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Abstract The steady mixed convection boundary-layer flow on a vertical circular cylinder
embedded in a porous medium filled by a nanofluid is studied for both cases of a heated
and a cooled cylinder. The governing system of partial differential equations is reduced to
ordinary differential equations by assuming that the surface temperature of the cylinder and
the velocity of the external (inviscid) flow vary linearly with the axial distance x measured
from the leading edge. Solutions of the resulting ordinary differential equations for the flow
and heat transfer characteristics are evaluated numerically for various values of the governing
parameters, namely the nanoparticle volume fraction φ, the mixed convection or buoyancy
parameter λ and the curvature parameter γ . Results are presented for the specific case of
copper nanoparticles. A critical value λc of λ with λc < 0 is found, with the values of |λc|
increasing as the curvature parameter γ or nanoparticle volume fraction φ is increased. Dual
solutions are seen for all values of λ > λc for both aiding, λ > 0 and opposing, λ < 0, flows.
Asymptotic solutions are also determined for both the free convection limit (λ � 1) and for
large curvature parameter (γ � 1).
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Department of Mathematics, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania
e-mail: popm.ioan@yahoo.co.uk

123



238 A. M. Rohni et al.

1 Introduction

A nanofluid is a two-phase mixture in which the solid phase consists of nanosized particles.
Since the size of the particles is less than 100 nm, nanofluids behave much more like a fluid
than a mixture (Xuan and Roetzel 2000; Maliga et al. 2005). Xuan and Roetzel (2000) pro-
posed a homogeneous flow model where the convective transport equations of pure fluids are
directly extended to nanofluids. This means that all the traditional heat transfer correlations
can be used for nanofluids provided the properties of pure fluids are replaced by those of
nanofluids involving the volume fraction of the nanoparticles (Kumar et al. 2010). These
homogeneous flow models are, however, in conflict with the experimental observations of
Maliga et al. (2005) who considered forced convection flow case, as they under predict the
heat transfer coefficients of nanofluids. The basic flow in a nanofluid involves the effects of
gravity, Brownian force and the friction force between the fluid and the ultrafine particles,
the phenomena of Brownian diffusion, sedimentation and dispersion. Thus, although the
nanoparticles are ultrafine, the slip between the fluid and the particles may not be zero.

Choi (1995) was the first to introduce the term nanofluid to represent a fluid in which nano-
scale particles are suspended in a base fluid with a low thermal conductivity such as water,
ethylene glycol, oils, etc. In recent years, the concept of a nanofluid has been proposed as a
route for enhancing the performance of the heat transfer rates in the liquids that are currently
used. Materials with sizes of nanometers possess unique physical and chemical properties
(Das et al. 2007). They can flow smoothly through microchannels without clogging because
they are sufficiently small to behave similar to liquid molecules (Khanafer et al. 2003). This
fact has attracted much research into the investigation of the heat transfer characteristics in
nanofluids. It has been found that the presence of nanoparticles within the fluid can apprecia-
bly increase the effective thermal conductivity of the fluid and, as a consequence, enhance
the heat transfer characteristics. An excellent collection of articles on this topic can be found
in the book by Das et al. (2007) and in the review papers by Buongiorno (2006), Trisaksri
and Wongwises (2007), Kakaç and Pramuanjaroenkij (2009), Lee et al. (2010), Eagen et al.
(2010), Wong and Leon (2010), Fan and Wang (2011), Sheikholeslami et al. (2012a,b) and
Soleimani et al. (2012).

Here we study the steady, mixed convection boundary-layer flow along a vertical circular
cylinder embedded in a porous medium filled with a nanofluid for the cases of both a heated
and a cooled cylinder. We apply the mathematical nanofluid model proposed by Tiwari and
Das (2007) in combination with Darcy’s law for the flow in the porous medium and the
Boussinesq approximation for the convective forces. For our numerical calculations we take
the specific case of copper nanoparticles, though we expect the nature of our results to be
more widely applicable to other forms of similar types of nanoparticles. We take an outer
flow and wall temperature distribution that enables the problem to be reduced to similarity
form with the resulting similarity equations then being discussed in detail. Convective flow
within porous media both with or without nanoparticles have a wide range of practical and
engineering applications see, for example the books by Nield and Bejan (2006), Ingham and
Pop (2005), Pop and Ingham (2001), Vafai (2005, 2010) and Vadasz (2008).

In a series of pioneering papers, Kuznetsov and Nield (2010a,b,c, 2011a,b,c) and Nield
and Kuznetsov (2009a,b, 2011) have used the mathematical nanofluid model proposed by
Buongiorno (2006) to study some problems on viscous (regular) fluids and porous media filled
by nanofluids. The authors have assumed that nanoparticles are suspended in the nanofluid
using either surfactant or surface charge technology. This prevents particles from agglomer-
ation and deposition on the porous matrix. On the other hand, it is very important to explain
how nanofluid flow is possible in a porous medium. Thus, one of the anonymous Reviewer
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Mixed Convection Boundary-Layer Flow Along a Vertical Cylinder 239

of this paper has pointed out that without special precautions, nanoparticles will be simply
absorbed by the porous matrix. Basically, the porous matrix will work as a filter for nano-
particles. This situation has been described, explained, and modelled in the recent papers by
Wu et al. (2010, 2011). The physical situation described in these papers show that the work
on porous media filled by nanofluids are not just a mathematical exercise, but are based on
deep physical understanding of nanofluid flows. This demonstrates that we are simulating
here a real physics problem of mixed convection flow and heat transfer in a porous medium
filled by a nanofluid.

2 Mathematical Model

We consider the steady, axisymmetric boundary-layer flow along a vertical cylinder of radius
a which is embedded in a porous medium filled with a nanofluid. It is assumed that the
velocity of the outer (potential) flow ue(x) and the surface temperature Tw(x) are of the form
ue(x) = U0x/a and Tw(x) = T∞ + T0x/a, where U0 and T0 are constants with U0 > 0
and T0 > 0 for a heated cylinder (assisting flow), T0 < 0 for a cooled cylinder (opposing
flow), respectively. Under these assumptions along with the Boussinesq and boundary-layer
approximations, and using the nanofluid model proposed by Tiwari and Das (2007), the basic
equations are

∂(ru)

∂x
+ ∂(rv)

∂r
= 0 (1)

μnf

μf

∂u

∂r
= gK [(1 − φ)ρfβf + φρsβs]

μf

∂T

∂r
(2)

u
∂T

∂x
+ v

∂T

∂r
= αnf

r

∂

∂r

(
r
∂T

∂r

)
(3)

subject to the boundary conditions

v = 0, T = T∞ + T0
x

a
on r = a, u → U0

x

a
, T → T∞ as r → ∞ (4)

Here x and r are the cylindrical coordinates measured along the axis of the cylinder and
normal to the surface of the cylinder in the radial direction, u and v are the velocity com-
ponents in the x and r directions, respectively, and T is the temperature of the nanofluid. g
is the acceleration due to gravity, φ is the nanoparticle volume fraction, βf and βs are the
coefficients of thermal expansion of the fluid and of the solid, respectively, ρf and ρs are the
densities of the fluid and of the solid fractions, respectively, μnf is the viscosity and αnf is
the thermal diffusivity of the nanofluid. These are given by Khanafer et al. (2003) and Oztop
and Abu-Nada (2008), for example, as

μnf = μf

(1 − φ)2.5
, αnf = knf

(ρC p)nf
, (ρC p)nf = (1 − φ)(ρC p)f + φ(ρC p)s (5)

knf

kf
= (ks + 2kf )− 2φ(kf − ks)

(ks + 2kf )+ φ(kf − ks)

where μf is the dynamic viscosity of the base fluid with an expression for it being proposed
by Brinkman (1952), knf is the thermal conductivity of the nanofluid, kf and ks are the thermal
conductivities of the base fluid and of the solid, respectively, and ρ(C p)nf is the heat capac-
itance of the nanofluid. Strictly expressions (5) are restricted to spherical (or near spherical)
nanoparticles with other expressions being required for other shapes of nanoparticles.
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Equations (1–3) with the boundary conditions (4) can be transformed into ordinary dif-
ferential equations by the similarity transformation, see Mahmood and Merkin (1988) and
Merkin and Pop (1987), for example,

η = r2 − a2

2αf a

(
U0αf

2a

)1/2

, ψ = (2U0aαf )
1/2 x f (η), θ(η) = T − T∞

Tw − T∞
(6)

where ψ is the stream function defined as u = r−1∂ψ/∂r and u = −r−1∂ψ/∂x . Using (6)
Eqs. (2,3) reduce to the ordinary differential equations

f ′′ = B(φ)λθ ′ (7)

A(φ)
[
(1 + 2γ η)θ ′′ + 2γ θ ′] + 2 f θ ′ − 2 f ′θ = 0 (8)

subject to the boundary conditions

f (0) = 0, θ(0) = 1, f ′(η) → 1, θ(η) → 0 as η → ∞ (9)

where prime denotes differentiation with respect to η. The parameters A and B are given by

A = A(φ) = knf/kf

(1 − φ) + φ(ρC p)s/(ρC p)f

B = B(φ) = (1 − φ)2.5
[
(1 − φ) + φ

(
ρsβs

ρfβf

)]
(10)

and for a given nanofluid and porous material, the parameters A and B depend only on φ, the
nanoparticle volume fraction. When φ = 0 (regular fluid), A = B = 1 and, as the nanopar-
ticle volume fraction φ increases, A increases and B decreases, with B → 0 as φ → 1. The
constants γ and λ are, respectively, the curvature and the buoyancy parameters defined by

γ =
(

2αf

U0a

)1/2

, λ = Ra

Pe
(11)

where Ra = gKβf T0/(αfνf ) and Pe = U0a/αf are the Rayleigh number and the Péclet
number for the porous medium, respectively.

Integrating Eq. (7) and applying boundary conditions (9) gives

f ′ = Bλθ + 1 (12)

where B(φ) is defined in (10). Expression (12) shows that the dimensionless vertical velocity
depends linearly on the temperature. Further, if we combine Eqs. (8) and (12), we obtain

A
[
(1 + 2γ η) f ′′′ + 2γ f ′′] + 2 f f ′′ − 2 f ′2 + 2 f ′ = 0 (13)

on 0 ≤ η < ∞. The boundary conditions are now

f (0) = 0, f ′ (0) = Bλ+ 1, f ′(η) → 1 as η → ∞ (14)

Having λ > 0 corresponds to an assisting (or aiding) flow, λ < 0 corresponds to an opposing
flow. For λ = 0, Eqs. (7) and (8) are decoupled and this case corresponds to the forced
convection flow past the vertical cylinder. Further, φ = 0 corresponds to a regular fluid
and γ = 0 to a flat plate. In this case, Eqs. (13) and (14) reduce to those for the problem of
steady mixed convection boundary-layer flow along a vertical flat plate embedded in a porous
medium considered by Aly et al. (2003) when λ = 1 in their notation for the variable wall
temperature. We notice also that, if φ = 0 and γ = 0, the problem reduces to that studied by
Merkin (1980, 1985).
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Table 1 Values of the
parameters A(φ) and B(φ)
defined in (10) using the
thermophysical properties of
water and copper Cu taken from
Oztop and Abu-Nada (2008)

φ A(φ) B(φ)

0.05 1.1673 0.8670
0.1 1.3553 0.7463
0.2 1.8089 0.5395

The physical quantities of interest are the skin friction coefficient C f and the local Nusselt
number Nux , which are defined as

C f = τw

ρ f u2
e
, Nux = xqw

k f (Tw − T∞)
(15)

where the skin friction τw and heat transfer from the plate qw are given by

τw = μnf

(
∂u

∂r

)
r=a

, qw = −knf

(
∂T

∂r

)
r=a

(16)

Using the similarity variables (6), we have

(2Pe1/2
x /Pr)C f = 1

(1 − ϕ)2.5
f

′′
(0), (2/Pex )

1/2 Nux = −knf

kf
θ ′(0) (17)

where Pex = ue(x)x/αf is the local Péclet number and Pr = Vf/αf is the Prandtl number
of the porous medium.

We start by considering the numerical solutions to Eqs. (13, 14).

3 Numerical Results

Here we discuss the numerical solution to Eq. (13) subject to boundary conditions (14)
for selected values of the parameters, our main objectives being to assess the effects that
curvature and the nanoparticles have on the convective flow and heat transfer. We use the
data for Cu nanoparticles in water provided by Oztop and Abu-Nada (2008) with the result-
ing values for A and B, defined in (10), for different volume fractions φ being given in
Table 1.

We start by considering the case of a pure fluid, φ = 0. In Fig. 1a we plot f ′′(0) against
the mixed convection parameter λ for different values of the curvature parameter γ . We see
that there is a critical value λc of λ, with the values of |λc| increasing with γ . There is a sad-
dle-node bifurcation at λ = λc giving rise to two solution branches for λ > λc. Both solution
branches continue into the aiding flow, λ > 0, region with the upper solution branch passing
through the forced convection solution f = η at λ = 0. On this branch f ′′(0) > 0 for oppos-
ing flow, λc ≤ λ < 0 and f ′′(0) < 0 for aiding flow, λ > 0. The numerical solutions for the
lower solution branch (shown by a broken line) also pass smoothly through λ = 0 without
a singularity appearing, as seen for example in Merkin (1980). Even though a solution to
(13,14) exists on the lower branch when λ = 0, it cannot be a physically acceptable solution
to our original problem where the temperature is related to the velocity via expression (12).
This can be seen in Fig. 1b where we plot the corresponding values of −θ ′(0) with θ ′(0)
being calculated from (12) as θ ′(0) = f ′′(0)/Bλ clearly showing the discontinuity seen
in the figure as |λ| → 0. We expect, through the saddle-node bifurcation, that these lower
branch solutions to be unstable.
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Fig. 1 Plots of a the skin friction f ′′(0), b the surface heat transfer −θ ′(0) against the mixed convection
parameter λ for different values of curvature parameter γ when φ = 0

In Figs. 2, 3, and 4 we assess the effects of both curvature and the addition of nanoparticles
on the convective flow by plotting f ′′(0) and −θ ′(0) against λ. In Fig. 2 we take γ = 0,
giving a flat surface, and nanoparticle volume fractions of φ = 0 (pure fluid), φ = 0.05,
φ = 0.1 and φ = 0.2 with the corresponding values of the parameters A and B appearing in
Eqs. (13,14) given in Table 1. In Fig. 2 we see that the effect of adding nanoparticles to the
base fluid is to increase the range of existence of solutions in the opposing flow region and to
decrease the friction effects on the surface, Fig. 2a, positive for opposing flow and negative
for aiding flow. The addition of nanoparticles also increases the surface heat flux, Fig. 2b, on
the upper solution branch.

These features are also seen when the curvature is increased to γ = 1 in Fig. 3 and more
noticeably to γ = 5 in Fig. 4. For each nanoparticle volume fraction φ the effect of curvature
γ is to increase the range of existence of solutions and to increase both the skin friction
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Fig. 2 Plots of a the skin friction f ′′(0), b the surface heat transfer −θ ′(0) against the mixed convection
parameter λ for the addition of copper (Cu) nanoparticles with volume fractions φ = 0.0, 0.05, 0.1, 0.2 for
γ = 0 (flat surface)

and surface heat transfer, consistent with Fig. 1. For a given curvature the effect of adding
nanoparticles is again to increase the range of solutions for opposing flow, to decrease skin
friction effects and to decrease the surface heat transfer, following the trends seen for a flat
surface in Fig. 2.

We have identified critical values λc of λ determining the range of existence of a solution
for opposing flow. We have also seen the values of |λc| increase with both increased curvature
and with the addition of nanoparticles. We now consider these critical values in a little more
detail.

3.1 Critical Values

For given values of the other parameters we calculated the critical values λc of (13,14) fol-
lowing the approach described in Merkin (1985) and Merkin and Mahmood (1989). In Fig. 5
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Fig. 3 Plots of a the skin friction f ′′(0), b the surface heat transfer −θ ′(0) against the mixed convection
parameter λ for the addition of copper (Cu) nanoparticles with volume fractions φ = 0.0, 0.05, 0.1, 0.2 for
γ = 1

we plot these critical values λc against γ for the nanoparticle volume fractions labelled in
the figure. We see that, in every case, λc is negative and that |λc| increases as the curvature
parameter γ is increased. Also the figure shows that, for a given curvature, increasing the
volume fraction of the nanoparticles increases |λc| and hence the range of possible solutions
for opposing flow. The results in Fig. 5 are in agreement with the values shown in Figs. 1,
2, 3, and 4. Also, again consistent with Figs. 2, 3, and 4, the values of f ′′(0) at the criti-
cal point increase with γ and appear to be insensitive to the nanoparticle volume fraction
φ.

We now consider some limiting asymptotic forms which give further insights into the
behaviour of the convective flow.
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Fig. 4 Plots of a the skin friction f ′′(0), b the surface heat transfer −θ ′(0) against the mixed convection
parameter λ for the addition of copper (Cu) nanoparticles with volume fractions φ = 0.0, 0.05, 0.1, 0.2 for
γ = 5

4 Asymptotic Limits

4.1 Free Convection Limit, λ Large

To obtain a solution to Eqs. (13, 14) for λ � 1 we put

f = λ1/2 F, ζ = λ1/2η (18)

Equation (13) then becomes

A
((

1 + 2γ λ−1/2ζ
)

F ′′′ + 2γ λ−1/2 F ′′) + 2F F ′′ − 2F ′2 + 2λ−1 F ′ = 0 (19)
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Fig. 5 The critical values λc of Eq. (13) subject to (14) plotted against γ for nanoparticle volume fractions
φ = 0.0, 0.05, 0.1, 0.2

where primes now denote differentiation with respect to ζ , subject to the boundary conditions

F(0) = 0, F ′(0) = B + λ−1, F ′ → λ−1 as ζ → ∞ (20)

The leading-order problem is then, for γ of O(1),

AF ′′′
0 + 2F0 F ′′

0 − 2F ′ 2
0 = 0, F0(0) = 0, F ′

0(0) = B, F ′
0 → 0 as ζ → ∞ (21)

Equation (21) has the solution

F0(ζ ) =
√

AB

2

(
1 − e

√
2B/Aζ

)
(22)

giving(
d2 f

dη2

)
η=0

∼ − B
√

2B√
A
λ3/2 + · · · ,

(
dθ

dη

)
η=0

∼ −
√

2B√
A
λ1/2 + · · · as λ → ∞ (23)

Expression (23) shows that the effect of increasing the nanoparticle volume fraction is to
decrease both the skin friction and the surface heat transfer.

4.2 A Special Exact Solution

The recent papers by Magyari (2011a,b,c) and Pop (2011) on the scaling equivalence of the
homogeneous nanofluid models to the corresponding regular fluid model, a special exact
solution of the present flow and heat transfer problem (7)–(9) can be obtained following the
solution for the regular fluid case, A = B = 1, given by Magyari et al. (2003). This exact
solution is

f (η) = η + Bλ

c

(
1 − e−cη) , θ(η) = e−cη (24)

where we require c > 0 and that

c =
√

2(2 + Bλ)

A
, γ = 1√

2A(2 + Bλ)
(25)

123



Mixed Convection Boundary-Layer Flow Along a Vertical Cylinder 247

Fig. 6 The free convection limit: a plot of F ′′(0) against the modified curvature parameter δ obtained from
the numerical solution of Eq. (27) subject to the boundary conditions in (21) for nanoparticle volume fractions
φ = 0.0, 0.05, 0.1, 0.2

Expressions (25) require that γ > 0 and Bλ > −2 putting a limit on the range of existence
of this solution. The specific relationship between λ and γ given in (25), two parameters
that can, in general, be varied independently, means that (24, 25) gives only a restricted class
of all the solutions possible to (7)–(9), or equivalently (13, 14). From the solution given by
(24,25) we have

f ′′(0) = −Bλ

√
2(2 + Bλ)

A
, θ ′(0) = −

√
2(2 + Bλ)

A
(26)

Expressions (26) agree with (23) in the large λ limit.
Curvature effects only have a significance in this limit when γ is large, of O(λ1/2). To

deal with this case we put γ = δλ1/2, where δ is now of O(1). In this case the leading-order
problem for λ large becomes

A
(
(1 + 2δζ ) F ′′′

0 + 2δF ′′
0

) + 2F0 F ′′
0 − 2F ′ 2

0 = 0 (27)

still subject to the boundary conditions in (21). In Fig. 6 we plot F ′′(0) against the modified
curvature parameter δ obtained from solving (27) numerically for representative values of
the nanoparticle volume fraction φ. This figure shows, for each value of φ, that F ′′

0 (0) is
negative and decreases as δ is increased, as might be expected from Figs. 2, 3, and 4. This
decrease with δ appears to almost linear for the larger values of δ. Again we see that the
effect of increasing the nanoparticle volume fraction φ is, for a given curvature, to decrease
the skin friction, consistent with expression (23).

4.3 Solution for Large Curvature, γ � 1

Here we derive a solution to Eqs. (13, 14) valid for large γ , assuming a given nanoparticle
volume fraction φ so that we can take the parameters A and B in (13,14) and defined in (10)
as constants. We start in an inner region where we make the transformation

f = 1

2γ
g, y = 2γ η (28)
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Equations (13, 14) become

A[(1 + y)g′′′ + g′′] + 1

2γ 2 (gg′′−g′2 + g′)=0, g(0) = 0, g′(0) = 1 + Bλ (29)

where primes now denote differentiation with respect to y and the outer boundary condition
is relaxed at this stage. In order to match with the outer solution we have to look for a solution
to (29) by expanding in the form

g(y; γ ) = g0(y)+ g1(y)

log γ
+ g2(y)

(log γ )2
+ · · · (30)

Solving the resulting equations so as to satisfy the boundary conditions on y = 0 gives

g0 =(1+Bλ)y, g1 =a1[(1 + y) log(1 + y)−y], g2 =a2[(1 + y) log(1 + y)−y] (31)

for constants a1, a2 to be determined.
An outer region is also required in which we put

f = γG, Y = η

γ
= y

2γ 2 (32)

Equation (13) now becomes

A

(
Y + 1

2γ 2

)
G ′′′ + AG ′′ + GG ′′ − G ′2 + G ′ = 0 (33)

subject to G ′ → 1 as Y → ∞ and, on matching with the inner region given by (30, 31),

G ∼ (1 + Bλ+ 2a1)Y + Y
[
a1(log(2Y )− 1)+ 2a2

]
log γ

+ · · · as Y → 0 (34)

where primes now denote differentiation with respect to Y . Expression (34) indicates an
expansion in the outer region of

G(Y ; γ ) = G0(Y )+ G1(Y )

log γ
+ · · · (35)

At leading order we have

A
[
Y G ′′′

0 + G ′′
0

] + G0G ′′
0 − G ′

02 + G ′
0 = 0 (36)

The solution to Eq. (36) which satisfies the outer boundary condition is simply G0 = Y .
Matching with the inner region then gives

(1 + Bλ+ 2a1) = 1 or a1 = − Bλ

2
(37)

At O((log γ )−1) we then have

AY G ′′′
1 + (A + Y )G ′′

1 − G ′
1 = 0,G ′

1 → 0 as Y → ∞ (38)

and, from (34,37), that

G1 ∼ − Bλ

2
Y log Y +

(
2a2 + Bλ

2
(1 − log 2)

)
Y + · · · as Y → 0 (39)

123



Mixed Convection Boundary-Layer Flow Along a Vertical Cylinder 249

We can solve Eq. (38) subject to (39) to get

G ′
1 = − ABλ

2

⎛
⎝e−Y/A log Y

A + Y
− (A + Y )

∞∫
Y

e−s/A(3A + s) log s

A(A + s)3
ds

⎞
⎠ (40)

from which it follows that

a2 = Bλ

4
(AI∞ + log 2) where I∞ =

∞∫
0

e−Y/A(3A + Y ) log Y

(A + Y )3
dY (41)

In Fig. 7a we plot f ′′(0) against the curvature parameter γ for λ = 1.0 and for representative
values of the nanoparticle volume fraction φ. We see that f ′′(0) < 0 in all cases and that∣∣ f ′′(0)

∣∣ increases as γ is increased, with an almost linear slope for the larger values of γ .
Also, for a given value of γ , the values of

∣∣ f ′′(0)
∣∣ decrease as the volume fraction φ is

increased, consistent with Figs. 2, 3, and 4. From (28, 31, 37)
(

d2 f

dη2

)
η=0

∼ −Bλ
γ

log γ
+ O(γ (log γ )−2),

(
dθ

dη

)
η=0

∼ − γ

log γ
+ · · · as γ → ∞ (42)

showing that, for γ large, f ′′(0) is independent of A(φ) and that θ ′(0) is independent of both
A and B, i.e. independent of the addition of nanoparticles in this limit. As a check on our
asymptotic analysis we plot f ′′(0) log γ /γ against γ in Fig. 7b still for λ = 1.0. This curve
should, from (42), approach the asymptotic limit of −1 as γ increases. We see that the curve
is increasing towards this limit though very slowly. This might be expected as our theory
indicates that the correction to (42) is only of O((log γ )−1) and would require γ to be very
much larger than the maximum value of γ = 75.0 used for Fig. 7b. We notice at this place
that the original problem (13, 14) can be rescaled to remove the parameters A and B.

5 Rescaling the Problem

For a given type of nanoparticles and a given nanoparticle volume fraction φ, the parameters
A and B are constants and can be formally removed from the problem by a rescaling of the
variables. To achieve this we put

f = A1/2 f̃ , η̃ = A−1/2η (43)

This gives

(1 + 2γ A1/2η̃) ˜f ′′′ + 2γ A1/2 f̃ ′′ + 2( f̃ f̃ ′′ − f̃ ′2 + f̃ ′) = 0 (44)

where primes now denote differentiation with respect to η̃, subject to

f̃ (0) = 0, f̃ ′ (0) = Bλ+ 1, f̃ ′ → 1 as η̃ → ∞ (45)

If we now put

α = γ A1/2, μ = Bλ (46)
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Fig. 7 Plots of a the skin friction f ′′(0) against the curvature parameter γ for the mixed convection parameter
λ = 1.0 and for nanoparticle volume fractions φ = 0.0, 0.1, 0.2, b f ′′(0) log γ /γ against γ for φ = 0.0, the
asymptotic limit (42) for large γ is shown by the broken line

we obtain

(1 + 2αη̃) ˜f ′′′ + 2α f̃ ′′ + 2( f̃ f̃ ′′ − f̃ ′ 2 + f̃ ′) = 0 (47)

where α is a modified curvature parameter and μ a modified mixed convection parameter,
now subject to

f̃ (0) = 0, f̃ ′ (0) = μ+ 1, f̃ ′ → 1 as η̃ → ∞ (48)

This is Eq. (13) with A = 1 results for which are shown in Fig. 1 when γ is replaced by
α. There is, for example, a critical value μc = μc(α), as plotted in Fig. 5 with φ = 0. This
rescaling, given by (43, 46), is consistent with the scalings for the free convection limit (18).

This rescaling is, perhaps most useful for the specific case of no curvature, γ = α = 0,
then f̃ ′′(0) = a0(μ) giving f ′′(0) = A−1/2a0(μ). In particular, there is a critical value
μc = −1.4174 giving
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λc = −1.4174B−1 (49)

showing that the values of |λc| increase as the volume fraction of nanoparticles increase,
thus giving a greater range of solutions in the opposing case. This expression is in agreement
with the values for λc given in Fig. 2 on using the values of B given in Table 1. For the
general case, for a given φ, first calculate A = A(φ) and B = B(φ)and hence calculate the
modified curvature and mixed convection parameters α and μ from (46). Then, to find the
critical values, for example, first determine the corresponding value of μc from Fig. 5 (say)
and finally λc from (46). It is worth mentioning that rescaling anaysis for the full problem
might be done in a further study

6 Conclusions

We have considered the mixed convection boundary-layer flow and heat transfer on a vertical
cylinder in a porous material filled with a nanofluid. We took specific forms for the outer
flow and wall temperature variation that enabled the system to be reduced to similarity form,
Eqs. (7–9) or Eqs. (13, 14). These equations involved the two parameters, A(φ) and B(φ), as
defined in (10) and dependent on the nanoparticle volume fraction φ which characterized the
particular nanoparticles and the fluid filling the porous material. Values of these parameters
for Cu and water are given in Table 1. We used the physical properties for copper nanopar-
ticles in water for our numerical calculations, though we expect the same general trends in
behaviour for other similar fluids and types of nanoparticles.

We started by considering a pure fluid, Fig. 1, finding a critical value λc of the mixed
convection parameter λ, with solutions existing only for λ ≥ λc. We saw that the values of
λc were negative, thus restrictions on the existence of a solution were confined to opposing
flow, and that |λc| increased as the curvature parameter γ was increased. This was confirmed
in Fig. 5 where the behaviour of λc with γ is given for different volume fractions φ.

We then took specific values for the curvature parameter γ and plotted the skin friction
f ′′(0) and wall heat transfer −θ ′(0) against λ for different nanoparticle volume fractions,
see Figs. 2, 3, and 4. Our main conclusion was that adding nanoparticles to the base fluid
decreases the skin friction and increases the wall heat transfer for aiding flow, λ > 0, whereas
the opposite is the case for opposing flow, λc ≤ λ < 0. These effect become more pronounced
as the nanoparticle fraction φ is increased, for given values of the other parameters.

We then examined the free convection, λ → ∞, limit finding that this was independent
of curvature effects provided that γ was of O(1). Our asymptotic results (23) for the skin
friction and wall heat transfer confirmed those seen in our numerical results. We required γ
to be large, specifically of O(λ1/2), for curvature to have a significant effect, solutions to
the resulting problem (27) are shown in Fig. 6. We then examined the effect that curvature
have on the flow and heat transfer with plots of the skin friction f ′′(0) against γ for λ = 1.0
given in Fig. 7a. We then obtained an asymptotic solution for large γ where we saw that the
ultimate asymptotic limit is approached very slowly, the correction being of O((log γ )−1),
as can be seen in Fig. 7b.

The understanding of the fundamentals of heat transfer and wall friction is prime impor-
tance for developing nanofluids for a wide range of heat transfer application. Although there
are recent developments in the study of heat transfer with nanofluids, more experimental
results and the theoretical understanding of the mechanisms of the particle movements are
needed to understand heat transfer and fluid flow behaviour of nanofluids. Further work is
also needed for the treatment of nanofluids as a two-phase flow since slip velocity between
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the particle and base fluid plays important role on the heat transfer performance of nanofluids
(Kakaç and Pramuanjaroenkij 2009).
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