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Abstract In this article, we extend the analysis of Diaz and Brevdo (J. Fluid Mech.
681:567–596, 2011) of the absolute/convective instability dichotomy at the onset of con-
vection in a saturated porous layer with either horizontal or vertical salinity and inclined
temperature gradients to studying the influence of the Soret effect on the dichotomy in a
similar model. Only longitudinal modes are considered. We treat first normal modes and
analyze the influence of the Soret effect on the critical values of the vertical thermal Ray-
leigh number, Rv, wavenumber, l, and frequency, ω, for a variety of values of the horizontal
thermal Rayleigh number Rh, and the vertical salinity Rayleigh number, Sv. Our results for
normal modes agree well with relevant results of Narayana et al. (J. Fluid Mech. 612:1–19,
2008) obtained for a similar model in a different context. In the computations, we use a high-
precision pseudo-spectral Chebyshev-collocation method. Further, we apply the formalism
of absolute and convective instabilities and compute the group velocity of the unstable wave-
packet emerging in a marginally unstable state to determine the nature of the instability at the
onset of convection. The influence of the Soret effect on the absolute/convective instability
dichotomy present in the model is treated by considering the destabilization for seven values
of the Soret number: Sr = −1,−0.5,−0.1, 0, 0.1, 0.5, 1, for all the parameter cases in the
treatment of normal modes.
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1 Introduction

Since the publication of a seminal work of Weber (1974) on the convection in a porous layer
induced by horizontal and vertical thermal gradients, the subject of natural and forced con-
vection in a porous medium including the thermohaline convection received a considerable
attention in the literature owing to a great variety of applications, see Bear (1972), Guo and
Kaloni (1995), Nield (1991), Nield (1994), Nield (1998), Nield and Bejan (2006), Nield
et al. (1993), Manole et al. (1994), Qiao and Kaloni (1997, 1998), Sarkar and Phillips (1992),
Straughan (2004), Straughan and Walker (1996) for reviews and references.

The Soret effect describes mass separation in a salt solution with a non-uniform tem-
perature distribution. This effect was also intensively studied in the literature in relation to
the emergence of convection in a porous medium, see e.g., Bahloul et al. (2003), Marcoux
and Charrier-Mojtabi (1998), Narayana et al. (2008), Sovran et al. (2001) for reviews and
references. The phenomenon of mass separation in a salt solution in the presence of a temper-
ature gradient, known today under the name the Soret effect, was first observed and reported
by Ludwig (1856) and further described and studied rather in detail by Soret (1879). In an
experiment with a salt solution under a temperature gradient, it was observed that the salt
was more concentrated near the cold end of the experimental tube. The conclusion was that
a flux of salt resulted owing to the temperature gradient. Under steady-state conditions, the
mass flux due to the Soret effect must be balanced, in the aforementioned experiments, by a
diffusive mass flux, resulting in a steady-state concentration gradient. The Soret effect is of
significance in many natural systems and for human activities including the microstructure of
the ocean, the convection in stars, the transport across membranes induced by small thermal
gradients in living tissues, the operation of solar ponds, and the oil exploration, see e.g.,
Platten et al. (2007) for a review. Formally, the Soret effect is expressed by the presence of
a thermal diffusion term in the concentration balance equation. For references and a review
of experimental results for the Soret effect see Platten (2006).

In this article, we analyze the influence of the Soret effect on the nature of flow destabiliza-
tion in a simple model of a saturated horizontally extended porous layer, using the approach
of absolute and convective instabilities. In this approach, the response of a linearly unstable
model to a perturbation that is initially localized in space is studied. The response to such
a realistic perturbation has the form of a wavepacket. Hereby two different complementary
scenarios of the spatio-temporal evolution of the wavepacket are possible. In the first scenario,
the wavepacket grows linearly in the entire flow domain thus destroying eventually the base
flow throughout the domain due to nonlinear effects. This is the case of absolute instability.
In the alternative scenario, the growing wavepacket propagates away from the location of the
initial perturbation, leaving behind an unperturbed base state at every fixed point in the flow
domain. In this case, the flow is said to be convectively unstable, but absolutely stable.

In Fig. 1, we present a schematic one-dimensional illustration of the spatio-temporal evo-
lution of the amplitude of an unstable disturbance in the absolutely unstable case and in
the convectively unstable, but absolutely stable case. The solid lines show schematically

(a) (b)

Fig. 1 a Absolute instability; b convective instability
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the growth and spreading in space with time of the wavepacket amplitude, and the dashed
line illustrates the trajectory of the peak of the wavepacket. While in the absolutely instable
case the unstable disturbance propagates and spreads into all directions, it affect only so to
say “downstream” regions in the convectively unstable, but absolutely stable case, i.e., the
regions in the direction of increasing x in Fig. 1. Until recently, the emergence of convec-
tion in porous media has been analyzed by the approach of monochromatic perturbations.
In comparison to this approach, the advantage of the approach of absolute and convective
instabilities is that it provides an important information concerning the evolution of realistic
perturbations in unstable flow. Specifically, (i) an unstable wavepacket propagates with the
group velocity whereas sinusoidal disturbances propagate with the phase speed that can be
different in both its magnitude and its direction from the group velocity, (ii) a convectively
unstable, but absolutely stable state can be viewed as representing a physical end state in a
certain part of the flow domain depending on the spatio-temporal evolution characteristics of
the convectively unstable wavepacket in the flow, whereas an unstable monochromatic wave
is unstable at every point in the flow domain.

To illustrate the difference between the evolution of localized disturbances in the abso-
lutely unstable case and in the absolutely stable, but convectively unstable case we give here
an example which is a slightly modified shortened reproduction of an analytic example pre-
sented in Brevdo and Bridges (1996).

1.1 Illustrative Example

We consider the linear convection–diffusion equation subject to the first-order increase of
the solute concentration:

∂c

∂t∗
= D∗ ∂2c

∂x∗2 + v∗ ∂c

∂x∗ + λ∗c, (1)

where c, t∗, and x∗ are the concentration, time, and length, respectively, and D∗, v∗, and
λ∗ are positive constants. Here and further in the text, the superscript asterisk, when used,
denotes dimensional quantities. By using in this example the diffusive time scaling,

t = t∗ D∗

L∗2 , x = x∗

L∗ , (2)

with L∗ denoting a characteristic length scale, Eq. (1) can be written as

∂c

∂t
= ∂2c

∂x2 + Pe
∂c

∂x
+ Da c, (3)

where

Pe = v∗L∗

D∗ and Da = λ∗L∗2

D∗ (4)

are the Péclet and Damköhler numbers, respectively. We treat stability of the trivial state,
c(x, t) = 0. A normal-mode substitution,

c(x, t) = c0 ei(kx − ωt), (5)

gives the dispersion relation:

ω = −Pe k + i
(
Da − k2). (6)
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Hence, Im ω = ωi(k) = Da − k2, for real k. As Da > 0, it follows that the base state
is linearly unstable, for all the values of Pe, and with this the analysis of normal modes
is complete. However, the normal-mode approach provides no information concerning the
evolution of localized disturbances, for different values of Pe and Da.

To illustrate the influence of the values of Pe and Da on the dynamics of localized dis-
turbances we treat an initial-value problem for Eq. (3) in a particular case when at t = 0 the
initial data for (3) is a Gaussian pulse of unit amplitude,

c(x, t)
∣
∣
t=0 = e−bx2/4, b > 0. (7)

For such an initial data, the exact solution of (3), for all −∞ < x < ∞ and all t ≥ 0, is

c(x, t) = exp(Da t)√
1 + bt

exp

[
−b(x + Pe t)2

4(1 + bt)

]
= 1√

1 + bt

×exp

{
t

1 + bt

[
Da + bt

(
Da − Pe2

4

)]}
exp

[
−b(x2 + 2Pe xt)

4(1 + bt)

]
.

(8)

If Pe > 2
√

Da the solution decays exponentially to zero at any fixed x , as t → ∞. How-
ever, for any value of Pe, in a frame of reference moving at speed (−Pe) with respect to the
absolute frame of reference, that is x = x0 − Pe t , where x0 is an arbitrary fixed number, the
solution (8) grows exponentially in time. This means that when Pe > 2

√
Da the instability

in the absolute frame of reference is localized in space. Hence, for the values of Pe and Da
satisfying the inequality Pe/

√
Da > 2 the base state is absolutely stable, but convectively

unstable. On the other hand, if Pe/
√

Da < 2 there is an exponential growth of the solution
(8) in time at every fixed position, x , in the absolute frame of reference. Therefore, in such
a case the base state is absolutely unstable. When Pe/

√
Da = 2, at each fixed location, x ,

the solution (8) decays algebraically as 1/
√

bt , for growing t . Thus, as Pe/
√

Da decreases
passing through the value of Pe/

√
Da = 2, a transition from the convective to absolute

instability occurs.
The distinction between these two types of instabilities illustrated in the above example

is of fundamental importance in applications. Localized instability convects away from a
region where the triggering disturbances originate and, presumably, it may be possible to
control. An absolute or global instability has generally a catastrophic character as it grows
exponentially in time at all the points in space destroying the base state throughout in the
absolute frame of reference.

Also, the nature of the linear destabilization is assumed to influence the fundamental fea-
tures of the emerging fully developed nonlinear state that, according to the assumption, are
essentially different in the case of the destabilization through absolutely instability from those
in the case when at the destabilization the state is absolutely stable, but convectively unstable.
The formalism of absolute and convective instabilities and spatially amplifying waves for
spatially uniform two-dimensional flows was developed in its modern form in the plasma
physics literature (see Briggs 1964, Bers 1973). The formalism was extended to three-dimen-
sional homogeneous flows by Brevdo (1991) and to spatially developing two-dimensional
flows by Brevdo (2002, 2003, 2004, 2005).

An analysis of the character of localized perturbations at the onset of convection in a model
of flow in a saturated porous layer with inclined temperature gradient and vertical through-
flow was performed by Brevdo (2009) and Brevdo and Ruderman (2009a,b) by using the
methods of absolute and convective instabilities. The treatment in those works was recently
extended by Diaz and Brevdo (2011, 2012) to a model of a saturated porous layer with either
horizontal or vertical salinity and inclined thermal gradients, and horizontal throughflow.

123



Absolute/Convective Instability Dichotomy 429

Fig. 2 Schematics of the problem

In those studies, an absolute/convective instability dichotomy at the onset of convection was
found in the set of the exact solutions for the equations of motion depending on the physical
parameters involved.

In this article, we analyze the influence of the Soret effect on the nature of destabiliza-
tion—through absolute or convective instability—of longitudinal disturbances in a saturated
horizontally extended porous layer subjected to inclined thermal and vertical salinity gra-
dients. The model we use is closely related to the one treated in the article of Narayana
et al. (2008), further in the text referred to as NMG, where extensive computations of the
influence of the Soret effect on the normal-mode stability were performed.

The article is organized as follows. In Sect. 2, we sketch the model, review the non-
dimensional governing equations, and present the steady-state base solution. Section 3 gives
a description of an initial-value problem for small disturbances and the solution of the prob-
lem in the form of an inverse Laplace-Fourier integral. In Sect. 4, the procedure for treating
the transition from convective to absolute instability is described. Section 5 presents the
numerical results, and Section 6 contains conclusions.

2 Formulation and Steady-State Solution

The model we treat is similar to the model considered by NMG. We give here a concise
description of the model by using the setting, notations and non-dimensionalization of that
article.

2.1 Formulation

We consider a flow in a horizontal homogeneous extended saturated porous layer of height
H bounded by two horizontal impermeable, solid surfaces with fixed constant temperature
and concentration, and driven by inclined thermal and vertical salinity gradients under the
influence of the Soret effect. The Cartesian axes are chosen with the origin at the mid-height
of the layer and with the z∗-axis pointing vertically upwards. The horizontal component of
the thermal gradients, β, is supposed to be pointing in the direction opposite to the positive
direction of the x∗-axis. The imposed vertical temperature difference and vertical concentra-
tion difference are �T and �C , respectively, across the height of the domain. We assume that
the flow in the porous medium is governed by Darcy’s law and the Oberbeck-Boussinesq
approximation can be applied, see Bear (1972). Figure 2 presents a schematic illustration

123



430 L. Brevdo, O. A. Cirpka

of the physical situation considered. We analyze the nature of the destabilization of two-
dimensional longitudinal disturbances. For such disturbances, the perturbation flow field is
independent of x .

By using the non-dimensionalization applied in NMG,

(x, y, z) = (x∗, y∗, z∗)/H, t = t∗ αm

aH2 , v = v∗ H

αm
, P = K (P∗ + ρ0gz∗)

μαm
,

T = (T ∗ − T0)
ρ0gγT K H

μαm
, C = (C∗ − C0)

ρ0gγC K H

μDm
,

(9)

the governing dimensionless equations for the flow can be written as

∇ · v = 0,

∇ P + v −
(

T + 1

Le
C

)
k = 0,

∂T

∂t
+ v · ∇T = ∇2T,

φ

a

∂C

∂t
+ v · ∇C = 1

Le
∇2C + Sr∇2T,

−∞ < x, y < ∞, − 1/2 < z < 1/2, t > 0.

(10)

The dimensionless boundary conditions are

w = 0, T = ∓Rv/2 − Rhx, C = ∓Sv/2 at z = ±1/2. (11)

In (10) and (11),∇ is the dimensionless gradient operator, k = (0, 0, 1)T , and v = (u, v, w)T ,

t, P, T , and C are the Darcy velocity vector, time, pressure, temperature and concentration,
respectively. The dimensionless parameters appearing in the governing equations and the
boundary conditions are the Lewis number, Le, the vertical thermal Rayleigh number, Rv,
the horizontal thermal Rayleigh number, Rh, the vertical solutal Rayleigh number, Sv, and
the Soret number, Sr , given by

Le = αm

Dm
, Rv = ρ0gγT K H�T

μαm
, Rh = ρ0gγT K H2βT

μαm
,

Sv = ρ0gγC K H�C

μDm
and Sr = Dmkm�T Sv

cscpαm�C Rv
,

(12)

with

αm = km

(ρcp)f
and a = (ρc)m

(ρcp)f
.

(13)

In (9), (12), and (13), g is the gravity acceleration, μ, ρ, cs, and cp denote the viscosity,
density, concentration susceptibility, and specific heat at constant pressure, respectively, K
is the permeability and φ is the porosity of the porous medium, km and Dm denote the ther-
mal conductivity and, correspondingly, solutal diffusivity of the medium, γT and γC are the
thermal and, respectively, solutal expansion coefficients of the fluid, and the subscripts m, f,
and 0 refer to the porous medium, the fluid, and the uniform reference state, respectively.
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2.2 Steady-State Solution

When there is no net flow in the horizontal direction problem, the system of equation (10),
(11) admits a steady-state uni-directional flow solution of the form

u = Us(z), v = 0, w = 0, P = Ps(x, y, z),
T = Ts(z) − Rhx, C = Cs(z),

(14)

which is a partial case of the solution given by NMG. The functions Us, Ts, and Cs can be
expressed as

Us = Rhz, Ts = −Rvz + R2
h

24
(z − 4z3),

Cs = −Svz + LeSr R2
h

24
(4z3 − z).

(15)

3 Initial-Value Problem

An initial-value problem for a two-dimensional longitudinal perturbation flow in the model
is derived by perturbing the base state and linearizing the governing equations. We write
v = (Us, 0, 0)T + v′, with v′ = (0, v′, w′)T , T = Ts − Rhx + θ ′, C = Cs + c′, and
P = Ps + p′, where v′, w′, θ ′, c′, and p′ are small perturbations, substitute the perturbed
quantities into (10) and (11), and neglect the products of the perturbation terms to obtain

∂v′

∂y
+ ∂w′

∂z
= 0,

∂p′

∂y
+ v′ = my,

∂p′

∂z
+ w′ −

(
θ ′ + 1

Le
c′

)
= mz,

∂θ ′

∂t
+ dTs

dz
w′ = ∇2θ ′ + e,

φ

a

∂c′

∂t
+ dCs

dz
w′ = 1

Le
∇2c′ + Sr∇2θ ′ + s,

−1/2 < z < 1/2, − ∞ < y < ∞, t > 0,

(v′, w′, p′, θ ′, c′)|t=0 = (v0, w0, p0, θ0, c0)(z, y),

(v′, w′, p′, θ ′, c′) = (v1, w1, p1, θ1, c1)(y, t) at z = −1/2,

(v′, w′, p′, θ ′, c′) = (v2, w2, p2, θ2, c2)(y, t) at z = 1/2,

(16)

where now ∇ = (∂/∂y, ∂/∂z)T , and (my, mz), e, and s denote the sources of momentum
energy, and salinity, respectively. It is assumed on physical grounds that the source functions
and the perturbation functions on the boundaries have finite support in y and t , and the func-
tions appearing in the initial conditions have finite support in y. Further in the text, except
for the normal-mode expansion given by (21), we omit the prime denoting the perturbation
quantities for convenience.

We eliminate v and p from the first three equations in (16) to obtain a system of three
equations for w, θ , and c that can be written as
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(
∂2

∂y2 + ∂2

∂z2

)
w − ∂2θ

∂y2 − 1

Le

∂2c

∂y2 = ∂

∂y

(
∂mz

∂y
− ∂my

∂z

)
,

dTs

dz
w +

(
∂

∂t
− ∂2

∂y2 − ∂2

∂z2

)
θ = e,

dCs

dz
w − Sr

(
∂2

∂y2 + ∂2

∂z2

)
θ +

[
φ

a

∂

∂t
− 1

Le

(
∂2

∂y2 + ∂2

∂z2

)]
c = s.

(17)

The initial-value problem for the system (17) is solved by using the combined Fourier-Laplace
transform. Its solution is similar to that of a similar problem described by Diaz and Brevdo
(2012). The vertical component of the perturbation velocity, w = w(z, y, t), of the solution
of the initial-value problem (16) can be expressed as

w(z, y, t) = 1

4π2

∫ iσ+∞

iσ−∞

∫ ∞

−∞
T (z, l, ω)

D(l, ω)
ei(ly − ωt)dldω, (18)

where l is a wavenumber (and a Fourier transform parameter) and ω is a frequency (and a
Laplace transform parameter). In (18), D(l, ω) is the dispersion–relation function of the prob-
lem as it is defined in the normal-mode approach, see Drazin and Reid (1989), the function
T (z, l, ω) is a linear combination of the transforms of the source functions, of the perturba-
tion functions on the boundaries and of the functions appearing in the initial conditions and,
hence, this function is in a certain sense arbitrary, and σ is a real number that is greater than
the maximum growth rate of the normal modes, σm :

σ > σm = max {Im ω | D(l, ω) = 0, Im l = 0}. (19)

4 Destabilization Through Either Absolute or Convective Instability

A procedure for determining the nature of instability—absolute or convective—at the point
of destabilization is described in Brevdo (2009). The procedure originates from the math-
ematical formalism of absolute and convective instabilities and is related to the collision
criterion for determining the nature of instability of an unstable flow, see Briggs (1964).
For a marginally unstable state, technically the procedure is based on computing the group
velocity of the emerging unstable wavepacket. In a two-dimensional case, the group velocity
is given by

Vg = dωr(lc)

dl
, (20)

where lc is the critical wavenumber, meaning that ωi(lc) is marginally greater than zero.
Here and further in the text the subscript r denotes the real part and the subscript i denotes
the imaginary part of a complex number. When the group velocity Vg = 0 the destabiliza-
tion in our case of longitudinal disturbances has the character of absolute instability. When
Vg 
= 0 and |Vg| is large enough the flow at the onset of convection is absolutely stable, but
convectively unstable.

In the numerical treatment, we computed the critical values of the marginally unstable
state, in every parameter case considered, and calculated the group velocity by using Eq. (20).
In all the computations, there was either Vg = 0 or |Vg| was large enough. Hence, a con-
clusion concerning the nature of the destabilization was unequivocally drawn in every case
treated.
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5 Numerical Procedure

For analyzing the stability of the model, we substitute the normal-mode expansion,
[
w′, θ ′, c′] = [w(z), θ(z), c(z)] × exp[i(ly − ωt)], (21)

into the homogeneous system corresponding to system (17), i.e. the one with my = mz =
e = s = 0, to obtain a system of equations for the perturbation amplitudes w(z), θ(z), and
c(z) :

(
d2

dz2 − l2
)

w + l2θ + l2

Le
c = 0,

dTs

dz
w −

(
d2

dz2 − l2 + iω

)
θ = 0,

dCs

dz
w − Sr

(
d2

dz2 − l2
)

θ −
(

1

Le

d2

dz2 − l2

Le
+ iφ

a
ω

)
c = 0,

−1/2 < z < 1/2.

(22)

The boundary conditions for the amplitudes on the horizontal impermeable, isosolutal, iso-
thermal boundaries read as

w = θ = c = 0 at z = ±1/2. (23)

Equation (22) together with the boundary conditions (23) constitute a differential eigen-
value problem. In the stability analysis of normal modes, the frequency ω in this problem,
for a given wavenumber, l, appears as an eigenvalue parameter. Hereby, one is interested in
computing all the pairs, (l, ω), with real l, such that the eigenvalue problem (22), (23) has
a non-trivial solution and to establish the conditions based on the sign of ωi under which
the steady state is destabilized. In this article, we are looking for the critical values of Rv,
for several combinations of other five parameters, Le, (φ/a), Rh, Sv, and Sr , in the prob-
lem, whereby a special attention is given to the influence of the Soret number, Sr , on the
destabilization. The differential eigenvalue problem is treated numerically by applying a dis-
cretization using a pseudo-spectral Chebyshev collocation method. The resulting generalized
algebraic eigenvalue problem for ω is solved using the global IMSL solver DGVLCG. The
details of the numerical treatment of a similar problem are given in the appendix of Diaz and
Brevdo (2011).

6 Stability Results for Normal Modes

An extensive stability analysis of normal modes in a similar model, but in a somewhat dif-
ferent context, was performed by NMG who employed the two-term Galerkin method in a
way similar to that proposed in the study of Nield et al. (1993). In this section, we present
in a sequel of tables our stability results for longitudinal normal modes including the critical
values of wavenumber and of frequency. In the computations of the critical values in this
section and of the values of the group velocity in Sect. 7, it was established that 35 collocation
points are sufficient for attaining the apparent relative error of <0.05 % in all the cases treated.

To analyze the influence of the Soret effect on the destabilization, we select the values 0,
10, 20, 30, 40, 50, 60 for Rh, the values −30,−20,−10, 0, 10, 20, 30 for Sv, and the values
−1,−0.5,−0.1, 0, 0.1, 0.5, 1 for Sr . Throughout the computations the Lewis number, Le,
is kept at 10 and φ/a = 1, see Manole et al. (1994).
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Table 1 Values of the critical vertical thermal Rayleigh number, Rvc, for various values of the solutal Rayleigh
number, Sv, and the Soret number, Sr , for Rh = 0

Sv = −30 −20 −10 0 10 20 30

Sr = −1 34.739 29.739 24.739 19.739 14.738 9.7392 4.7392

−0.5 46.319 39.652 32.986 26.319 19.652 12.986 6.3189

−0.1 46.427 45.427 44.427 35.889 26.799 17.708 8.6167

0 46.427 45.427 44.427 39.479 29.479 19.479 9.4784

0.1 46.427 45.427 44.427 43.427 32.754 21.643 10.532

0.5 46.427 45.427 44.427 43.427 42.427 38.957 18.957

1 46.427 45.427 44.427 43.427 42.427 41.427 40.427

Table 2 Values of the critical oscillatory frequency, ωrc = ωr(lc), for various values of Sv and Sr , for Rh = 0

Sv = −30 −20 −10 0 10 20 30

Sr = −1 0 0 0 0 0 0 0

−0.5 0 0 0 0 0 0 0

−0.1 4.2617 3.0629 0.77546 0 0 0 0

0 4.7689 3.7241 2.2325 0 0 0 0

0.1 5.2271 4.2831 3.0606 0.62408 0 0 0

0.5 6.7559 6.0225 5.1864 4.1864 2.8555 0 0

1 8.2791 7.6602 6.9866 6.2408 5.3928 4.3837 3.0579

6.1 Case with Zero Horizontal Temperature Gradient, Rh = 0

The results for this case are presented in Tables 1, 2, and 23. The results for the critical wave-
number, for all the cases, are presented in the tables given in the Appendix. As seen from the
results presented in Table 1, the value of the critical vertical thermal Rayleigh number, Rvc,
is a decaying function of the solutal Rayleigh number, Sv, for each fixed value of the Soret
number, Sr , and a non-decaying function of Sr , for each fixed value of Sv. The value of lc,
shown in Table 23 varies slightly with Sv, for Sr = −1 and is constant, for Sr ≥ −0.5, for
all the values of Sv considered. For Sr = −1,−0.5, the critical oscillatory frequency, ωrc,
shown in Table 2 is nil, for all the values of Sv. Similarly, for −0.2 ≤ Sr ≤ 0.5, the critical
modes are non-oscillatory, for Sv sufficiently large in each case considered. In the oscillatory
cases, ωrc decays as a function of Sv and grows with Sr . A comparison of the critical values
of Rv, for the non-oscillatory modes in Table 1(a) in NMG with the corresponding values in
Table 1 in this article shows good agreement, for all the cases. For this value of Rh, the values
of Rvc in Table 1 agree very well with the values obtained by using the analytic expressions
in Eqs. (28) and (29) in NMG, for the non-oscillatory and, respectively, oscillatory cases. For
instance, for Sv = −30, Sr = −1, the computed value is Rvc = 34.73921388, whereas the
value given by Eq. (28) in NMG is RNMG

vc = 34.73920880. Hence, the relative deviation of
the computed Rvc from RNMG

vc is δ = |Rvc − RNMG
vc |/Rvc = 0.0000146 %.

6.2 Case for a Horizontal Thermal Rayleigh Number, Rh = 10

In this case, the critical vertical thermal Rayleigh number, Rvc, decays as a function of the
Soret number, Sv, for each fixed value of the solute Rayleigh number, Sr , considered, but the
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Table 3 Values of the critical vertical thermal Rayleigh number, Rvc, for various values of Sv and Sr , for
Rh = 10

Sv = −30 −20 −10 0 10 20 30

Sr = −1 49.650 44.650 39.650 34.650 29.650 24.650 19.650

−0.5 50.217 49.217 43.852 37.185 30.519 23.852 17.185

−0.1 49.206 48.206 47.206 40.710 31.619 22.528 13.437

0 48.956 47.956 46.956 42.008 32.008 22.008 12.008

0.1 48.706 47.706 46.706 43.583 32.472 21.361 10.250

0.5 47.712 46.713 45.715 44.718 36.006 16.006 −3.9939

1 46.479 45.483 44.489 43.495 42.503 −594.08 −1594.08

Table 4 Values of the critical oscillatory frequency, ωrc = ωr(lc), for various values of Sv and Sr , for Rh = 10

Sv = −30 −20 −10 0 10 20 30

Sr = −1 0 0 0 0 0 0 0

−0.5 3.2103 1.3878 0 0 0 0 0

−0.1 4.5124 3.4041 1.6775 0 0 0 0

0 4.7674 3.7242 2.2334 0 0 0 0

0.1 5.0037 4.0079 2.6627 0 0 0 0

0.5 5.8056 4.9324 3.8668 2.3607 0 0 0

1 6.5791 5.7724 4.8437 3.6876 1.9310 0 0

dependence of Rvc on Sr is mixed depending on the value of Sv, as seen from Table 3. For
instance, for Sv = 10, the value of Rvc grows with Sr , but for Sv = 20 and 30 it decays when
Sr grows. The value of lc presented in Table 24 does not vary significantly either with Sv or
with Sr .

The dependence of ωrc presented in Table 4 on Sv and Sr is qualitatively similar to that
in the case Rh = 0. However, the domain of non-oscillatory parameter cases is modi-
fied. Particularly, for Sr = 1, there are two non-oscillatory cases with Sv = 20 and 30.
According to Eq. (28) in NMG for the non-oscillatory cases, in such cases the value of
Rvc has a singularity, i.e. it is infinite, at the point Sr = 1. We observed this singularity
numerically. Specifically, when Sr → 0−, the numerically evaluated value of Rvc tends to
−∞. Hence, in such cases as well as in similar cases, with Rh ≥ 20, we computed the
value of Rvc putting Sr = 0.99. The singularity in these computations is manifested by
large negative values of Rvc, with |Rvc| that are by up to two orders of magnitude larger
than the corresponding values in the non-singular cases. For Rh = 10, the approxima-
tion provided by the Eqs. (28) and (29) in NMG for the numerically evaluated value of
Rvc is still good; however, it is much weaker than that in the case Rh = 0. For instance,
for Sv = −30, Sr = −1, the computed value is Rvc = 49.65028363, whereas the value
given by the Eq. (28) in NMG is RNMG

vc = 49.93738635. Hence, the relative deviation is
δ = |Rvc − RNMG

vc |/Rvc = 0.578 % which is considerably larger than the relative devi-
ation of 0.0000146 % in the corresponding case, with Rh = 0. Further weakening of the
approximation by both Eqs. (28) and (29) in NMG is observed at each stage when Rh

increases.

123



436 L. Brevdo, O. A. Cirpka

Table 5 Values of the critical vertical thermal Rayleigh number, Rvc, for various values of Sv and Sr , for
Rh = 20

Sv = −30 −20 −10 0 10 20 30

Sr = −1 66.829 65.855 64.885 63.920 62.960 62.009 58.778

−0.5 61.496 60.496 59.496 58.496 57.496 54.939 48.272

−0.1 57.470 56.467 55.464 54.460 45.890 36.799 27.708

0 56.499 55.499 54.498 49.549 39.549 29.549 19.549

0.1 55.542 54.547 53.552 42.738 31.627 20.516 9.4051

0.5 45.350 25.350 5.3497 −14.650 −34.650 −54.650 −74.650

0.99 −3662.4 −4662.4 −5662.4 −6662.4 −7662.4 −8662.4 −9662.4

Table 6 Values of the critical oscillatory frequency, ωrc = ωr(lc), for various values of Sv and Sr , for Rh = 20

Sv = −30 −20 −10 0 10 20 30

Sr = −1 6.8456 6.2399 5.5648 4.8013 3.8968 2.7120 0

−0.5 6.2985 5.6024 4.7909 3.8202 2.4971 0 0

−0.1 5.1907 4.2600 3.0586 0.75283 0 0 0

0 4.7769 3.7274 2.2353 0 0 0 0

0.1 4.2750 3.0451 0.51503 0 0 0 0

0.5 0 0 0 0 0 0 0

0.99 0 0 0 0 0 0 0

6.3 Case for a Horizontal Thermal Rayleigh Number, Rh = 20

The results for this case are presented in Tables 5, 6, and 25. In this case, the value of Rvc

is a decaying function of both Sv and Sr . The critical wavenumber, lc, varies slightly with
Sv, for each fixed value of Sr = −1,−0.1, and −0.5, and does not depend on Sv, for each
fixed value of Sr ≥ 0. The domain of the non-oscillatory modes occupies now a portion of
Table 6 laying roughly below the diagonal from the lower left-hand side corner to the upper
right-hand side corner of the table, whereas in the cases Rh = 0 and 10, the corresponding
domain in Tables 2 and 4, respectively, lies roughly above the diagonal from the upper left-
hand side corner to the lower right-hand side corner. In contrast to the cases Rh = 0 and
10 the critical oscillatory frequency, ωrc, decreases with both Sv and Sr . For Sr = 1, all the
modes are non-oscillatory, hence, the computation of Rvc for Sr = 0.99 produced very large
negative values in the bottom line of Table 6.

6.4 Case for a Horizontal Thermal Rayleigh Number, Rh = 30

In this case, similar to the case Rh = 20, the value of Rvc presented in Table 7 is a decaying
function of both Sv and Sr . The value of lc shown in Table 26 increases with Sr for every
fixed Sv, varies slightly with Sv for each fixed Sr ≤ −0.1 and remains constant for each
fixed Sr ≥ 0. The domain of non-oscillatory cases presented in Table 8, although slightly
modified compared to that in the case Rh = 20, remains roughly below the diagonal from
the lower left-hand side corner to the upper right-hand side corner of the table. Like in the
case Rh = 20, in the oscillatory cases, the critical oscillatory frequency, ωrc, decreases with
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Table 7 Values of the critical vertical thermal Rayleigh number, Rvc, for various values of Sv and Sr , for
Rh = 30

Sv = −30 −20 −10 0 10 20 30

Sr = −1 92.452 91.522 90.597 89.680 88.769 87.868 86.976

−0.5 80.040 79.044 78.049 77.054 76.060 75.066 74.074

−0.1 70.996 69.983 68.968 67.949 66.927 59.889 50.798

0 68.916 67.915 66.913 61.957 51.957 41.957 31.957

0.1 66.958 63.551 52.440 41.328 30.217 19.106 7.9951

0.5 −78.591 −98.591 −118.59 −138.59 −158.59 −178.59 −198.59

0.99 −18747 −19747 −20747 −21747 −22747 −23747 −24747

Table 8 Values of the critical oscillatory frequency, ωrc = ωr(lc), for various values of Sv and Sr , for Rh = 30

Sv = −30 −20 −10 0 10 20 30

Sr = −1 10.232 9.8399 9.4189 8.9790 8.5307 8.0567 7.5608

−0.5 9.0197 8.5375 8.0237 7.4868 6.9002 6.2626 5.5513

−0.1 6.1300 5.3594 4.4591 3.3301 1.5044 0 0

0 4.7972 3.7432 2.2433 0 0 0 0

0.1 2.6352 0 0 0 0 0 0

0.5 0 0 0 0 0 0 0

0.99 0 0 0 0 0 0 0

Table 9 Values of the critical vertical thermal Rayleigh number, Rvc, for various values of Sv and Sr , for
Rh = 40

Sv = −30 −20 −10 0 10 20 30

Sr = −1 −1.0548 −6.0548 −11.055 −16.055 −21.055 −26.055 −31.055

−0.5 105.54 104.55 103.58 102.60 101.62 100.65 99.679

−0.1 89.404 88.368 87.328 86.280 85.222 84.152 81.218

0 85.956 84.951 83.944 78.967 68.967 58.967 48.967

0.1 72.684 61.573 50.462 39.351 28.240 17.129 6.0176

0.5 −266.63 −286.63 −306.63 −326.63 −346.63 −366.63 −386.63

0.99 −42268 −43268 −44268 −45268 −46268 −47268 −48268

both Sv and Sr . The singularity of Rvc at the point Sr = 1 received for this value of Rh a
manifestation which is much stronger than that in the case Rh = 20 as seen from the values
at the bottom line in Table 7.

6.5 Case for a Horizontal Thermal Rayleigh Number, Rh = 40

In this case, presented in Tables 9, 10, and 27 new qualitative features appear as compared to
the results for Rh ≤ 30. Specifically, all the cases with Sr = −1 are now non-oscillatory, the
value of Rvc in each of these cases is negative, and oscillatory cases exist only for three values
of the Soret number: Sr = −0.5,−0.1, and 0. Like in the cases with Rh ≤ 30, the value of
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Table 10 Values of the critical oscillatory frequency, ωrc = ωr(lc), for various values of Sv and Sr , for
Rh = 40

Sv = −30 −20 −10 0 10 20 30

Sr = −1 0 0 0 0 0 0 0

−0.5 11.073 10.688 10.259 9.8184 9.3885 8.9160 8.4251

−0.1 7.2011 6.5622 5.8314 4.9988 4.0122 2.6730 0

0 4.8461 3.7871 2.2671 0 0 0 0

0.1 0 0 0 0 0 0 0

0.5 0 0 0 0 0 0 0

0.99 0 0 0 0 0 0 0

Table 11 Values of the critical vertical thermal Rayleigh number, Rvc, for various values of Sv and Sr , for
Rh = 50

Sv = −30 −20 −10 0 10 20 30

Sr = −1 −159.31 −164.31 −169.31 −174.31 −179.31 −184.31 −189.31

−0.5 44.795 38.128 31.461 24.795 18.128 11.461 4.7950

−0.1 112.06 110.99 109.90 108.80 107.68 106.53 105.36

0 107.19 106.18 105.16 100.12 90.117 80.117 70.117

0.1 70.136 59.026 47.913 36.802 25.691 14.580 3.4690

0.5 −530.29 −550.29 −570.29 −590.29 −610.29 −630.29 −650.29

0.99 −74187 −75187 −76187 −77187 −78187 −79187 −80187

Rvc decays as a function with Sv, for every fixed value of Sr . Starting with Sr = −0.5, the
value of Rvc decays as a function of Sr , for every fixed Sv. For each fixed value Sr except
for Sr = −0.5 and −0.1, the value of lc presented in Table 27 does not vary with Sv, and for
each fixed Sv, it decays as a function of Sr , for Sr ≥ −0.5.

The singular behavior of Rvc as Sr → 1− is seen from the values in the two bottom lines
of Table 9. The approximation given by Eq. (28) in NMG is rather poor in the cases when Sr

approaches the value of 1. For instance, in the case with Sr = 0.99 and Sv = 30, in the com-
putations we obtained the value Rvc = −48268, whereas Eq. (28) in NMG gives the value
RNMG

vc = −39134. Hence, the relative deviation in this case is δ = |Rvc − RNMG
vc |/|Rvc| =

18.9 %.

6.6 Case for a Horizontal Thermal Rayleigh Number, Rh = 50

The results for this case are presented in Tables 11, 12, and 28. For every fixed Sv, the value
of Rvc as a function of Sr grows for −1 ≤ Sr ≤ −0.1 and decays for Sr ≥ −0.1. The value
of lc does not vary with Sv, for every fixed Sr , except for Sr = −0.1 and 0. In the latter two
cases lc grows slightly with Sv. The set of oscillatory critical modes reduces to ten cases, for
Sr = −0.1 and 0. In these cases, ωrc is a decaying function of both Sv and Sr . Compared to
the case Rh = 40, in the present case in the cases with Sr = 0.99, for each Sv, the negative
value of Rvc is increased by the factor of about 1.7.
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Table 12 Values of the critical oscillatory frequency, ωrc = ωr(lc), for various values of Sv and Sr , for
Rh = 50

Sv = −30 −20 −10 0 10 20 30

Sr = −1 0 0 0 0 0 0 0

−0.5 0 0 0 0 0 0 0

−0.1 8.3497 7.7650 7.1316 6.4456 5.6597 4.7678 3.6710

0 4.9846 3.8936 2.3231 0 0 0 0

0.1 0 0 0 0 0 0 0

0.5 0 0 0 0 0 0 0

0.99 0 0 0 0 0 0 0

Table 13 Values of the critical vertical thermal Rayleigh number, Rvc, for various values of Sv and Sr , for
Rh = 60

Sv = −30 −20 −10 0 10 20 30

Sr = −1 −395.79 −400.79 −405.79 −410.79 −415.79 −420.79 −425.79

−0.5 −76.758 −83.424 −90.091 −96.758 −103.42 −110.09 −116.76

−0.1 137.71 136.54 135.36 134.14 132.89 131.58 130.21

0 131.81 130.77 129.71 124.47 114.47 104.47 94.473

0.1 67.011 55.900 44.789 33.678 22.567 11.456 0.34479

0.5 −871.78 −891.78 −911.78 −931.78 −951.78 −971.78 −991.78

0.99 −114362 −115362 −116362 −117362 −118362 −119362 −120362

Table 14 Values of the critical oscillatory frequency, ωrc = ωr(lc), for various values of Sv and Sr , for
Rh = 60

Sv = −30 −20 −10 0 10 20 30

Sr = −1 0 0 0 0 0 0 0

−0.5 0 0 0 0 0 0 0

−0.1 9.4792 8.8741 8.2421 7.5493 6.7966 5.9487 4.956

0 5.3115 4.1339 2.4398 0 0 0 0

0.1 0 0 0 0 0 0 0

0.5 0 0 0 0 0 0 0

0.99 0 0 0 0 0 0 0

6.7 Case for a Horizontal Thermal Rayleigh Number, Rh = 60

The results for this case presented in Tables 13, 14, and 29 are qualitatively similar to the
results for the case Rh = 50. For each fixed Sv, The critical vertical thermal Rayleigh num-
ber, Rvc, attains its maximum, for Sr = −0.1, and, as Sr → 0.99, it decays sharply to large
negative values of the order of 1.1×105. There are ten cases of critical oscillatory modes, for
the same pairs (Sv, Sr) like in case Rh = 50, for each fixed value of Sr , except for Sr = −0.1
and 0, the value of lc does not vary with Sv and for the two latter values it increases slightly
with Sv.
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Table 15 Values of the group velocity of the wavepacket, Vg = dωr(lr)/dlr at lr = lc, for the marginally
supercritical value of the vertical Rayleigh number Rvc, for various values of Sv and Sr , for Rh = 0

Sv = −30 −20 −10 0 10 20 30

Sr = −1 0 0 0 0 0 0 0

−0.5 0 0 0 0 0 0 0

−0.1 1.3562 0.97433 0.24356 0 0 0 0

0 1.5177 1.1854 0.71123 0 0 0 0

0.1 1.6637 1.3630 0.97357 0.19456 0 0 0

0.5 2.1506 1.9170 1.6507 1.3322 0.90823 0 0

1 2.6356 2.4385 2.2240 1.9865 1.7165 1.3951 0.97273

Table 16 Values of the group velocity of the wavepacket, Vg = dωr(lr)/dlr at lr = lc, for the marginally
supercritical value of the vertical Rayleigh number Rvc, for various values of Sv and Sr , for Rh = 10

Sv = −30 −20 −10 0 10 20 30

Sr = −1 0 0 0 0 0 0 0

−0.5 1.0074 0.40621 0 0 0 0 0

−0.1 1.4346 1.0808 0.52776 0 0 0 0

0 1.5167 1.1854 0.71082 0 0 0 0

0.1 1.5925 1.2751 0.84578 0 0 0 0

0.5 1.8469 1.5679 1.2269 0.74227 0 0 0

1 2.0877 1.8281 1.5277 1.1505 0.55886 0 0

Table 17 Values of the group velocity of the wavepacket, Vg = dωr(lr)/dlr at lr = lc, for the marginally
supercritical value of the vertical Rayleigh number Rvc, for various values of Sv and Sr , for Rh = 20

Sv = −30 −20 −10 0 10 20 30

Sr = −1 1.8931 1.6550 1.3766 1.0367 0.58236 0.17669 0

−0.5 1.9001 1.6621 1.3782 1.0249 0.49002 0 0

−0.1 1.6369 1.3389 0.95249 0.16714 0 0 0

0 1.5186 1.1843 0.70943 0 0 0 0

0.1 1.3641 0.97190 0.16223 0 0 0 0

0.5 0 0 0 0 0 0 0

0.99 0 0 0 0 0 0 0

7 Absolute/Convective Instability Dichotomy

The results for the absolute/convective instability dichotomy, for the cases treated in Sect. 21,
are presented in this section in Tables 15, 16, 17, 18, 19, 20, 21. A comparison of the results for
the group velocity, Vg, of the emerging marginally unstable wavepacket in these tables with
the results for the critical oscillatory frequency, ωrc, for the corresponding cases presented in
Tables 2, 4, 6, 8, 10, 12, and 14, for the cases Rh = 0, 10, 20, 30, 40, 50, and 60, respectively,
shows that at the onset of convection the destabilization is through absolute instability if and
only if the critical modes are non-oscillatory. In the cases when the destabilization is through
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Table 18 Values of the group velocity of the wavepacket, Vg = dωr(lr)/dlr at lr = lc, for the marginally
supercritical value of the vertical Rayleigh number Rvc, for various values of Sv and Sr , for Rh = 30

Sv = −30 −20 −10 0 10 20 30

Sr = −1 2.4853 2.3080 2.1187 1.9144 1.6895 1.4419 1.1636

−0.5 2.5039 2.3242 2.1295 1.9172 1.6796 1.4084 1.0871

−0.1 1.8748 1.6244 1.3292 0.95497 0.28180 0 0

0 1.5145 1.1798 0.70440 0 0 0 0

0.1 0.8541 0 0 0 0 0 0

0.5 0 0 0 0 0 0 0

0.99 0 0 0 0 0 0 0

Table 19 Values of the group velocity of the wavepacket, Vg = dωr(lr)/dlr at lr = lc, for the marginally
supercritical value of the vertical Rayleigh number Rvc, for various values of Sv and Sr , for Rh = 40

Sv = −30 −20 −10 0 10 20 30

Sr = −1 0 0 0 0 0 0 0

−0.5 2.5541 2.3833 2.2065 2.0178 1.8080 1.5870 1.3447

−0.1 2.0482 1.8322 1.5854 1.2984 0.94790 0.41782 0

0 1.4975 1.1668 0.68781 0 0 0 0

0.1 0 0 0 0 0 0 0

0.5 0 0 0 0 0 0 0

0.99 0 0 0 0 0 0 0

Table 20 Values of the group velocity of the wavepacket, Vg = dωr(lr)/dlr at lr = lc, for the marginally
supercritical value of the vertical Rayleigh number Rvc, for various values of Sv and Sr , for Rh = 50

Sv = −30 −20 −10 0 10 20 30

Sr = −1 0 0 0 0 0 0 0

−0.5 0 0 0 0 0 0 0

−0.1 2.0225 1.8137 1.5845 1.3283 1.0316 0.67078 0.17474

0 1.4671 1.1336 0.6474 0 0 0 0

0.1 0 0 0 0 0 0 0

0.5 0 0 0 0 0 0 0

0.99 0 0 0 0 0 0 0

convective instability, for Rh = 0 and 10, the group velocity, Vg, is a decaying function
of Sv and growing function of Sr . In all the cases with Rh ≥ 20, except for the interval
Rh = 60, Sr = −0.1, 20 < Sv < 30, the group velocity is a decaying function of both Sv

and Sr . For Rh ≥ 40, the base state is absolutely unstable at the onset of convection, for all
Sr ≥ 0.1 considered. As Rh increases starting with Rh = 30, the number of the parameter
cases in which the base state is absolutely unstable increases from 26, for Rh = 30, to 39, for
Rh = 60. For Rh ≥ 50, only for two values of the Soret number, Sr = −0.1 and 0, there exist
parameter combinations for which the marginally unstable base state is absolutely stable,
but convectively unstable. In the cases Rh = 50 and Rh = 60, the sets of the convectively
unstable, but absolutely stable cases are the same, whereas the group velocity in all such
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Table 21 Values of the group velocity of the wavepacket, Vg = dωr(lr)/dlr at lr = lc, for the marginally
supercritical value of the vertical Rayleigh number Rvc, for various values of Sv and Sr , for Rh = 60

Sv = −30 −20 −10 0 10 20 30

Sr = −1 0 0 0 0 0 0 0

−0.5 0 0 0 0 0 0 0

−0.1 1.4946 1.2600 0.99643 0.70500 0.36268 0.05281 0.59940

0 1.3971 1.0547 0.54487 0 0 0 0

0.1 0 0 0 0 0 0 0

0.5 0 0 0 0 0 0 0

0.99 0 0 0 0 0 0 0

Table 22 Maximum value of the group velocity of the wavepacket, Vg, for the marginally supercritical value
of the vertical Rayleigh number, Rvc, for various values of Rh. The maximum in each case is attained for
Sv = −30 at the value of Sr indicated

Rh = 0 10 20 30 40 50 60

Vg 2.6356 2.0877 1.8931 2.4853 2.5541 2.0225 1.4946

Sr 1 1 −1 −1 −0.5 −0.1 −0.1

cases, except for the case with Sv = 30, is smaller for the cases with Rh = 60 than for those
with Rh = 50.

The maximum group velocity, for each fixed values of Rh, is attained for Sv = −30. In
Table 22, the values of the maximum group velocity, for various values of Rh, are shown for
the values of Sr at which the maximum is attained.

8 Conclusions

In this article, we analyzed how the Soret effect influences the nature of the destabilization
of a flow in a saturated horizontal extended porous layer with vertical solutal and inclined
thermal gradients.

As in the previous studies of similar models of flow in porous media, but without the So-
ret effect (see Brevdo 2009, Brevdo and Ruderman 2009a,b, Diaz and Brevdo 2011, 2012),
we found that in the model treated the absolute/convective instability dichotomy exists as
well, and that these two types of instability are present for non-vanishing values of the Soret
number depending on the values of the other control parameters. As the horizontal thermal
Rayleigh number, Rh, increases from Rh = 30 to Rh = 60, the number of cases at which
the base state is absolutely stable, but convectively unstable decreases from 21 to 10. The
maximum value of the group velocity of the wavepacket for the marginally supercritical base
state is attained for Sv = −30 and all the values of Rh considered at non-zero values of
the Soret number. In this study, we have not addressed the question of whether at the point
of destabilization the marginally unstable base state is genuinely convectively unstable, but
absolutely stable. This question can be addressed by evaluating the value of vertical thermal
Rayleigh number, Rvt, at which the transition from convective to absolute instability occurs
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and computing its relative deviation from the critical vertical thermal Rayleigh number, Rvc,
as it was done in Diaz and Brevdo (2012). A treatment of this question is left as a future
task.

The findings in the article, together with the findings in the papers cited above, indicate that
the absolute/convective instability dichotomy is a characteristic feature of flows in porous
media. The dichotomy can hopefully be used for investigating numerically and in experi-
ments one of the open question of the theory of turbulent transition. Specifically: does a fully
developed nonlinear regime that emerges in a linearly absolutely unstable base flow possess
essentially different qualitative features from those of a fully developed nonlinear state that
evolves in an absolutely stable, but convectively unstable flow?
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Appendix: Values of the Critical Wavenumber, lc

See Tables 23, 24, 25, 26, 27, 28, 29.

Table 23 Values of the critical wavenumber, lc, for various values of Sv and Sr , for Rh = 0

Sv = −30 −20 −10 0 10 20 30

Sr = −1 3.136 3.136 3.141 3.144 3.144 3.144 3.144

Sr = −0.5, −0.1, 0, 0.1, 0.5, 1 3.141 3.141 3.141 3.141 3.141 3.141 3.141

Table 24 Values of the critical wavenumber, lc, for various values of Sv and Sr , for Rh = 10

Sv = −30 −20 −10 0 10 20 30

Sr = −1 3.180 3.180 3.180 3.180 3.180 3.180 3.180

−0.5 3.140 3.140 3.152 3.152 3.152 3.152 3.152

−0.1 3.140 3.140 3.140 3.144 3.144 3.144 3.144

0 3.140 3.140 3.140 3.140 3.140 3.140 3.140

0.1 3.140 3.140 3.140 3.140 3.140 3.140 3.140

0.5 3.140 3.140 3.140 3.140 3.140 3.140 3.148

1 3.140 3.136 3.136 3.136 3.136 3.164 3.164

Table 25 Values of the critical wavenumber, lc, for various values of Sv and Sr , for Rh = 20

Sv = −30 −20 −10 0 10 20 30

Sr = −1 3.100 3.096 3.088 3.080 3.072 3.064 4.560

−0.5 3.136 3.140 3.136 3.136 3.136 3.363 3.360

−0.1 3.147 3.147 3.147 3.147 3.160 3.160 3.160

0 3.147 3.147 3.147 3.147 3.147 3.147 3.147

0.1 3.141 3.141 3.141 3.141 3.141 3.141 3.141

0.5 3.221 3.221 3.221 3.221 3.221 3.221 3.221

0.99 3.520 3.520 3.520 3.520 3.520 3.520 3.520
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Table 26 Values of the critical wavenumber, lc, for various values of Sv and Sr , for Rh = 30

Sv = −30 −20 −10 0 10 20 30

Sr = −1 3.000 2.993 2.980 2.964 2.952 2.936 2.920

−0.5 3.132 3.129 3.125 3.125 3.120 3.115 3.106

−0.1 3.167 3.167 3.167 3.171 3.171 3.246 3.246

0 3.162 3.162 3.162 3.162 3.162 3.162 3.162

0.1 3.143 3.143 3.143 3.143 3.143 3.143 3.143

0.5 3.536 3.536 3.536 3.536 3.536 3.536 3.536

0.99 4.673 4.673 4.673 4.673 4.673 4.673 4.673

Table 27 Values of the critical wavenumber, lc, for various values of Sv and Sr , for Rh = 40

Sv = −30 −20 −10 0 10 20 30

Sr = −1 11.26 11.26 11.26 11.26 11.26 11.26 11.26

−0.5 3.120 3.120 3.107 3.093 3.093 3.080 3.067

−0.1 3.220 3.230 3.230 3.230 3.240 3.240 3.580

0 3.200 3.210 3.220 3.220 3.220 3.220 3.220

0.1 3.140 3.140 3.140 3.140 3.140 3.140 3.140

0.5 4.283 4.283 4.283 4.283 4.283 4.283 4.283

0.99 5.667 5.667 5.667 5.667 5.667 5.667 5.667

Table 28 Values of the critical wavenumber, lc, for various values of Sv and Sr , for Rh = 50

Sv = −30 −20 −10 0 10 20 30

Sr = −1 13.40 13.40 13.40 13.40 13.40 13.40 13.40

−0.5 10.52 10.52 10.52 10.52 10.52 10.52 10.52

−0.1 3.360 3.367 3.373 3.387 3.387 3.400 3.427

0 3.307 3.307 3.320 3.342 3.343 3.343 3.343

0.1 3.147 3.147 3.147 3.147 3.147 3.147 3.147

0.5 5.093 5.093 5.093 5.093 5.093 5.093 5.093

0.99 6.373 6.373 6.373 6.373 6.373 6.373 6.373

Table 29 Values of the critical wavenumber, lc, for various values of Sv and Sr , for Rh = 60

Sv = −30 −20 −10 0 10 20 30

Sr = −1 15.36 15.36 15.36 15.36 15.36 15.36 15.36

−0.5 12.17 12.17 12.17 12.17 12.17 12.17 12.17

−0.1 3.713 3.720 3.740 3.753 3.780 3.813 3.853

0 3.567 3.573 3.580 3.673 3.673 3.673 3.673

0.1 3.147 3.147 3.147 3.147 3.147 3.147 3.147

0.5 5.707 5.707 5.707 5.707 5.707 5.707 5.707

0.99 6.960 6.960 6.960 6.960 6.960 6.960 6.960
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