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of soil and their potential relation to the amount of air–water interface. Such interconnection
is not well known and needs to be investigated.

1.2.3 Hydro-mechanical Coupling

A fully coupled unsaturated model not only needs a complete understanding of stress tensors
and forces inside medium but also should account for their influence on the free energy of
different phases and interfaces. The two aspects mutually affect and complement one another.

The effect of state of stress on water saturation is now well established. Nuth and Laloui
(2008b), Masın (2010), and Uchaipichat (2010c) have shown that the soil water retention
curve clearly depends on the state of stress. In other words, these studies reveal that a change
in the porosity of soil as a result of a change in the stress level can bring about changes
in the water retention behavior of the soil. This dependency, which is usually known as
the hydro-mechanical coupling, has exclusively been examined for the variation of degree
of saturation with suction (soil water retention curve) at different levels of net stress. An
important question is whether there is a hydro-mechanical coupling between the amount
of interfacial energy and the state of stress and how this dependency can be included in a
hydro-mechanical modeling. In other words, one may expect the interfacial energy, which
has a close relationship with the evolution of interfaces in different hydraulic paths (drying,
wetting and scanning), to be a function of soil structure and can consequently vary as the
soil deforms. Such interconnection is important and proper inclusion of such dependency is
expected to result in an enhanced form of the effective stress tensor. These important aspects
and research questions are investigated in the course of this paper.

In order to address the aforementioned questions, a theoretical framework is required.
The framework based on which the current study is found to be a rational thermodynamic
approach. Before entering the theoretical details, the essential elements and key requirements
of such framework are briefly introduced in the next section.

1.3 Requirements for a Proper Thermodynamic Approach for Unsaturated Soils

Given the fact that solid–fluid interactions as well as contractile skin forces are interfacial
phenomena, one would expect a state variable representing interfaces to be included in a
thermodynamic theory of hydro-mechanical coupling. Thus, we submit that a proper theory
of unsaturated soil mechanics should account for the following three issues:

1. Inclusion of thermodynamics properties of the interfaces. For this purpose, appropriate
and well-posed balance laws for the interfaces should be defined at micro-scale followed
by a proper upscaling to the macro-scale level. This is, indeed, an important prerequisite
for a proper definition of stress tensors.

2. Incorporation of coupled phenomena which are observed at macro-scale in the definition
of dependencies and constitutive equations.

3. Verification of the results of the theory and their interpretation against the trends observed
in available experimental data.

There exist thermodynamic approaches in the literature which have considered the inter-
facial effects. However, they did not address the above-mentioned issues in a comprehensive
manner. Following is a brief description of some of these works.

A major contribution to poromechanical behavior of unsaturated media was made by
late prof. Coussy in his last book (Coussy 2010). In fact, he is one of the first researchers
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who noted the importance of interfaces in poromechanical behavior of unsaturated media.
In the pioneering work of Coussy and Dangla (2002), they considered relevant terms in
the free energy of skeleton to take into account the interfacial effects in the effective stress
tensor. However, they did not introduce balance laws for interfaces. Their major assumptions,
and main difference between their approach and the current study are discussed later in
Sects. 2.5 and 3.2.

Hassanizadeh and Gray (1990) developed a thermodynamic approach for multiphase flow
in porous media. They obtained a Bishop’s type equation with the effective stress parameter
equal to the degree of saturation. This type of equation does not fully agree with recent
experimental observations. A careful exploration of their work reveals that their approach
lacks a proper hydro-mechanical coupling. This issue is explained in detail in the subsequent
sections.

Through a thermodynamic approach, Gray and Schrefler (2001) studied the solid–fluid
interfacial effects. They also obtained a Bishop’s type formulation for the effective stress
with the wetted fraction of the grains as the effective stress parameter together with some
additional terms related to the grain curvature. In their formulation, there was no term to
account for the bonding effects.

Almost all other thermodynamic approaches employed to study the effective stress and
mechanical energy of unsaturated soils did not take into account the interfacial energy, or at
least neglected it at some point in their formulations. Some of those studies include Houlsby
(1997), Hutter et al. (1999), Borja (2006), Zhao et al. (2010), and Lu et al. (2010).

The framework proposed in this study considers the aforementioned requirements. It aims
at the inclusion of hydro-mechanical coupling in the effective stress formula through a rational
thermodynamic approach.

The proposed framework results in a new equation for the effective stress tensor. It demon-
strates that a Bishop’s type formulation for the effective stress needs additional terms which
make it capable of describing the phenomena introduced before. We describe how the addi-
tional term(s) are well connected to the above-mentioned trends and are physically plausible.
The terms introduced in this study account for the effects of interfacial energy and bonding
phenomenon.

As a further outcome, the new concept of suction stress characteristic surface (SSCS) is
introduced and a general formulation for the effective stress parameter is offered. In addition,
it is discussed how the proposed formulation reduces to some of the previously presented
equations with certain assumptions.

The structure of the paper is as follows. First, the utilized theoretical framework is
described. Next, the proposed equations are used to explain results of experiments over
a full hydraulic cycle and for different soil samples. Afterwards, a discussion on the results
and merits of the proposed equations are presented. Finally, concluding remarks and a number
of suggestions are set forth for future studies.

2 Theory

2.1 Outline of the Method

In the derivation of the formulation for the effective stress tensor, the upscaled balance laws
for phases and interfaces inside unsaturated soil will be employed. Application of balance
of mass, momentum, entropy, and energy for phases and interfaces along with the second
law of thermodynamics (also known as the entropy inequality), combined with constitutive
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assumptions for hydro-mechanical coupling, will lead to a new formula for the effective
stress tensor. First, these equations and laws are briefly described in the following sections.

2.2 Balance Laws for Phases and Interfaces

In this study, two fluid phases (wetting and nonwetting fluid phases) are considered, hereafter
denoted by w and n, respectively. There is also a third phase which is the soil skeleton,
denoted by s. These phases are in contact with each other through three interfaces which
are: solid–wetting fluid interface, denoted by ws; solid–nonwetting fluid interface, specified
by ns; and fluid–fluid interface, denoting by wn. To specify a phase, Greek letter α or β is
used. There exists also a common line, denoted by wns, where all phases and interfaces come
together. Interfaces exchange mass, momentum, energy, and entropy with each other through
the common line only.

The notation of material derivative appears in balance equations. Material derivative of a
function ψ is defined as follows:

Dα ψ

Dt
= ∂ ψ(x, t)

∂t
+ vα · ∇ ψ(x, t). (2)

Following Hassanizadeh and Gray (1990), the following macroscale equations of balance
have been used in this study:

2.2.1 Conservation of Mass

For solid phase:

Ds(1 − ε)ρs

Dt
+ (1 − ε)ρs(∇ · vs) = ês

ns + ês
ws (3)

For fluid phases:

Dα(εsαρα)

Dt
+ εsαρα(∇ · vα) =

∑

β �=α
êααβ α = n, w (4)

For an interface:

Dαβ(aαβ�αβ)

Dt
+ aαβ�αβ(∇ · wαβ)=−êααβ − êβαβ + êαβαβγ αβ = wn, ws, ns αβγ = wns

(5)

where, ε denotes porosity, ρα specifies the density of α phase, v and w denote the average
velocities of phases and interfaces, respectively, and Γ stands for the areal mass density of
an interface. In general, a carat is used to designate exchange quantities. Thus, êααβ denotes

the rate of mass exchange between an interface αβ and a phase α and êαβαβγ shows the mass
exchange between a common curve and an interface. Furthermore, sα is the saturation of
the α phase, and aαβ is the specific interfacial area of αβ-interface (amount of interface
area per volume of REV). It is noteworthy that the saturation introduced in the equations is
Eulerian saturation which is defined as the ratio of wetting phase volume to void volume in
the deformed configuration (Coussy 2007).

A short description of the interfacial mass density, Γ αβ , is presented hereafter. An inter-
face is a transition zone between two bulk phases. There is a finite number of molecules
associated with this transition zone. The mass of these molecules within an REV is equal
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to aαβ Γ αβVREV, where VREV denotes the volume of REV. A rigorous exposition of this
concept is given in Murdoch and Hassanizadeh (2002).

2.2.2 Conservation of Momentum

For a bulk phase (solid, fluids):

εαρα
Dαvα

Dt
− ∇ · (εαtα)− εαραgα =

∑

β �=α
T̂ααβ α = n, w, s (6)

For an interface:

aαβ�αβ
Dαβwαβ

Dt
− ∇ · (aαβSαβ)− aαβ�αβgαβ

= −(T̂ααβ + êααβvα,s)− (T̂βαβ + êβαβvβ,s)+ (êααβ + êβαβ)w
αβ,s + Ŝαβαβγ αβ

= wn, ws, ns αβγ = wns (7)

where εα is volume fraction of phase α, gα is the external supply of momentum, T̂ααβ denotes

the momentum supply from interface αβ to phase α, Ŝαβαβγ specifies momentum exchange

between a common line and an interface, tα is the macroscopic stress tensor of phaseα and Sαβ

is the macroscopic stress tensor of interface αβ. For simple interfaces, Sαβ merely consists of
the interfacial tension. But, in general one may have surface viscosity for fluid–fluid interfaces
and surface strains for solid–fluid interfaces (for detailed explosion of interfacial mechanics,
see Scriven 1960; Gurtin and Murdoch 1974; Hassanizadeh and Gray 1993; Cammarata and
Sieradzki 1994; Spaepen 2000).

It must be noted that the momentum balance equations are not used explicitly in our
derivation. But, they are used in reducing the general form of the energy balance equations
to the ones introduced below (see Hassanizadeh and Gray 1979 for details).

2.2.3 Conservation of Energy

For a bulk phase:

εαρα
DαEα

Dt
− εαtα : ∇vα − ∇.(εαqα)− εαραhα =

∑

β �=α
Q̂α
αβ α = n, w, s (8)

For an interface:

aαβ�αβ
DαβEαβ

Dt
−aαβSαβ : ∇wαβ−∇.(aαβqαβ)−aαβ�αβhαβ

= −[Q̂α
αβ + T̂ααβ · vα,αβ + êααβ(E

α,αβ+1/2(vα,αβ)2)]
−[Q̂β

αβ+T̂βαβ · vβ,αβ+êβαβ(E
β,αβ+1/2(vβ,αβ)2)] + Q̂αβ

αβγ

αβ = wn, ws, ns αβγ = wns (9)

where Eα and Eαβ denote internal energy density of a phase and an interface, respectively,
Q̂α
αβ is heat supply from interface αβ to phase α and Q̂αβ

αβγ denotes heat supply to interface
αβ from common line αβγ . Moreover, q denotes the heat vector and h is the external supply
of energy.
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2.2.4 Balance of Entropy

For a bulk phase (solid and fluids):

εαρα
Dαηα

Dt
− ∇.(εαϕα)− εαραbα =

∑

β �=α
�̂ααβ +�α α = n, w, s (10)

For an interface:

aαβ�αβ
Dαβηαβ

Dt
− ∇.(aαβϕαβ)− aαβ�αβbαβ = −(�̂ααβ + êααβη

α,αβ)

−(�̂βαβ + êβαβη
β,αβ)+ �̂

αβ
αβγ +�αβ αβ = wn, ws, ns αβγ = wns (11)

where η is the internal entropy density (entropy per unit mass), � denotes the rate of net
production of the entropy, ϕ denotes entropy flux vector, � is entropy exchange term, and b
specifies the external supply of entropy. No thermodynamic property for common lines has
been assumed.

The assumption of no thermodynamic property for common lines brings about the fol-
lowing restrictions on the exchange terms:

∑

αβ

êαβwns = 0

∑

αβ

(Ŝαβwns + êαβwnswαβ) = 0

∑

αβ

[Q̂αβ
wns + Ŝαβwns · wαβ + êαβwns[Eαβ + 1/2(wαβ)2]] = 0 (12a–d)

∑

αβ

(êαβwnsη
αβ + �̂αβwns) = 0.

2.3 Second Law of Thermodynamics

This law states that the rate of net production of entropy of the system should be non-negative
under all conditions and all processes. The following form of entropy inequality holds for
multiphase systems (Gray and Hassanizadeh 1989):

� =
∑

α

�α +
∑

αβ

�αβ ≥ 0 (13)

where�α and�αβ are given by Eqs. 10 and 11, respectively. Assuming that the sole source
of entropy fluxes are heat input and taking entropy external sources to be proportional to
energy external sources (Eringen 1980; Bowen 1984; Hassanizadeh and Gray 1990) one
may propose the following equations:

ϕα = qα

θα
bα = hα

θα

ϕαβ = qαβ

θαβ
bαβ = hαβ

θαβ

(14)

where θ stands for temperature. Next, the Helmholtz free energy functions of phases and
interfaces are introduced in the following forms:

Aα = Eα − θαηα

Aαβ = Eαβ − θαβηαβ. (15)
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2.4 Hydro-mechanical Coupling and its Influence on Constitutive Assumptions for Free
Energies

Constitutive assumptions are required to close the above-mentioned set of equations. Has-
sanizadeh and Gray (1990) demonstrated how the proper selection of constitutive assumptions
can be a significant step. They obtained an extended form of Darcy’s law for multiphase
systems following a systematic and physically based selection of constitutive equations.
However, as mentioned earlier, in their results, the effective stress parameter is equal to the
saturation, which does not agree with experimental results. This shortcoming is a result of the
constitutive assumptions on the dependencies of free energies which may still be improved.
Here, we provide more general constitutive assumptions to account for hydro-mechanical
coupling.

Deformation of a granular porous medium is due to one of the following mechanisms or
their combination:

(a) Deformation of grains
(b) The movement of grains

Based on a physical understating of soil mechanics and an intuitive view of underlying
mechanisms, we submit that the deformation of the grains will result in a change in free
energies of solid–fluid interfaces, while the grains movements, which is more significant,
can result in a change in free energy of wetting-nonwetting (e.g., air–water) interfaces. The
physical reasoning behind the latter statement is as follows. As the grains move, the pore sizes
change, which in turn will cause a change in the curvature of the interface. Change of curvature
goes along with a change in the free energy of the interface. For a detailed discussion on
the curvature-dependent nature of free energies, see Eriksson and Ljunggren (1992), Gurtin
and Jabbour (2002), and Chhapadia et al. (2011). This hydro-mechanical coupling can be
captured by assuming that the free energy of interfaces depends on Lagrangian strain tensor
of solid phase. Consequences of such assumption, the resulting stress tensor, and the physical
interpretations of such dependency are presented in detail by Nikooee et al. (2012). Here, we
assume a simpler constitutive assumption. We let the free energies of the interfaces depend
on porosity (as an alternative measure for soil deformation). As explained above, for the case
of rigid grains, the change in porosity produced by grains movements would mainly alter
the free energy of fluid–fluid interfaces, and we do not consider free energies of solid–fluid
interfaces to depend on porosity.

Hence, we consider the following forms of dependencies for free energies (assuming
grains to be rigid, as is common in soil mechanics).

As = As(Es, θ s, sw)

Aα = Aα(ρα, θα, sα); α = w, n

Aws = Aws(�ws, θws, sw, aws) (16a–e)

Ans = Ans(�ns, θns, sw, ans)

Awn = Awn(�wn, θwn, sw, awn, ε)

where A denotes Helmholtz free energy function and Es stands for Lagrangian strain tensor.
Other constitutive assumptions are the same as in Hassanizadeh and Gray (1990). It is worth
mentioning that, since density of rigid grains is constant, it is not included in the list of
independent variables. Details on the selection of other dependencies and a proper method
for selecting independent variables based on principles of continuum mechanics can be found
in Hassanizadeh and Gray (1990) and Hassanizadeh (2003).
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The next step is to combine balance equations and constitutive assumptions and impose
the second law (the entropy inequality). Detailed mathematical manipulations for the case
of rigid grains as well as deformable grains are presented in “Appendices A” and “B”. The
resulting formula for the effective stress tensor is described in the next section.

2.5 Exploitation of Entropy Inequality: Effective Stress Formula for Rigid Grains

As shown in “Appendix A,” substitution of balance laws in the entropy inequality and then
employing necessary auxiliary equations, lead to the following form for the effective stress
tensor:

te = ts − PnI + swPcI + kwnawnI where kwn = −∂Awn

∂ε
�wn (17)

where tedenotes effective stress tensor and kwn is considered to be a material coefficient and
I denotes the unit tensor. Note that in the definition of kwn , the derivative of Awn with respect
to ε is taken with all other variables (namely Γ wn, θwn, awn , and sw) kept constant. This
term accounts for changes in the contractile skin forces as a result of change in the curvature
of interfaces (due to movement of grains).

As porosity decreases, the curvature of the fluid–fluid interfaces increase and thus, the
interfacial free energy increases. Therefore, we expect kwn to be positive. Also, in general,
kwn can depend on state variables such as temperature, porosity, and saturation. However, in
the absence of experimental data, it is not yet possible to discuss the physical dependency and
the magnitude of this coefficient for different soil types and soil textures. Further research
and more information on the values of specific interfacial area and suction stress are required
to shed light on the values of this coefficient.

In arriving at Eq. 17, we have assumed that local thermal equilibrium conditions exist.
That is, at a macroscopic point, the temperature of different phases and interfaces is the same.

These assumptions are commonly reasonable in unsaturated soil mechanics practice. How-
ever, they can be revoked for other cases of interest, as shown in “Appendix B.”

The closest study in the literature which arrives at the equation of effective stress account-
ing for interfacial contribution is that of Coussy and Dangla (2002). However, they have
made a number of simplifying assumptions. In particular, they have considered interfaces
without mass and no balance laws for interfaces has been considered. The effects of interfaces
on the macroscopic behavior have exclusively been accounted for in the solid skeleton free
energy. In the approach employed here, no explicit formulations for macroscopic free energy
functions of a phase or interface introduced. Instead, general dependence of free energy of
different constituents is postulated in which change of curvature of interfaces and their redis-
tribution due to grain movement were accounted for. Moreover, we do not consider interfaces
to be massless and balance laws for interfaces as well as phases were introduced.

3 Results and Discussion

3.1 The Concept of SSCS

The effective stress formulation accounts for the fact that the presence of fluid(s) in soil
modifies the state of stress inside the soil medium. Such effects are represented by the last
three terms in Eq. 17. The last two terms account for capillary forces and interfacial effects.
It is known that as a dry soil is wetted, an extra force among soil grains comes into existence,
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due to capillary effects. These extra forces have been referred to as suction stress (Lu and
Likos 2006). In our formulations, Suction stress (SS) is represented by the last two terms in
Eq. 17

SS = swPc + kwnawn . (18)

It is known that even if there is no (significant) change in saturation, there could still
be a significant change in the effective stress (see e.g. Khalili and Zargarbashi 2010). This
occurs especially along scanning curves, where saturation is almost constant but Pc and awn

may change. Our proposed equation for suction stress accounts for changes in the effective
stress along scanning curves as it is a function of saturation, capillary pressure, and specific
interfacial area. However, only two of these state variables are known to be independent
(Hassanizadeh and Gray 1993).

In order to implement Eqs. 17 or 18, we need to know the amount of air–water interfacial
area, awn . In principle, the required relationship should be obtained from experiments. In the
absence of such experimental results, we employ a formula that has been recently obtained
from pore-network modeling studies by Joekar-Niasar et al. (2008). The equation reads:

awn(Pc, sw) = c00 + c01(s
w)+ c10(Pc)+ c11(s

w · Pc)+ c02(s
w)2 + c20(Pc)

2 (19)

where ci j (i, j = 0, 1, 2) are constants.
Hereafter, we assume kwn to be constant and a material coefficient. Then substitution of

Eq. 19 in the suction stress formula, Eq. 18, yields:

SS(PC , sw) = C00 + C01(s
w)+ C10(Pc)+ C11(s

w · Pc)+ C02(s
w)2 + C20(Pc)

2 (20)

where Ci j ; i, j = 0, 1, 2 are constants. This bi-quadratic relationship (or any other analogous
relation) is expected to be a property of the porous medium. It forms a three-dimensional
surface to which we refer as the SSCS. It is expected to be a unique surface that gives values
of suction stress for different states of matric suction and saturation. The scope of application
and the capability of the proposed suction stress surface to model experimental results are
examined in Sect. 3.3.

One should note that Eq. 18 can be simplified for a saturated soil just before the start
of desaturation. Desaturation mainly starts when the value of capillary pressure surpasses
the air entry value, Pc,ae. Before that (i.e., Pc < Pc,ae) saturation is unity and there are no
air–water interfaces. Therefore, Eq. 18 may be simplified to SS = Pc. Also in the wetting
branch after the air expulsion value (as soon as air phase becomes disconnected), we assume
that the contribution of air–water interfaces becomes negligible and we let the suction stress
to be equal to capillary pressure.

With these considerations, the following equation for SS can be given:

SS(PC , sw)=
{

Pc Pc ≤ Pc,e

C00 + C01(sw)+ C10(Pc)+ C11(sw · Pc)+ C02(sw)2 + C20(Pc)
2 elsewhere

(21)

where Pc,e is the air entry or air expulsion value for drying and wetting branches, respectively.
A 2D illustration of this equation is shown in Fig. 1, which may be seen as a projection of
the suction stress surface on the SS-Pc plane. As shown in this figure, suction stress value
is bounded between drying and wetting paths. All points between these two curves can be
considered as possible states that a soil can experience. Before the air entry and air expulsion
values, suction stress lies on line SS = Pc, as shown in Fig. 1. For all other points on drying,
wetting, or scanning curves, the corresponding suction stress can be calculated from Eq. 20
provided that Pc and sw are known.
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Fig. 1 A schematic sketch of suction stress 2D trajectories

3.2 Bishop’s Effective Stress Parameter

The proposed equation for the effective stress tensor is a non-Bishop type equation as it
also includes a third term which accounts for interfacial effects. However, one may still be
interested to determine its equivalent Bishop’s type equation and the corresponding effective
stress parameter. In analogy with Eq. 1, Eq. 17 can be rewritten in the following form:

σ ′
i j = (σi j − Paδi j )+ χ Pcδi j

where : χ = sw + kwnawn

Pc
(22)

The amount of specific air–water interfacial area can be calculated from the area between soil
water retention curve (SWRC) and the saturation axis (Grant and Gerhard 2007). Therefore,
Eq. 22 can be transformed into the following relationship:

χ = sw + K

⎛

⎝
sw∫

sw=1

Pcdsw

⎞

⎠ /Pc (23)

where K can be a function of degree of saturation, capillary pressure, and porosity and can
also be dependent on soil type (grain shapes, grain surface roughness); see “Appendix C” for
more details.

Alternatively, one can also relate the suction stress and the effective stress parameter as
follows:

χ =
{

1 Pc ≤ Pc,e
SS
Pc

elsewhere
(24)

These equations are hereafter compared with relationships available in the literature. For
this purpose, current relationships for the effective stress parameter, χ , are classified in five
categories as presented in Table 1.

While our results prescribe the effective stress parameter to be a function of both Pc and
sw , categories (1) and (2) in Table 1 suggest a dependence of χ on either sw or Pc. But, then
one needs to prescribe different values for parameters of such formulations to determine the
effective stress parameter for different hydraulic paths, as χ is known to be hysteretic (Khalili
and Zargarbashi 2010).
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Table 1 Various relationships for effective stress parameter, χ

Category χ expressed as
a function of:

Example† Ref.

(1) χ = f (Sw) χ = Sw
Nuth and Laloui (2008a),

Schrefler (1984)
χ = (Sw − Swm

)
/
(
1 − Swm

)
Alonso et al. (2010)

χ = (Sw − Sw0
)
/
(
1 − Sw0

)
Lu et al. (2010)

(2) χ = f (Pc)
χ = 1 Pc ≤ Pc,ae

χ = (Pc/Pc,ae
)−γ Pc > Pc,ae

Khalili and Khabbaz (1998)

χ = 1 Pc ≤ Pc,e

χ = (Pc/Pc,e
)−γ ∗ Pc > Pc,e

χ = (Pc,r /Pc,e
)−γ (Pc/Pc,r

)ξ∗∗
Khalili and Zargarbashi (2010)

(3) χ = f (aws ) χ = xws = aws/as Gray and Schrefler (2001)

(4) χ = f (aws , Sw) χ = (1 − ε)xws + εSw∗∗∗ Gray et al. (2009)

(5) χ = f (Sw, Pc) χ = Sw + (2/3) [∫ Pcd(sw)]/Pc Coussy and Dangla (2002)

† Swm : degree of saturation of micro-structure; Sw0 : residual degree of saturation; γ : material parameter; xws :
wetted fraction of grains; as : total solid (grains) area in an REV; Pc,r : the point of suction reversal for scanning
curves; ζ : material parameter
* For drying and wetting branch. ** For scanning branch. *** For compressible grains

Table 2 Coefficients of SWRC for different soil samples used in this study

Soil type∗ Path∗∗ Fitting parameters

a′ m n Z (×10−3) U (×10−1) Y

(1) D 0.65 0.05 4.33 – – –

S – – – −0.45 9.75 0.91

W 0.64 0.02 255.16 – – –

(2) D 0.54 0.86 1.75 – – –

S – – – 4944 –0.05 –4.55

W 0.37 0.23 41.81 – – –

(3) D 4.06 4.54 2.63 – – –

S – – – 0.02 66.17 0.50

W 0.23 0.26 6.59 – – –

(4) D 0.07 0.32 12.21 – – –

S – – – –3412 0.04 3.76

W 0.05 0.24 33.81 – – –

(5) D 1.16 0.09 2.92 – – –

S – – – 237 –0.03 0.68

W 0.53 0.14 1.05 – – –

* Soil types: (1) = Buffalo Dam clay, (2) = Bourke silt, (3) = Mixture of Sydney sand and kaolin, (4) = Mixture
of Sydney sand and Buffalo Dam clay, (5) = Compacted kaolin samples
** D drying, W wetting, S scanning

The 3rd and 4th category equations assume a dependence of the effective stress parameter
on the wetted fraction of grains and/or saturation. But, Culligan et al. (2006) have shown that
the wetted fraction of grains does not have a hysteretic behavior, whereas the effective stress
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Table 3 Coefficients of SSCS

Soil type Coefficients of SSCS

C02 (kPa) C20 (kPa−1)
(×10−3)

C11 C10 C01 (kPa) C00 (kPa)

(1) 16,227 3.80 25.19 −24 −32612 16,373

(2) 570 0.94 3.09 −1.24 −851 279

(3) 626 2.30 2.30 −1.51 −1094 483

(4) 166 14.20 14.23 −5.54 −246 68

(5) 6,153 2.02 11.43 −10.71 −12,325 6,187

Fig. 2 a 2D plot (drying and wetting trajectories) and b 3Dplot (surface) of suction stress for Buffalo dam
clay (Exp. data from Khalili and Zargarbashi 2010)

parameter shows a marked hysteretic behavior (Khalili and Zargarbashi 2010). Of course, a
dependence on the grains wetted fraction (or on the solid–fluid specific interfacial area) may
be needed when grains are deformable (see “Appendix B”).

In category 5, we have the equation suggested by Coussy and Dangla (2002). It can be
obtained from Eq. 23 by setting K equal to 2/3. Since K can be dependent on suction and
degree of saturation, the application of this relationship needs further research especially for
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Fig. 3 a 2D plot (drying and wetting trajectories) and b 3Dplot (surface) of suction stress for Bourke silt
(Exp. data from Khalili and Zargarbashi 2010)

a complete hydraulic cycle. In this study, the accuracy and efficiency of Eq. 24 has been
investigated whereas Eq. 23 has been discussed in details elsewhere (Nikooee 2012).

In fact, in order to express resulting equation based on the area under capillary pressure–
saturation curve (soil water retention curve), one should also consider the energy which is
dissipated to heat when water flows through porous channels, for which additional coeffi-
cients are needed which are not constant in general. Moreover, two separate formulae which
give the variation of the interfacial contribution on each hydraulic branch are needed when
dealing with drying and wetting paths. These issues and further details are introduced in
“Appendix C”.

3.3 Verification of the Proposed Relationships

The experimental results of Khalili and Zargarbashi (2010) as well as those of Uchaipichat
(2010a,b) were employed to investigate the utility of Eq. 21 for suction stress surface. Their
results include variation of the effective stress parameter at various states of matric suction
during wetting, drying, and scanning cycles.

Khalili and Zargarbashi (2010) performed multi-stage drying and wetting shear tests
on four laboratory-compacted soils: a low plasticity clay from Buffalo Dam in Victoria,
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Fig. 4 a 2D plot (drying and wetting trajectories) and b 3Dplot (surface) of suction stress for mixture of
Sydney sand (75 %) and kaolin (25 %) (Exp. data from Khalili and Zargarbashi 2010)

Australia; a mixture of Sydney sand (70 %) and Buffalo clay (30 %); a low plasticity silt
from the Bourke region of New South Wales, Australia; and a mixture of Sydney sand (75
%) and Kaolin (25 %). Basic properties of the soil samples and details of their experiments
including the followed stress path can be found in Khalili and Zargarbashi (2010). They
obtained values of the effective stress parameter as well as the soil water retention data in
drying, scanning, and wetting paths for the four soil samples.

Uchaipichat (2010a,b) performed triaxial tests on unsaturated compacted kaolin sam-
ples, following both drying and wetting paths. Details of his experiment can be found in
Uchaipichat (2010a,b) and variation of the effective stress parameter as obtained from those
experiments are presented in Uchaipichat (2010b).

Our approach for verification of Eq. 21 was to fit it to the drying and wetting data and
determine coefficients Ci j for the five different soil samples. Subsequently, it was used to
predict the scanning data. The soil water retention relationship proposed by Fredlund and
Xing (1994) was employed for main drying and wetting branches:

sw = 1
{

ln
[
exp(1)+

(
Pc

a′ P0

)n]}m (25)
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Fig. 5 a 2D plot (drying and wetting trajectories) and b 3Dplot (surface) of suction stress for mixture of
Sydney sand (70 %) and Buffalo dam clay (30 %) (Exp. data from Khalili and Zargarbashi 2010)

where P0 is a reference pressure, which we have set equal to the atmospheric pressure at
sea level (101 kPa). Coefficients m, n, and a′ were determined by fitting this equation to the
experimental data. This was done for drying and wetting branches of each soil separately.

To express soil water retention data at scanning curves, power law relationships can be
used (Khalili et al. 2008). In this study, the following relationship was used:

sw = Z

(
Pc

P0

)U

+ Y (26)

Values of coefficients a′,m, n, Z ,U , and Y for the five soil types are given in Table 2. In all
tables, the values of coefficients are dimensionless unless otherwise stated.

For the regression of the drying and wetting branches of SWRC, an enhanced least square
method was used. The coefficient m specifies the position of the tail of the curve (Fredlund and
Xing 1994). Therefore, first, the coefficient m was found such that the fitted curve could go
through the ending part of experimental data points (the last data points on drying and wetting
branches). Next, a constrained least square method was used to find the best values of a′ and
n. Method of Lagrangian multiplier was used to ensure the fitted curve follows experimental
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Fig. 6 a 2D plot (drying and wetting trajectories) and b 3Dplot (surface) of suction stress for compacted
kaolin samples (Exp. data from Uchaipichat 2010b)

suction values, as much as possible, at reversal points where drying and wetting curves join
the scanning path.

For the scanning curve, first, the coefficient U was found from the regression. Then, the
fitting coefficients Y and Z were adjusted such that the scanning curve could also pass through
the two suction reversal points. This procedure allows the SWRC equations to be continuous
at the suction reversal points.

Finally, the data points of effective stress parameter at various capillary pressure levels
along with the corresponding SWRCs were used to calibrate the model. Values of coefficients
Ci j of the SSCS (Eq. 21) were obtained by fitting drying and wetting data points. Resulting
values are given in Table 3. The 2D plots and 3D plots of the suction stress determined from
model calibration are presented in Figs. 2, 3, 4, 5, and 6 for the five different soils.

It is clear that the suction stress surface fits the drying and wetting data fairly well.
Furthermore, the resulting surface is capable of predicting the data for the scanning branch
with a reasonable accuracy (note that the scanning data were not used in the fitting process).
Only for soil type (4), which was a mixture of Buffalo Dam clay and Sydney sand, the
agreement between our proposed equation and data is poor. This is perhaps due to the clay
type. Since sample (3) had almost the same proportions of sand and clay as soil type (4)
but different clay type (Kaolinite). As shown in Fig. 6, the model is in good agreement
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Fig. 7 Plots of effective stress parameter a Buffalo dam clay and b Bourke silt

with data of Uchaipichat (2010c) noting that these data belong to compacted kaolin samples
and therefore, confirming the hypothesis that texture and clay type may play an important
role.

Plots of the effective stress parameter χ , as obtained from Eq. 24, versus experimental
data are depicted in Figs. 7, 8, and 9. Experimental data reveal that the effective stress
parameter decreases considerably for the wetting scanning curves whereas the degree of
saturation is nearly constant. This behavior is captured very well with our proposed equation
as χ depends not only on saturation but also on capillary pressure. Indeed, Eq. 22 shows
that even if the change in the saturation is negligible, the effective stress parameter can still
change because of the term associated with the interfacial energy. This term includes the
amount of specific air–water interfacial area as well as capillary pressure. This indicates
that the effective stress parameter is neither equal to the degree of saturation nor is a sole
function of degree of saturation. It has to depend on capillary pressure as well, to reproduce
observed experimental trends. The proposed equations for the SSCS and effective stress
parameter have this unique feature. It is only when the interfacial effects are negligible that
the effective stress parameter may be considered as an exclusive function of the degree of
saturation.
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Fig. 8 Plots of effective stress parameter a mixture of Sydney sand (75 %) and kaolin (25 %). b Mixture of
Sydney sand (70 %) and Buffalo dam clay (30 %)

Fig. 9 Plot of effective stress parameter for compacted kaolin samples
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4 Concluding Remarks

Four major contributions of this study can be summarized as follows:

1. A rational thermodynamic framework was used in which hydro-mechanical coupling
was introduced through appropriate constitutive assumptions. This led to a new equation
for the effective stress in which interfacial energy plays a role and can include phenomena
such as bonding effects and the variation of effective stress within a full hydraulic cycle.
2. Examination of the proposed equation shows that the sharp decrease in the values of
effective stress parameter during wetting scanning curves, observed in experimental stud-
ies, can be attributed to the change in the fluid–fluid interfacial areas (their redistribution
and variation in their amount). In other words, it was shown that the air–water specific inter-
facial area must be included in the formulation for a complete description of the effective
stress. The role of air–water interfacial energy on the effective stress can be markedly traced
in the values of effective stress parameter when a slight change in the degree of saturation
is accompanied by a considerable change in the values of effective stress parameter.
3. Based on the proposed form for the effective stress tensor, and expressing the air–water
specific area as a function of matric suction and saturation, the concept of SSCS was
introduced, for which a bi-quadratic form was presented.
4. The proposed bi-quadratic surface was employed to describe the variation of suction
stress for a full hydraulic cycle. This was done by simulating a set of available data found
in the literature.

Of course, further research is needed to explore comprehensively the adequacy of the
proposed equation and to obtain the most suitable form of SSCS for different soil types and
various soil textures.

Finally, two main future research directions can also be suggested. First, one should
experimentally and theoretically explore the variation of effective stress, as well as suction
stress, within full hydraulic cycles and for different soils, to arrive at the most suitable form
for SSCS. Second, special apparatus needs to be designed to determine values of air–water
specific interfacial area while changes in other hydraulic as well as mechanical state variables
are monitored. Further research on transient conditions can also be sought where evolution
of interfaces plays an important role. This will augment our current knowledge on the role
of interfacial areas on hydro-mechanical coupling in unsaturated soils.

Acknowledgments The first author and SMH are members of the International Research Training Group
NUPUS, financed by the German Research Foundation (DFG) and The Netherlands Organization for Scientific
Research (NWO). EN wishes to express his sincere gratitude to the Environmental Hydrogeology Group of
Utrecht University (UU) for their spiritual, intellectual and financial support during his stay in UU. The authors
gratefully acknowledge constructive comments of the reviewers.

Appendix A: Exploitation of Entropy Inequality for a Granular Porous Medium
with Rigid Grains

Starting from the expansion of the material derivatives and applying the chain rule of differ-
entiation to Eqs. (16a–e), we get:

DwAw

Dt
= ∂Aw

∂ρw

Dwρw

Dt
+ ∂Aw

∂sw
Dwsw

Dt
+ ∂Aw

∂θw

Dwθw

Dt
Dwn Awn

Dt
= ∂Awn

∂�wn

Dwn�wn

Dt
+ ∂Awn

∂sw
Dwnsw

Dt
+ ∂Awn

∂θwn

Dwnθwn

Dt
+ ∂Awn

∂awn

Dwnawn

Dt
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+∂Awn

∂ε

Dwnε

Dt
Dws Aws

Dt
= ∂Aws

∂�ws

Dws�ws

Dt
+ ∂Aws

∂sw
Dwssw

Dt
+ ∂Aws

∂θws

Dwsθws

Dt
+ ∂Aws

∂aws

Dwsaws

Dt
Dns Ans

Dt
= ∂Ans

∂�ns

Dns�ns

Dt
+ ∂Ans

∂sw
Dnssw

Dt
+ ∂Ans

∂θns

Dnsθns

Dt
+ ∂Ans

∂ans

Dnsans

Dt
Ds As

Dt
= ∂As

∂Es
: DsEs

Dt
+ ∂As

∂sw
Dssw

Dt
+ ∂As

∂θ s

Dsθ s

Dt
Dn An

Dt
= ∂An

∂ρn

Dnρn

Dt
+ ∂An

∂sn

Dnsn

Dt
+ ∂An

∂θn

Dnθn

Dt
(A-1)

The terms Dρα/Dt & DαβΓ αβ/Dt will be eliminated from above equations by means of
mass balance equations. These are recast in the following form:

Dαρα

Dt
= êααβ + êααγ

εsα
− ρα(∇.vα)− Dα(εsα)

Dt

ρα

εα
α = w, n&β, γ �= α

Dαβ�αβ

Dt
=
[
−�αβ

(
Dαβaαβ

Dt

)
+ êαβαβγ − êααβ − êβαβ − �αβaαβ

(∇.wαβ
)] 1

aαβ
(A-2)

Dsρs

Dt
= ês

ns + ês
ws

1 − ε
− ρs(∇.vs)− Ds(1 − ε)

Dt

ρs

1 − ε
= 0 (rigid grains)

Combination of equations (8)–(11), (14)–(15) and (A-1) and (A-2) and substitution in the
entropy inequality (13) results in a general entropy inequality for a multiphase system, (see
Hassanizadeh and Gray 1990, for details of a similar procedure):

∑
�α +�αβ = −

∑

α

εαρα

θα

Dαθα

Dt

{
ηα + ∂Aα

∂θα

}
−
∑

αβ

aαβ�αβ

θαβ

Dαβθαβ

Dt

{
ηαβ + ∂Aαβ

∂θαβ

}

+
∑

α �=s

dα

θα
: {εsα (pαI + tα

)}

+ (1 − ε)

θ s
ds :

{
−ρs(GradFs)T · ∂As

∂Es
· (GradFs)+ psI + ts

− awn�wnθ s

θwn

(
∂Awn

∂ε

)
I
}

+ ε̇

[
sn pn

θn
+ sw pw

θw
− ps

θ s

]

+
∑

α

vα,s · 1

θα

⎡

⎣pα∇(εsα)− εsαρα
∂Aα

∂sα
∇(sα)−

∑

α �=β
T̂ααβ

+
∑

α �=β
T̂ααβ

θαβ,α

θαβ

⎤

⎦+
∑

αβ

1

θαβ
wαβ,s ·

[
−aαβ�αβ

(
∂Aαβ

∂sw

)
∇(sw)

−∇(aαβ)
(
γ αβ + aαβ�αβ

∂Aαβ

∂aαβ

)
+ T̂ααβ + T̂βαβ − Ŝαβαβγ

−Ŝαβαβγ
θαβ,s

θ s

]
+ 1

θwn
wwn, s ·

(
−awn�wn

(
∂Awn

∂ε

)
∇(ε)

)

−
(

awn�wn

θwn

)(
∂Awn

∂ε

)(
ês

ns + ês
ws

ρs

)

+ṡw
[
εpw

θw
− εpn

θn
− εswρw

θw

∂Aw

∂sw
+ εsnρn

θn

∂An

∂sn
− (1 − ε)ρs

θ s

∂As

∂sw
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−
∑

αβ

�αβaαβ

θαβ

(
∂Aαβ

∂sw

)⎤

⎦

+
∑

αβ

1

θαβ
dαβ : {aαβ(sαβ − γ αβI)

}− ȧwn

θwn

[
awn�wn ∂Awn

∂awn
+ γ wn

]

−
∑

αβ=ws,ns

ȧαβ

θαβ

[
aαβ�αβ

∂Aαβ

∂aαβ
+ γ αβ + θαβ(1 − ε)ρs

θ s

∂As

∂aαβ

]

+
∑

α

∇θα · ε
αqα

(θα)2
+
∑

αβ

∇θαβ · aαβqαβ
(
θαβ
)2 − 1

θ s

∑

αβ

Q̂αβ
αβγ θ

αβ,s

θαβ

− 1

θ s

∑

αβ

êαβαβγ

[(
Aαβ,s − γ αβ

�αβ
− ps

ρs

)
+ 1

2
(wαβ,s)2 + ηαβθαβ,s + θαβ,s

θαβ

γ αβ

�αβ

]

+
∑

α

∑

αβ

1

θαβ

{
êααβ

[
Gαβ,α + 1

2
(wαβ,α)2

]}
+
∑

α

∑

αβ

{
Q̂α
αβ

θαβ,s

θαβθα

}

−
∑

α

∑

αβ

{
Q̂α
αβ

θα,s

θαβθα

}
+
∑

α

∑

α �=β

[
êααβ
θαβθα

(
ηαθα − pα

ρα

)
θαβ,α

]
≥ 0 (A-3)

As further simplification, we assume that there is no mass exchange between phases and
consider local thermal equilibrium (so that θα = θαβ = θ):

∑
(�α +�αβ)θ = −

∑

α

εαρα
Dαθ

Dt

{
ηα + ∂Aα

∂θ

}
−
∑

αβ

aαβ�αβ
Dαβθ

Dt

{
ηαβ + ∂Aαβ

∂θ

}

+
∑

α �=s

dα : {εsα (pαI + tα
)}

+ (1 − ε) ds :
{
−ρs(Grad Fs)T · ∂As

∂Es
· (Grad Fs)+ psI + ts

−awn�wn
(
∂Awn

∂ε

)
I
}

+ ε̇
[
sn pn + sw pw − ps]

+
∑

α

vα,s ·
⎡

⎣pα∇(εsα)− εsαρα
∂Aα

∂sα
∇(sα)−

∑

α �=β
T̂ααβ

⎤

⎦

+
∑

αβ

wαβ,s ·
[
−aαβ�αβ

(
∂Aαβ

∂sw

)
∇(sw)

−∇(aαβ)
(
γ αβ + aαβ�αβ

∂Aαβ

∂aαβ

)
+ T̂ααβ + T̂βαβ − Ŝαβαβγ

]

+wwn,s
[
−∇(ε)

(
awn�wn

(
∂Awn

∂ε

))]
+ṡw

[
εpw−εpn−εswρw ∂Aw

∂sw

+εsnρn ∂An

∂sn
− (1 − ε)ρs ∂As

∂sw
−
∑

αβ

�αβaαβ
(
∂Aαβ

∂sw

)⎤

⎦

+
∑

αβ

dαβ : {aαβ(sαβ − γ αβI)
}− ȧwn

[
awn�wn ∂Awn

∂awn
+ γ wn

]
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−
∑

αβ=ws,ns

ȧαβ
[

aαβ�αβ
∂Aαβ

∂aαβ
+ γ αβ + (1 − ε)ρs ∂As

∂aαβ

]

+∇θ
θ

·
⎛

⎝
∑

α

εαqα +
∑

αβ

aαβqαβ

⎞

⎠ ≥ 0 (A-4)

In r.h.s of Eq. (A-4) variables such as Dαβθ/Dt,Dαθ/Dt,dα , and dαβ appear linearly. This is
because none of the constitutive functions were assumed to depend on these variables. For the
entropy inequality to be valid for all thermodynamics states, coefficients of these variables
should be identically zero. This gives, among other results, the following relationship for the
solid stress tensor as:

ts = ρs(Grad Fs)T · ∂As

∂Es
· (Grad Fs)− psI + awn�wn

(
∂Awn

∂ε

)
I (A-5)

As well as an equilibrium equation for solid pressure, ps :
ps = sn pn + sw pw (A-6)

The equations for solid stress tensor and solid pressure (A-5 and A-6) can be combined
and rewritten to provide the following form for the effective stress tensor:

te = (ts − PnI)+ swPcI − awn�wn
(
∂Awn

∂ε

)
I (A-7)

Appendix B: Exploitation of Entropy Inequality for Deformable Solid:

As = As(ρs,Es, θ s, sw)

Aα = Aα(ρα, θα, sα)

Aws = Aws(�ws, θws, sw, aws, ε) (B-1)

Ans = Ans(�ns, θns, sw, ans, ε)

Awn = Awn(�wn, θwn, sw, awn, ε)

Following the same procedure and mathematical manipulations presented in “Appendix A”,
the following form for entropy inequality can be obtained (where no mass exchange between
phases and interfaces exist and local thermal equilibrium holds):

∑
(�α +�αβ)θ = −

∑

α

εαρα
Dαθ

Dt

{
ηα + ∂Aα

∂θ

}
−
∑

αβ

aαβ�αβ
Dαβθ

Dt

{
ηαβ + ∂Aαβ

∂θ

}

+
∑

α �=s

dα : {εsα (pαI + tα
)}

+ (1 − ε) ds :
{
−ρs(Grad Fs)T · ∂As

∂Es
· (Grad Fs)+ psI + ts

−
∑

αβ

aαβ�αβs

αβ

(
∂Aαβ

∂ε

)
I

⎫
⎬

⎭+ ε̇
[
sn pn + sw pw − ps]
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+
∑

α

vα,s ·
⎡

⎣pα∇(εsα)− εsαρα
∂Aα

∂sα
∇(sα)−

∑

α �=β
T̂ααβ

⎤

⎦

+
∑

αβ

wαβ,s ·
[
−aαβ�αβ

(
∂Aαβ

∂sw

)
∇(sw)

−∇(aαβ)
(
γ αβ + aαβ�αβ

∂Aαβ

∂aαβ

)
+ T̂ααβ + T̂βαβ

−Ŝαβαβγ − aαβ�αβ
(
∂Aαβ

∂ε

)
∇(ε)

]
−
∑

αβ

aαβ�αβ
(
∂Aαβ

∂ε

)
ρ̇s

+ṡw
[
εpw − εpn − εswρw

∂Aw

∂sw
+ εsnρn ∂An

∂sn
− (1 − ε)ρs ∂As

∂sw

−
∑

αβ

�αβaαβ
(
∂Aαβ

∂sw

)⎤

⎦+
∑

αβ

dαβ : {aαβ(sαβ − γ αβI)
}

−ȧwn
[

awn�wn ∂Awn

∂awn
+ γ wn

]

−
∑

αβ=ws,ns

ȧαβ
[

aαβ�αβ
∂Aαβ

∂aαβ
+ γ αβ + (1 − ε)ρs ∂As

∂aαβ

]

+∇θ
θ

·
⎛

⎝
∑

α

εαqα +
∑

αβ

aαβqαβ

⎞

⎠ ≥ 0 (B-2)

After further simplification, application of the constitutive assumptions is the last step
which asserts terms inside braces in the most simplified form should be zero. This leads to
the following form for the effective stress tensor in a granular porous medium with deformable
grains:

te = (ts − PnI)+ sw(PcI)−
∑

αβ

(
∂Aαβ

∂ε
�αβaαβ

)
I (B-3)

Appendix C: On the Relationship Connecting Effective Stress Parameter to the Area
Between Soil Water Retention Curve and Saturation Axis

Grant and Gerhard (2007) suggested the following relationship to determine the wetting–
nonwetting interfacial area:

awn = ψ(sw). Ed .
ε

σ nw

sw=1∫

sw=swi

Pcdsw,d For drying branch (C-1)

awn =ψ(sw). Ed .
ε

σ nw

⎡

⎢⎣
sw=1∫

sw=swx

Pcdsw,d −
sw=swi∫

sw=swx

Pcdsw,im

⎤

⎥⎦For wetting (main/scannings)

(C-2)
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where swi denotes saturation at a point on drying or wetting at which the value of wetting-
nonwetting specific interfacial area is sought. swx is the degree of saturation at which suction
reversal occurs and wetting starts. Ed is a coefficient which accounts for energy dissipation
occurring due to the roughness of grain surface. Ed is equal to unity in an ideal case where the
whole mechanical work given to the soil system is transformed to the interfacial energy. ψ is
a function which shows the portion of nonwetting interface which is in contact with wetting
phase. In integrands, im denotes integrating on imbibition curves (wetting) and d specifies
integration along drying path of SWRC. σ nw is the interfacial tension between wetting and
non-wetting phases (air and water in unsaturated soil system).

The integration appearing in the Eqs. (C-1) and (C-2) gives the total air interface created
in the soil system. It includes air-solid interface as well as air–water interface. Because we
are interested to know the amount of air–water interfaces, thisψ function appears. Grant and
Gerhard (2007) considered ψ to be a function of saturation only. However, they pointed out
that it can also depend on the capillary pressure, in general.

These two equations show that the amount of specific air–water interfacial area is related
to the area between soil water retention curve and saturation axis for drying branch. During
wetting, the amount of non-wetting interfaces decrease proportional to the area under the
wetting path (from suction reversal point to the current state of saturation). Substitution of
(C-1) and (C-2) into Eq. 22 gives the following relationship for the effective stress parameter:

χ = sw + K (sw, Pc, ε)
∫ sw=1

sw=swi Pcdsw,d

Pc
For drying branch (C-3)

χ = sw +
K (sw, Pc, ε)

[∫ sw=1
sw=swx Pcdsw,d − ∫ sw=swi

sw=swx Pcdsw,im
]

Pc
For wetting branch

(C-4)

where K (sw, Pc, ε) = kwn .ψ. Ed .
ε
σ nw
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