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Abstract Single-phase fluid flow in porous media is usually direction dependent owing
to the tortuosity associated with the internal structures of materials that exhibit inherent
anisotropy. This article presents an approach to determine the tortuosity and permeability
of porous materials using a structural measure quantifying the anisotropic distribution of
pore voids. The approach uses a volume averaging method through which the macroscopic
tortuosity tensor is related to both the average porosity and the directional distribution of
pore spaces. The permeability tensor is derived from the macroscopic momentum balance
equation of fluid in a porous medium and expressed as a function of the tortuosity tensor and
the internal structure of the material. The analytical results generally agree with experimental
data in the literature.

Keywords Porous media · Anisotropy · Permeability · Tortuosity · Directional pore space
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1 Introduction

Since the pioneering study of Kozeny (1927), numerous studies have been performed to
correlate the permeability of porous media with their physical properties, including porosity,
pore size and structures, mean particle size and particle size distributions. In the various
models in the literature, tortuosity is an important quantity that is used to bridge the pore
structure and the macroscopic permeability (Dullien 1975; Bear and Bachmat 1990). The
tortuosity is used to describe the difference between the actual distance traveled by fluid
particles and the macroscopic travel distance, owing to the sinuosity and interconnectivity
of pore spaces. Despite the extensive use of the concept of tortuosity, its definition is not
unique. Geometric tortuosity is defined as the ratio between the shortest path of intercon-
nected points in pore fluid space to the straight distance between these points. The hydraulic
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tortuosity factor appearing in the Kozeny–Carman equation (Carman 1937) is the ratio of
the effective hydraulic path length (Le) to the straight line distance (L) in the direction of
flow and it can be very different from the geometric tortuosity (Clennell 1997). In general,
tortuosity depends on various factors, including the shape, size, and type of the grains, pores,
and pore channels; mode of packing of the grains; grain size distribution; the orientation and
non-uniformity of the grains (Dullien 1979; Salem and Chilingarian 2000). However, the
tortuosity factor is often expressed as a function of porosity φ in many different forms, e.g.
τ(φ) = φ−p (Bear 1972; Dullien 1979; Mota et al. 2001; Dias et al. 2006), τ(φ) = 1− p ln φ

(Comiti and Renaud 1989; Mauret and Renaud 1997), τ(φ) = 1+ p(1−φ) (Weissberg 1963;
Iversen and Jorgensen 1993; Boudreau and Meysman 2006), τ(φ) = 1 + p

√
1 − φ (Duda

et al. 2011). In these expressions, p is a certain constant. Even though the hydraulic tortuosity
is directional dependent and should be described as a second-rank tensor (Bear and Bachmat
1990; Diedericks and Du Plessis 1995), the scalar tortuosity factor τ is generally used in the
literature, even in some recent studies (Dias et al. 2006; Selomulya et al. 2006; Matyka et al.
2008; Gommes et al. 2009; Koza et al. 2009; Lanfrey et al. 2010; Yazdchi et al. 2011).

Different methods, either direct or indirect, have been developed to determine the tortu-
osity factor of porous materials, such as electrical resistance measurements (Mast and Potter
1963; Barrande et al. 2007), gas tracer tests (Kreamer et al. 1988) and hydraulic conductivity
measurements (Witt and Brauns 1983; Comiti and Renaud 1989; Salem and Chilingarian
2000). More recently, advanced digital image analysis techniques including X-ray microto-
mography are used for 3D imaging of solid (or void) structures, from which the tortuosity
can be estimated based on geodesic reconstruction. When the reconstructed void structures
are available, flow in the porous media can be simulated using the Lattice-Boltzmann method
(LBM) and the permeability can be determined correspondingly (Al-Omari and Masad 2004;
Selomulya et al. 2006; Gommes et al. 2009; Gao et al. 2012; Khan et al. 2012).

Even though most experimental studies expressed the tortuosity as a scalar function of
porosity, evidence of directional variation of tortuosity is not scarce in the literature, either
based on the anisotropic permeability (Scheidegger 1954; Rice et al. 1970; Dullien 1975;
Witt and Brauns 1983; Chapuis and Gill 1989; Salem and Chilingarian 2000), anisotropic
diffusion processes (Greenkorn and Kessler 1970; Kim et al. 1987; Whitaker 1999; Ohkubo
2008) or geodesic reconstruction of pore space based on advanced digital image analysis
(Selomulya et al. 2006). Theoretical analyses on the directional variation of tortuosity for
discrete materials composed of mono-sized particles of similar shape and specific spatial
distributions were reported (Daigle and Dugan 2011). In general, the hydraulic conductivity
when flow is parallel to the bedding plane (i.e. perpendicular to the direction of sedimentation)
is higher than that when flow is perpendicular to the bedding plane, which implies smaller
tortuosity in directions parallel to the bedding plane (Witt and Brauns 1983; Chapuis and Gill
1989). Salem and Chilingarian (2000) investigated the tortuosity associated with different
directions of flow in various porous media. They observed that the dependence of the tortuos-
ity factor on porosity is governed greatly by the direction of flow because of the orientation,
mineralogy and mode of packing of the grains as well as non-uniformity in the size and
shape of the grains and pores. Daigle and Dugan (2011) theoretically examined the tortuosity
anisotropy of porous media composed of flat cylindrical grains oriented at some angle with
respect to the horizontal. For such periodic arrangements of particles of the same size, both
the tortuosity and the permeability in the direction parallel to the bedding plane (horizontal)
are higher than those perpendicular to the bedding plane, with the differences increasing as
the porosity is increased. In addition, the ratio between the tortuosity factors in two arbitrary
orthogonal directions varies with the bedding plane orientation. The theoretical results were
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verified with simulations performed using the LBM, with the tortuosity determined from the
hydraulic conductivity using the Kozeny–Carman equation.

Special attention should be paid to the comprehensive study relevant to tortuosity by
Whitaker and co-workers (Whitaker 1986, 1999; Kim et al. 1987). Based on the method
of volume averaging, for a representative region of a spatially periodic porous medium, the
effective diffusivity tensor D′

eff is derived as a function of the unit normal vectors on the inter-
facial area within the averaging volume and a closure variable that is uniquely determined
by the boundary conditions. By defining the tortuosity as the ratio between the molecular
diffusion coefficient of the fluid and the effective diffusivity, it is identified that the tortu-
osity varies with the porosity, the particle geometry and the direction along which diffusion
takes place. In other words, the effective diffusivity (and hence the tortuosity) parallel to the
bedding plane is different from that normal to the bedding plane. The theoretical results are
generally in agreement with experimental data.

However, when predicting the permeability of a porous medium, the tortuosity is required
only by models based on pore structures. Tortuosity enters these models through the analysis
for fluid flow in void space. Alternative approaches are available to estimate the anisotropy
of permeability. For example, in the stochastic approach developed by Dagan (1989), the
hydraulic conductivity K is described as a stationary space random function characterized
by a lognormal distribution. The covariance of Y = ln K is represented by different corre-
lation scales Ih and Iv in the horizontal plane and vertical direction, respectively, with the
ratio f = Iv/Ih being coined as the anisotropic ratio. The conductivity is then characterized
entirely by the four parameters: KG (the geometric mean of K ), σ 2

Y (the variance of Y ), Ih

and f . Dagan’s original model was extended to determine the anisotropic conductivity of
heterogeneous porous formations made up from inclusions (spheroids) of conductivity K1

submerged in a matrix of conductivity K0 (Jankovich et al. 2003; Suribhatla et al. 2011). The
conductivity of the matrix can be either isotropic or anisotropic. It has been shown that the
conductivity of the anisotropic formation is function of KG, K0h/KG, K0v/KG, σ 2

Y , Ih and
f . For inclusions of a periodic packing of particles, Ih can be related to the size of particles.

The study presented in this article investigates a different method to describe the anisotropy
of tortuosity and permeability of saturated granular media using a volume averaging approach,
by incorporating a continuum measure of internal structural disorder identified with the direc-
tional distribution of pore space in the material. In Sect. 2, a brief review is presented, focusing
on the macroscopic description of flow in porous media based on the volume averaging. In
Sect. 3, a probability density function that describes the spatial distribution of pore space is
used as a measure for the anisotropic structure. Then the tortuosity tensor as defined by Bear
and Bachmat (1990) is derived and expressed as a function of the spatial distribution of pore
space in addition to the average porosity. Based on the macroscopic fluid momentum balance
equation, the permeability is next related to the tortuosity tensor and eventually expressed
as a function of both the average value of porosity and its spatial distribution. Finally, the
results from the theoretical analysis are compared with experimental observations in the
literature.

2 Macroscopic Description of Single-Phase Flow in Porous Media Based on Volume
Averaging

2.1 Preliminary

The flow of water in a saturated granular material is described using an approach of local
volume averaging taking into account mass balance on both the macro- and microlevels. For a
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(a) (b)

Fig. 1 a REV of a porous medium and b a unit sphere

unit sphere enclosing a representative element volume (REV) of the material consisting of α-
(fluid) and β-(solid) phases as shown in Fig. 1a, let S0 be the surface area of the sphere (with
the radius of R = 1) encompassing the REV, Sαα the area around the REV that intersects
the fluid, Sββ the area around the REV that crosses the particles and Sαβ the total area of
the interfaces between particles and the fluid. The total areas enclosing the unit sphere and
the fluid are then S0 = Sαα + Sββ and S0α = Sαα + Sαβ , respectively. Following Bear and
Bachmat (1990) and Whitaker (1999), the following averages of a function eα(x) are defined:

Volumetric intrinsic phase average ēα
α = 1

Vα

∫

Vα

ēαdV

Volumetric phase average ēα = 1
V0

∫

Vα

ēαdV

Areal intrinsic phase average ẽα
Aα = 1

S0α

∫

Aα

ēαdS

Areal average ẽAα = 1
S0

∫

Aα

ēαdS

where dS = R2 sin θdθdϕ, dV = R2 sin θdrdθdϕ, Vα and Vβ are the volumes occupied by
phases α and β respectively, while the total volume of the REV is V0 = Vα + Vβ.

It should be emphasized that, in these definitions, Vα should be interpreted as the effec-
tive pore volume (Bear 1972) through which the fluid flows. Any non-interconnected pores,
dead-end pores and stagnant pockets are referred to as ineffective pores, as shown in Fig. 2.

2.2 Flow in a REV of Porous Media

Following Bear and Bachmat (1990), the macroscopic momentum balance equation of the
fluid in a porous medium is expressed as

μ̄α
ααi j Cαφ0

V̄ α
α j − V̄ β

β j

	2
α

= −φ0T ∗
αi j

(
∂ p̄α

∂x j
+ ρ̄αg

∂z

∂x j

)

, (1)

where φ0 is the porosity of the material defined as φ0 = φα = Vα/V0 for saturated porous
media, μα is the dynamic viscosity of the fluid, Cα a shape factor related to pore sizes, while
Vi , ρ and p are the velocity, density and pressure, respectively, the hydraulic radius 	α is
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(a) (b)

Fig. 2 a The REV of a isotropic porous system considered by Bachmat and Bear (1986); Bear and Bachmat
(1990); b dead-end pores and stagnant pockets

the ratio of fluid volume to the fluid–solid interface area (i.e. 	α = Vα/Sαβ), αi j is defined
as

αi j = δi j − ν̃iν j
αβ = δi j − 1

Sαβ

∫

Sαβ

ναiνα j dS, (2)

where δi j is the Kronecker delta function, ναi the unit normal vector of Sαβ (as shown in
Fig. 1a). T ∗

αi j is the tortuosity tensor defined as

T ∗
αi j = 1

Vα

∫

Sαα

◦
xi να j dS (3)

with
◦
x = r − r0, in which r and r0 are the position vectors of a point on Sαα and the centre

of the REV, respectively (see Fig. 1a). T∗
α expresses the total static moment of the oriented

areal element comprising the Sαα-surface, with respect to planes passing through the centroid
of the REV, per unit volume of the α-phase within V0. Bear and Bachmat (1990) gave the
following expression for T∗

α:

T ∗
αi j = 1

Vα

∫

Sαα

Rναiνα j dS = φS
α S0 R

φαV0

1

Sαα

∫

Sαα

ναiνα j dS = 3φS
α

φα

ν̃αiνα j
αα

(4)

In this expression, the term ν̃αiνα j
αα

represents the average of ναiνα j on the Sαα-surface
and reflects the effect of anisotropy on tortuosity, φS

α = Sαα/S0 denotes the fraction of the
α − α-surface in S0 (i.e. the areal porosity in S0), φ

S
α/φα is considered as a measure of the

tortuosity of the void space with 3φS
α/φα ≤ 1 (Bachmat and Bear 1986; Bear and Bachmat

1990). In general, the tortuosity tensor defined in Eq. (3) is a symmetric second-rank tensor.
For isotropic porous media, Bear and Bachmat (1990) assumed ν̃αiνα j

αα = (1/3)δi j ,
which results in

T ∗
αi j = T ∗

α0δi j , T ∗
α0 = φS

α/φα (5)

The permeability tensor can be obtained from Eq. (1) as

ki j = φα	2
α

Cα

(αil)
−1 T ∗

αl j = φ3
α

Cα�2
αβ

(αil)
−1 T ∗

αl j . (6)
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By defining the specific area �αβ = Sαβ/V0 = φα/	α based on the bulk volume of the

REV and �
β
αβ = Sαβ/Vβ = φα/ [	α(1 − φα)] = �αβ/(1 − φα) based on the volume of

solid particles, Eq. (6) becomes

ki j = φ3
α

Cα(1 − φα)2(�
β
αβ)2

(αil)
−1 T ∗

αl j . (7)

For an isotropic medium, Bear and Bachmat (1990) further assumed αi j = aδi j with a = 2/3
and the permeability was derived as:

k = φ3
α

aCα(1 − φα)2(�
β
αβ)2

= φα	2
α

aCα

T ∗
α0. (8)

Recall the general expression of the Kozeny–Carman equation of permeability for one-dimen-
sional flow (Carman 1937; Dullien 1979)

kKC = φα	2
α

C0τ 2 ; 	α = φα

(1 − φα)�
β
αβ

(9)

in which 	α is the hydraulic radius, τ is the tortuosity factor defined as the ratio of the
‘effective average path length’ Le to the shortest distance measured along the direction of
macroscopic flow L , i.e. τ = Le/L . C0 is a shape factor depending on the cross-sectional
area of the flow channel (C0 = 2, 1.779 and 1.675 for a circle, square and an equilateral
triangle, respectively). The physical meaning of the two shape factors, C0 in the Kozeny–
Carman equation and Cα as defined in Bear and Bachmat (1990), is the same and hence
Cα = C0 will be adopted in the later sections. As a special case, Appendix A demonstrates
the equality of C0 and Cα for flow along straight stream tubes in orthogonal directions with-
out rigorous mathematical derivation for simplicity. Comparison of Eqs. (8) and (9) results
in a hypothetical tortuosity factor associated with the Kozeny–Carman equation

τKC =
√

a

T ∗
α0

Cα

C0
=

√
a

T ∗
α0

. (10)

2.3 Comments on T ∗
α0 Derived by Bear and Bachmat (1990)

Bachmat and Bear (1986) and Bear and Bachmat (1990) claimed T ∗
α0 = φS

α/φα ≤ 1/3 (with
the equality sign valid for straight stream tubes only), by assuming that flow takes place
along tortuous stream tubes that connect opposite sides of a cubic REV with sides parallel
to the Cartesian x, y, z -axes, as illustrated in Fig. 2a. For straight tubes parallel to the axes
and uniformly distributed in three orthogonal directions, φS

α/φα ≈ 1/3. The corresponding
tortuosity tensor T ∗

αi j = (1/3)δi j yields τKC = √
2 for T ∗

α0 = 1/3, according to Eq. (10).
However, this conclusion is questionable as one expects τKC = 1 when the flow direction is
parallel to any of the axes for this specific case.

The above inconsistency can be partially resolved when the effective porosity φeα cor-
responding to the effective pore volume is used. Referring to Fig. 2a, when the flow direc-
tion is parallel to the x-axis, flow only takes place in tubes parallel to the x-axis and the
stream tubes parallel to the y- and z-directions are inactive, yielding the effective porosity
φeα = φα/3 with φα being the total porosity. By replacing φα in Eq. (5) with φeα , one has
T ∗

α0 = φS
α/φeα = 3φS

α/φα = 1. The result is also applicable to flows in y- and z-directions,
which implies T ∗

αi j = δi j . More details about the derivation of T ∗
αi j for this specific case can
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be found in Appendix A. The tortuosity factor from Eq. (10) becomes τKC = √
2/3, which

is still different from what is expected, i.e. τKC = 1.
For a porous medium, in a manner similar to that describing volume porosity and areal

porosity, a linear porosity can be defined along a representative elementary length as the
ratio between the summed length of void segments and the total length (Bear 1972; Kovács
1981). For randomly distributed pores, the equality of the average linear porosity and the
areal porosity as well as the average areal porosity and volumetric porosity were proven
in the Cartesian coordinate system (Bear 1972; Kovács 1981). This implies T ∗

α0 = 1 and
τKC = √

2/3 for isotropic granular materials according to Eqs. (5) and (10), which is incon-
sistent with experimental results as the tortuosity factor τKC in the Kozeny–Carman equation
is always larger than or equal to unity. Moreover, for most granular materials, it is also known
that τKC generally decreases when the porosity of the material is increased. Unfortunately,
such features of granular soils are not reflected by Eq. (5). This issue will be resolved in the
following section by using a different approach based on the probability density function
describing the directional random distribution of pores to determine the tortuosity tensor.

3 Tortuosity Tensor and Directional Distribution of Voids

In this section, a porous medium is considered as a discrete granular material with a random
distribution of pores that connect with each other, which implies the effective porosity is the
same as the total porosity.

3.1 Linear Porosity

The anisotropic nature of granular materials is characterized using the spatial distribution
of pore voids described by a probability density function (Pietruszczak and Krucinski 1989;
Masad and Muhunthan 2000). Consider a test line of length L = 2R in direction ν and passing
the centre of the unit sphere in Fig. 1b. Let l(ν) = �li (ν) be the total length of intersections
of this test line with pores. The fraction of this test line occupied by pores is referred to the
linear porosity φ(ν) = l(ν)/L in the direction of ν. φ(ν) reflects the directional variation of
the pore space and can be expressed as

φ(ν) = φ0(1 + �i jνiν j + �i jklνiν jνkνl + · · · ) (11)

in which φ0 is the average volumetric porosity of the material, �i j and �i jkl are symmetric
traceless tensors. When only the first two terms are used, the directional distribution of pore
space is simplified as

φ(ν) = φ0(δi j + �i j )νiν j (12)

For this case, if the eigenvalues of �i j are distinct, φ(ν) can reflect smooth orthogonal
anisotropy. The symmetry axes of the orthogonal anisotropy are coincident with the prin-
ciple axes of �i j . If two eigenvalues of �i j are equal, then φ(ν)describes the transverse
isotropy (Pietruszczak and Krucinski 1989). It should be noted, however, using Eq. (12) may
undermine some topology features of pore space and its spatial distribution, as �i j is only
the ‘first approximation’ as the measure of deviation from isotropy. The higher-rank traceless
tensors �i jkl , �i jkl··· describe the higher order fluctuations and other features of void space
distribution. Moreover, �i j is unable to quantify the texture, roughness, size and shape of
particles of granular materials.
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3.2 Areal Porosity

Some inconsistency about the definition of areal porosity is found in the literature. When
assuming that water flows through tortuous tubes (or flow channels), Bachmat and Bear
(1986), Bear and Bachmat (1990) suggested that the areal porosity on the surface of a REV
is no larger than 1/3, which results in φS

α/φα ≤ 1/3 (or equivalently φS
α/φ0 ≤ 1/3 when the

material is fully saturated). This conclusion is different from the findings for materials with
randomly distributed pores that the average linear porosity is the same as the areal porosity
while the average areal porosity and volumetric porosity are identical in the Cartesian coor-
dinate system (Bear 1972; Kovács 1981). This inconsistency is resolved by the following
approach that takes into account the directional variation of pore voids.

Referring to Fig. 1b for a unit sphere enclosing a REV with anisotropic distribution of
pore voids, at a point with the local out normal ν on the surface of a unit sphere, the area
occupied by voids (and hence the α-phase) within dS = dx ′

1dx ′
2 with x ′

1 and x ′
2 defined in

Fig. 1b can be expressed as

dSαα = dx ′
1

(
φ(ν′

2)dx ′
2

) = φ(ν′
2)dx ′

1dx ′
2

or

dSαα = (
φ(ν′

1)dx ′
1

)
dx ′

2 = φ(ν′
1)dx ′

1dx ′
2

in which ν′
1 = (− sin ϕ cos ϕ 0)T and ν′

2 = (cos θ cos ϕ cos θ sin ϕ − sin θ)T define the
directions of x ′

1 and x ′
2, respectively, dx ′

1 = R sin θdϕ, dx ′
2 = Rdθ . The average of the above

two expressions is

dSαα = 1

2

[
φ(ν′

1) + φ(ν′
2)

]
dS = φ0

[

1 + 1

2
�i j

(
ν′

1iν
′
1 j + ν′

2iν
′
2 j

)]

dS. (13)

As ν′
1, ν

′
2 and ν are independent unit vectors orthogonal to each other, one has δi j = ν′

1iν
′
1 j +

ν′
2iν

′
2 j + νiν j . As such, Eq. (13) becomes

dSαα = φ0

[

1 + 1

2
�i j

(
δi j − ναiνα j

)
]

dS = φ0

(

δi j − 1

2
�i j

)

νiν j dS (14)

after applying �i i = 0. The directional variation of the local areal porosity on S0 in the
direction ν is then expressed as

φS
α (ν) = φ0

(

δi j − 1

2
�i j

)

νiν j (15)

The total area occupied by voids on S0 is determined as

Sαα = φ0

∫

S

[

1 + 1

2
�i j

(
δi j − νiν j

)
]

dS = 4πφ0

It follows the average areal porosity of the REV

φS
α = Sαα

4π
= φ0 (16)

which recovers the equality of the average linear porosity, the areal porosity and the volu-
metric porosity. For an anisotropic granular material, however, the linear porosity and the
areal porosity in the direction of ν are described by Eqs. (11) and (15), respectively.
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3.3 Hydraulic Tortuosity

Consider an arbitrary test line with the length of L = 2R in the direction of ν and passing
through the centre of the unit sphere shown in Fig. 1b. Given the linear porosity φ(ν) in
direction ν, the total length of interceptions of voids on the test line is l(ν) = Lφ(ν), which
means that the probability for the void segments of this test line to intercept the sphere surface
S0 is P1 = l(ν)/L = φ(ν). On the other hand, a solid test line intercepts the void fraction of
S0 with the probability of P2 = Sαα/(4π) = φS

α (ν), with φS
α being the areal porosity of the

REV. Consequently, the probability of the test line intercepts the voids at S0 is

P(ν) = P1 P2 = φS
α (ν)φ(ν) (17)

According to Eq. (3), the tortuosity tensor is calculated as

T ∗
αi j = 1

Vα

∫

S

P(ν)
◦
xi ν j dS = 1

Vα

∫

S

φS
α (ν)φ(ν)

◦
xi ν j dS (18)

By applying Eq. (15), after some algebraic manipulations as given in the Appendix, one
obtains

T ∗
αi j = φ0

[

δi j

(

1 + 1

35
�kl�kl

)

+ 3

7
�i j + 4

35
�ik�k j

]

(19)

When neglecting the directional variation of φS
α (ν) by assuming a uniform random distribu-

tion of voids on S0 with φS
α (ν) = φS

α , the tortuosity tensor is simplified to

T ∗
αi j = 1

Vα

Sαα

4π

∫

S

Rφ0(δkl + �kl)νkνlνiν j dS = φS
α

(

δi j + 2

5
�i j

)

(20)

When neglecting the higher order terms of �i j , the difference between the two expressions
of T ∗

αi j in Eqs. (19) and (20) is small, and hence Eq. (20) can be used for simplicity. For
isotropic materials, both Eqs. (19) and (20) yield

T ∗
αi j = T ∗

α0δi j , T ∗
α0 = φS

α (21)

Different from the tortuosity tensor in Eq. (5), Eq. (21) shows that, for isotropic materials
with random distribution of pores, T ∗

α0 is the same as the average areal porosity φS
α on the

surface of a spherical REV. Recall Eq. (16), the tortuosity of an isotropic granular material
varies with the average porosity φ0.

On the other hand, according to Dullien (1979), Bear (1972) and Bear and Bachmat (1990),
T ∗

α0 can be alternatively interpreted as the tortuosity of flow channels in a porous medium. As
shown in the derivation of Bear and Bachmat (1990), the intrinsic phase average of a partial
derivative of a quantity 〈∇G〉f can be expressed as the gradient of the intrinsic phase average
∇〈G〉f multiplied by T ∗

αi j plus a surface integral over Sαβ . When neglecting absorption of
the fluid phase on Sαβ and diffusion into the solid phase, one has 〈∇G〉f = ∇〈G〉f · T∗

α .
In other words, T∗

α reflects the geometrical characteristics of the microscopic domain occu-
pied by the fluid. As such, for an isotropic medium, the tortuosity factor can be expressed as
τ = (T ∗

α0)
−1/2 by definition. Therefore, Eq. (21) leads to another expression for the tortuosity

factor:

τ =
(
φS

α

)−1/2
or τ = (φ0)

−1/2 (22)
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4 Anisotropic Permeability and Directional Distribution of Voids

Referring to Eqs. (6) and (7), when determining the anisotropic permeability, αi j as defined in
Eq. (2) must be identified in addition to the tortuosity tensor T ∗

αi j . Using a different approach
from that in Bear and Bachmat (1990), this study relates αi j to tensor �i j that describes the
directional distribution of voids through the tortuosity tensor T ∗

αi j .
Referring to Fig. 1a, one has

∫

S0α

◦
xi να j dS =

∫

Sαα

◦
xi να j dS +

∫

Sαβ

◦
xi να j dS (23)

As S0α = Sαα + Sαβ is a closed surface with no internal singularity, applying the Gauss
theorem to the left-hand side of Eq. (23) yields (Bear and Bensabat 1989)

1

V0

∫

Sαα

◦
xi να j dS + 1

V0

∫

Sαβ

◦
xi να j dS = V0α

V0
δi j (24)

It follows that

1

V0α

∫

Sαβ

◦
xi να j dS = δi j − 1

V0α

∫

Sαα

◦
xi να j dS = δi j − T ∗

αi j (25)

The left-hand side term of Eq. (25) is the total static moment of the oriented elementary
surface comprising the Sαβ -surface, with respect to planes passing through the centroid of
the REV, per unit volume of the α-phase within V0. This term may be estimated by replacing
the fluid volume enclosed by Sαβ using an equivalent hypothetical spherical sphere of the
radius Req = 3	α with the hydraulic radius	α = Vα/Sαβ defined previously:

1

V0α

∫

Sαβ

◦
xi να j dS = 1

V0α

∫

Sαβ

Reqναiνα j dS = 3	α

V0α

∫

Sαβ

ναiνα j dS (26)

Recall Eq. (2), the above relation becomes

1

V0α

∫

Sαβ

◦
xi να j dS = 3	α

V0α

Sαβ

(
δi j − αi j

) = 3
(
δi j − αi j

)
(27)

Inserting Eq. (27) into (25) yields

3
(
δi j − αi j

) = δi j − T ∗
αi j ⇒ αi j = 1

3

(
2δi j + T ∗

αi j

)
(28)

By applying Eq. (19), αi j is related to �i j through

αi j = 1

3

(
2δi j + T ∗

αi j

)
= b1δi j + b2�i j + b3�ik�k j (29)

with

b1 = 1

3

[

2 + φ0

(

1 + 1

35
�kl�kl

)]

, b2 = φ0

7
, b3 = 4φ0
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The inverse of αi j is determined as

α−1
i j = 1

Iα3

(
αikαk j − Iα1αi j + Iα2δi j

)
, (30)
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where Iαi (i = 1, 2 and 3) are the three invariants of αi j expressed as

Iα1 = α1 + α2 + α3 = 3b1 + b3 I�2

Iα2 = α1α2 + α2α3 + α1α3 = 3b2
1 + (

b2
2 − 4b1b3

)
I�2 + 2b3 I 2

�2 − 3b2b3 I�3

Iα3 = α1α2α3 = b3
1 + b1b2

2 I�2 + b3
2 I�3 + b2

3

(
b1 I 2

�2 + b2 I�2 I�3 + b3 I 2
�3

)

−b1b3 (2b1 I�2 + 3b2 I�3)

The permeability tensor given in Eq. (7) is then rewritten as

ki j = φ4
0

Cα(1 − φ0)2(�
β
αβ)2

[

δi p

(

1 + 1

35
�kl�kl

)

+ 3

7
�i p + 4

35
�ik�kp

]

αpqαq j − Iα1αpj + Iα2δpj

Iα3
(31)

For an isotropic medium, according to Eqs. (28) and (21), the tensor αi j collapses to

αi j = aδi j , a = 1

3

(
2 + T ∗

α0

)
(32)

Different from a constant of a= 2/3 proposed by Bear and Bachmat (1990), the value of a
in Eq. (32) varies with T ∗

α0 and hence with the tortuosity factor τ subject to Eq. (22). After
applying Eq. (32) subject to Eq. (21), the expressions of permeability in Eqs. (8) and (31) for
isotropic media are rewritten as:

k = φ3
0

Cα(1 − φ0)2(�
β
αβ)2

3T ∗
α0

2 + T ∗
α0

= 3φ3
0φs

α

Cα(1 − φ0)2
(
2 + φs

α

)
(�

β
αβ)2

(33)

As φS
α = φ0 for isotropic media (or equivalently uniformly distributed pore voids), an analogy

of Eq. (33) with (9) yields a hypothetical tortuosity factor, expressed in Eq. (10), as

τKC =
√

2 + T ∗
α0

3T ∗
α0

(34)

Recall Eq. (21) and the fact φS
α = φ0, τKC is related to the mean porosity via

τKC =
√

2 + φ0

3φ0
(35)

which is very close to

τKC = (φ0)
−0.4 (36)

It is interesting to note that Eqs. (22) and (34) [or equivalently Eq. (36)] define the range
of the tortuosity factor of granular materials with all connected, uniformly distributed pore
voids in the form of τ = φ

−p
0 . The value of p varies between 0.4 or 0.5, depending on how

the tortuosity factor is determined.
For the special case discussed when flow takes place along stream tubes that connect oppo-

site sides of a cubic REV with sides parallel to the Cartesian x, y, z-axes, the inconsistency
as discussed in Sect. 2.3 is resolved by Eq. (34) together with the effective porosity concept,
which results in T ∗

αi j = δi j (or T ∗
α0 = 1) and τKC = 1 according to Eq. (34).
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Fig. 3 Variation of p in τ(φ) = φ−pwith particle size and volume fraction in binary packing of spheres
(Dias et al. 2006)

5 Comparison with Data in the Literature

5.1 Tortuosity and Permeability of Granular Materials as Functions of Porosity

When neglecting the effect of potential anisotropy, the relation τKC = φ
−p
0 with p in the

range of 0.4–0.5 have been proven by both numerical modelling results and experimental data
for different materials, including sand and mixtures of spherical particles, in the literature
(e.g., Dullien 1979; Ho and Strieder 1981; Mauret and Renaud 1997; Mota et al. 2001; Dias
et al. 2006 among others). In the numerous published data, it is worthwhile to examine the
experimental results of Dias et al. (2006). The tortuosity factor in Dias et al. (2006) is τKC

back-calculated from experimental permeability test results using the Kozeny–Carman equa-
tion by assuming the shape factor C0 = 2 for the packing of spheres. The materials used were
binary particulates of different particle diameter ratios D/d and varying volume fractions of
large particles. They observed that for mono-size particulate bed and small particle diameter
ratios, the value of p is always 0.5. With the increase of particle diameter ratio D/d (up to
53.8) and the volume fraction of large size particles (up to 0.65), the value of p gradually
approaches 0.4, as shown in Fig. 3. As the randomness of the spheres packing increases as
the particle diameter ratio and the volume fraction of large size particles are increased, one
may conclude that the experimental results of Dias et al. (2006) are generally in agreement
with Eq. (36) for random, uniform packing of spheres.

Equation (33) can be verified by examining the permeability–porosity relationship. Refer-
ring to Eqs. (9) and (33), the permeability can be expressed as

kKC = f (φ0, τKC)

C0(�
β
αβ)2

; f (φ0, τKC) = φ3
0

(1 − φ0)2τ 2
KC

(37)

in which τKC is given in Eq. (34) for the current work and τKC = √
2 in the Kozeny–Carman

equation. Figure 4 presents the plot of the experimental hydraulic conductivity of Madison
sand of φ0 = 0.37 − 0.44 (Das 2008) against f (φ0, τKC) for the Kozeny–Carman equation
and f (φ0) = 3φ4

0/[(1−φ0)
2(2+φ0)] for Eq. (33). From this plot, it appears that both relations

are equally good. Figure 5 shows the variation of the normalized permeability k(1 − φ0)
2 in
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(φ0,τ ) = φ0
3/2(1−0φ)2 ; 

(φ0) = 3φ0
4/(1−φ0)2(2+φ0) 

φ 3/2(1−φ )2

3φ 4/(1−φ )2(2+φ )

Fig. 4 Plot of hydraulic conductivity against porosity functions for Madison sand

(a)
(b)

(c)
(d)

Fig. 5 Plot of normalized permeability against porosity for Fontainebleau Sandstone (data after Bourbié et al.
1987)
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Fig. 6 Comparison of the porosity functions fa(φ0, τKC) and fb(φ0, τKC)

Fig. 5a and k(1 − φ0)
2(2 + φ0) in Fig. 5c against the porosity based on the measured data of

Fontainebleau Sandstone (Bourbié et al. 1987; Gomez et al. 2010). The best fits according the
least-square method are k(1 − φ0)

2 = 2,227φ4.530
0 and k(1 − φ0)

2(2 + φ0) = 5, 243φ4.576
0 ,

respectively. The relation k(1 − φ0)
2(2 + φ0) = 1, 200φ4

0 following Eq. (33) is also an
equally good result, which is further demonstrated in Fig. 5d that compares the estimated k
values using Eq. (33) with the measured data. However, the Kozeny–Carman equation fails
to reproduce the measured data by almost one order, as can be observed from Fig. 5b.

Samarasinghe et al. (1982) suggested a slightly modified version of the Kozeny–Carman
equation for normally consolidated clays as follows:

k = C
en

1 + e
= C

φn
0

(1 − φ0)
n−1 (38)

where C is a reference permeability that characterizes the materials, e the void ratio that is
related to the porosity via e = φ0/(1 − φ0) and n an exponent generally in the range of 4–5.
When n = 3, the Kozeny–Carman equation is recovered from Eq. (38). Similar to Eq. (37),
let us introduce

fa(φ0, τKC) = 3φ3
0φS

α

(1 − φ0)2
(
2 + φS

α

) = 3φ4
0

(1 − φ0)2 (2 + φ0)
for Eq. (33)

fb(φ0, τKC) = φn
0

(1 − φ0)
n−1 τ 2

KC

for Eq. (37)

As shown in Fig. 6, depending on the values of φ0, the fa(φ0, τKC) function is equivalent to
fb(φ0, τKC) with different n values. Table 1 summaries the range of n when fa(φ0, τKC) is
practically replicable with fb(φ0, τKC) at different porosities. According to Table 1, one may
expect that Eq. (33) is able to describe the permeability of clay at relatively high porosities. In
addition, Fig. 6 and the data in Table 1 confirm that the modified Kozeny–Carman equation in
Eq. (38) with n = 3 yields the same results as Eq. (33) for Madison sand of φ0 = 0.37–0.44,
as shown in Fig. 4.
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Table 1 The range of n when Eq. (38) is close to Eq. (33)

Porosity Value of n

φ0 < 0.4 n = 3–4 but close to 3

φ0 = 0.4–0.5 n � 3

φ0 = 0.5–0.53 n � 5 but not sensitive to the value of n if it varies between 4 and 6

φ0 = 0.53–0.57 n = 4–5 but close to 4

φ0 > 0.57 n = 3–4 but close to 4

(a) (b)

Fig. 7 a Theoretical and measured anisotropic tortuosity ratio τ⊥/τ‖, experimental data after Mast and Potter
(1963); b theoretical and measured anisotropic permeability ratio k‖/k⊥, experimental data after Chapuis
et al. (1989a); Rice et al. (1970) and Masad and Muhunthan (2000)

5.2 Tortuosity and Permeability of Anisotropic Granular Materials

This section provides a parametric study for cross-anisotropic media by assuming different
directional pore space distributions quantified by the principal values of traceless tensor �i j .
Only cross-anisotropic granular materials are discussed, with the symbols [·]⊥ and [·]‖ being
used to denote a quantity [·] when flow takes place in the direction of perpendicular to and
parallel to the bedding plane, respectively. Herein, a bedding plane is referred to as the plane
perpendicular to the deposition direction of solid particles during the preparation of soil
specimens in laboratory tests or the formation of natural soils. The principal values of �i j

in the bedding plane are the major and intermediate ones with �1 = �2, while �3 in the
direction normal to the bedding plane satisfies �3 = −2�1. As limited experimental data
are available in the literature for the tortuosity factors for flow along different directions in
cross-anisotropic granular materials, only quantitatively comparison are made between the
analytical results and the measured anisotropic tortuosity or the anisotropic permeability.

Figure 7 presents the variation of tortuosity factors τ⊥ and τ‖ with the average porosity
φ0 at different degrees of anisotropy quantified by �1 − �3. With the increase of �1 − �3,
the anisotropic tortuosity ratio τ⊥/τ‖ ratio generally increases. For example, for materials
of minor anisotropy with �1 − �3 = 0.3, τ⊥/τ‖ ≈ 1.05 ± 0.01; when �1 − �3 = 0.9,
the τ⊥/τ‖ ratio in the range of 1.13–1.19 at different φ0 values, as shown in Fig. 7a. The
permeability for flow parallel to the bedding plane, calculated from Eq. (31), is higher than
that in the direction perpendicular to the bedding plane, with k‖/k⊥ = 1.10 ± 0.02 for
�1 − �3 = 0.3 and 1.29–1.42 for �1 − �3 = 0.9, respectively (as shown in Fig. 7b).
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The analytical results shown in Fig. 7 are qualitatively in agreement with experimental
observations in the literature. Mast and Potter (1963) investigated the anisotropy of tortuosity
of sand (with the average porosity φ0 = 0.2) through electrical resistance measurement. They
observed higher tortuosity in the direction perpendicular to the bedding plane than that in the
direction parallel to the bedding plane, with the ratio τ⊥/τ‖ = 1.05–1.16 and the average of
1.11, as shown in Fig. 7a. Figure 7b shows that the k‖/k⊥ ratios, calculated from Eq. (31)
at different values of φ0 and �1 − �3, are in the same ranges of experimental results for
different types of soils, as reported by Chapuis et al. (1989a), Rice et al. (1970) and Masad
and Muhunthan (2000). It should be noted that no directional pore space distribution data
is available for materials corresponding to the experimental τ⊥/τ‖ and k‖/k⊥ data in Fig. 7.
Consequently, further investigation is necessary to verify Eq. (31) by measuring both �i j

and ki j appropriately.

6 Concluding Remarks

This article presents a mathematical framework to determine the directional dependency of
tortuosity and anisotropic permeability of porous media, using a structural measure describ-
ing the anisotropic distribution of pore voids. The key to successful implementation of this
approach is the determination of directional variation of pores in porous media, which can be
done through digital image analysis using different methods. The tortuosity tensor is derived
based on a volume averaging approach and is related to the directional pore voids distribution.
The permeability tensor is obtained from the macroscopic momentum balance equations of
the fluid, which is related to the tortuosity tensor and eventually expressed as a function of
the directional distribution of pore voids. When simplified to isotropic porous media, the
theoretical analysis yields an explicit expression for the tortuosity as a function of porosity,
which is in agreement with experimental data in the literature. The analytical results for
anisotropic porous materials are qualitatively consistent with experimental observations, for
both the measured tortuosity and the permeability of different materials. It is evident that the
proposed approach is adequate in terms of describing the response of porous media exhibiting
an inherent anisotropy. A systematic experimental study is ongoing for the verification of the
proposed approach.

Acknowledgments Partial funding provided by the Natural Sciences and Engineering Research Council of
Canada is gratefully acknowledged.

Appendix A: Determination of T ∗
αij

for Flow Along Straight Stream Tubes in
Orthogonal Directions

Let us re-examine the case when flow occurs along straight stream tubes that connect oppo-
site sides of a cubic. It is assumed that the numbers of flow tubes are the same in all three
directions, corresponding to the areal porosity of φs

α . For simplicity, we assume that there
are N equal diameter tubes parallel to each axis. As such, the total intersection area of the
tubes with each side is Sαα = φs

α L2 and the total volume of the tubes is Vα = 3φs
α L3, which

corresponds to φ0 = 3φs
α . If flow takes place parallel to an axis, only the flow tubes in this

specific direction is active, which corresponds to an effective pore volume of Veα = φs
α L3

and an effective porosity of φeα = φs
α . The probability for any test line starting from the cen-

tre of the REV and intersect the end of a stream tube on any side of the REV is P2(ν) = φs
α .
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Replacing Vα with Veα in Eq. (18), the tortuosity tensor is determined as

T ∗
αi j = 1

Veα

∫

S

φs
α

L

2
νiν j dS = φs

α

Veα

∫

S

L

2
νiν j dS = L

2

φs
α

Veα
(2L2δi j ) = δi j

which yields αi j = δi j , T ∗
α0 = 1. According to Eq. (7), the permeability corresponding to

for flow along straight stream tubes is given as

k = φ3
α

Cα(1 − φα)2(�
β
αβ)2

A comparison of the above relation with the Kozeny–Carman equation at τ = 1 leads to
Cα = C0.

Appendix B: Determination of T ∗
αij

in Eq. (19)

By applying Eq. (15), T ∗
αi j as expressed in Eq. (18) is determined as follows:

T ∗
αi j = 1

Vα

∫

S

φ0

(

δpq − 1

2
�pq

)

νpνq Rφ0(δkl + �kl)νkνlνiν j dS

= Rφ2
0

Vα

∫

S

(δkl + �kl)

(

δpq − 1

2
�pq

)

νpνqνkνlνiν j dS

= 4π Rφ2
0

3Vα

3

4π

∫

S

(δkl + �kl)

(

δpq − 1

2
�pq

)

νpνqνkνlνiν j dS

= φ
3

4π

0

∫

S

(δkl + �kl)

(

δpq − 1

2
�pq

)

νpνqνkνlνiν j dS

= 3φ0

4π
Mi jklpq(δkl + �kl)

(

δpq − 1

2
�pq

)

= φ0

(

δi j (1 + 1

35
�kl�kl) + 3

7
�i j + 4

35
�ik�k j

)

where

Mi jklpq =
∫

S

νiν jνkνlνpνqdS

= 4π

105

[
δi j

(
δklδpq + δkpδlq + δkqδlp

) + δik
(
δ jlδpq + δ j pδlq + δ jqδlp

)

+δil
(
δ jkδpq + δ j pδkq + δ jqδkp

) + δi p
(
δ jkδlq + δ jlδkq + δ jqδkl

)

+δiq
(
δ jkδlp + δ jlδkp + δ j pδlk

)]
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