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Abstract In this work, we develop a macroscopic model for diffusion–migration of ionic
species in saturated porous media, based on periodic homogenization. The prior application
is chloride transport in cementitious materials. The dimensional analysis of Nernst–Planck
equation lets appear dimensionless numbers characterizing the ionic transfer in porous media.
Using experimental data, these dimensionless numbers are linked to the perturbation param-
eter ε. For a weak-imposed electrical field, or in natural diffusion, the asymptotic expansion
of Nernst–Planck equation leads to a macroscopic model coupling diffusion and migration
at the same order. The expression of the homogenized diffusion coefficient only involves
the geometrical properties of the material microstructure. Then, parametric simulations are
performed to compute the chloride diffusion coefficient through different complexity of the
elementary cell to go on as close as possible to experimental diffusion coefficient of the two
cement pastes tested.

Keywords Ionic transfer · Chlorides · Cementitious materials · Modeling ·
Periodic homogenization · Electrodiffusion test

1 Introduction

All reinforced concrete structures are subjected to aggressive environment, mainly carbon
dioxide and chlorides. Chlorides come from marine environment in coastal regions or from
de-icing salts in the other cold regions. The penetration of these aggressive agents through
concrete cover leads to the corrosion of steel rebar in reinforced concrete (Poupard et al.
2003a,b). Important funds are spent for maintenance and repairs of degraded structures, the
importance of which increases more and more. In European regions, the maintenance costs
reach in the beginning of the century about e 5 billions per year (Klinghoffer et al. 2000).
Therefore, many researches have focused on this topic, and on getting the chloride diffusion
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coefficient by applying Fick’s laws or by developing accelerated tests in laboratories (Amiri
et al. 1997). Later, other researches proved that Fick’s laws seem not to be valid because of
three main reasons:

– The ionic transport is different from the molecular or particle transport. In ionic transport,
there are electrochemical interactions between the different ions contained in the pore
solution and a global approach of studying the movement of all species contained in the
pore solution must be undertaken to correctly describe the chloride transport (Amiri et al.
2001a,b).

– The cementitious materials are strongly heterogeneous because of the cement hydration
processes with the presence of aggregates (sand and gravels) in case of concrete. The
different hydrates formed are with different geometries, shapes, and sizes. They lead to
complex microstructure geometry. Therefore, approaches considering the material homo-
geneous do not allow accurately to describe the transfer processes within the material.
With Fick’s approach, the cementitious material seems to be a black box, where only
boundary and initial conditions around the specimen are monitored (Amiri et al. 1997).

– There are chemical and electrochemical interactions at the interface between the ionic
pore solution and the solid phase, mainly the cement matrix (Friedmann et al. 2004).

Therefore, to investigate the mechanisms involved during the ionic diffusion through cement-
based materials, it seems necessary to undertake modeling and adequate experimental studies
accounting for the phenomena cited above. Therefore, we propose in this work to compute a
macroscopic predictive modeling of ionic transfer in cementitious porous materials, taking
into account the microstructure and the multi-scale properties of such materials.

Homogenization techniques, which enable to obtain macroscopic or homogenized equa-
tions from the behavior at the microscopic level, have been developed since the 1970s. The
first works, based on a direct volume averaging of local or microscopic equations, have been
developed in Whitaker (1983), Whitaker et al. (1988). The application of this volume averag-
ing technique has been essentially limited to linear transfer equations (Whitaker et al. 1988;
Quintard and Whitaker 1993). For nonlinear equations, and in particular for the nonlinear
Nernst–Planck Poisson system1 considered in this paper, its application encountered some
difficulties. In parallel, from the end of the 1970s, periodic homogenization techniques, based
on the double scale asymptotic expansion analysis, have been developed (Bensoussan et al.
1978; Sanchez Palencia 1980). They have already been applied successfully to transport laws
in porous media and in particular to Fick’s diffusion (Auriault and Lewandowska 1996), and
even for nonlinear diffusion (Auriault and Lewandowska 1997) or nonlinear flows (Skjetne
and Auriault 1999). It has been also extended to a coupling with electrical potential gradients
by quasi-static Maxwell and Navier–Stokes equations (Auriault and Strzelecki 1981), or to
an alternative microscale bulk formulation for expansive clays (Moyne and Murad 2003,
2006).

In this work, we propose to apply the periodic homogenization technique to the non-
linear Nernst–Planck–Poisson system. Given the representative elementary volume (REV)
of a cement-based material, we will consider an isotropic transfer in the fluid phase of the
material. In a first step, we consider the case of cement pastes with 0.5 and 0.7 water/cement
ratios. For this kind of cement-based materials, the main porosity is a capillary porosity,
where the electrical double layer effect could be neglected. Therefore, the experimental val-
idation of the proposed approach is performed on these two cement pastes, for which the
homogenization process at the scale of capillary porosity is relevant. The paper begins with

1 Which governs the ionic transfer in porous materials.
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Fig. 1 Modelling of the material microstructure with a periodic elementary cell. a The sample of cement
paste considered. b Example of periodic microstructure for saturated porous materials

the theoretical background and the modeling basis. After that, the experimental validation
on cement pastes is carried out. Finally, numerical simulations for computing homogenized
transfer properties, mainly the calculation of macroscopic diffusion coefficient are presented.
These simulations were performed by considering different geometries of elementary cells,
which integrate tortuosity and constrictivity factors of the materials porous network.

2 Coupled Transport Equations in Saturated Porous Media

The medium considered is a heterogeneous saturated porous material, the microstructure of
which contains two phases: a solid phase of cement paste and eventually aggregates, in case
of mortars or concrete Ωs∗ , and a liquid phase Ωf∗ (see Fig. 1). We note Γfs∗ the boundary
between the solid and the liquid phases, and V ∗ the convection velocity of the fluid assumed
to be incompressible. The chemical interactions between the liquid and the solid phases are
neglected.

In what follows, we will index by a star (∗) all dimensional variables. The variables without
a star are dimensionless. Moreover, grad∗, div∗, and Δ∗ will denote the three-dimensional
gradient, divergence, and Laplacian with respect to the dimensional variables, respectively.

The diffusion in the fluid phase is described by Nernst–Planck equation2 coupled with
Poisson equation characterizing the electrical fields accelerating the ionic transfer. Nernst–
Planck–Poisson system is generally written for an isotropic diffusivity assumed in the fluid
phase (Amiri et al. 2001a; Bard and Faulkner 2001; Lipkowski and Ross 1994; Newman and
Thomas-Alyea 2004; Samson et al. 1999):

∂∗C∗
k

∂t∗
+ div∗(−D∗

k gradC∗
k − F

RT
D∗

k grad∗Ψ ∗ ZkC∗
k + V ∗C∗

k

)
= 0 in Ωf∗ (1)

where C∗
k denotes the concentration of the ionic species k of valence Zk, D∗

k its molecu-
lar diffusion coefficient in the liquid phase (the pore solution for cementitious materials),

2 This equation corresponds to the mass conservation for the ionic species of concentration Ck∗ diffusing in
the liquid phase.
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E∗ = −grad∗Ψ ∗ the electrical field in the solution, F and R, respectively, the Faraday and
the ideal gas constant, T the temperature of the fluid, and V ∗ the convection velocity of the
fluid.

The Poisson equation characterizing the potential Ψ ∗ writes

Δ∗Ψ ∗ = −ρ
∗

εv
in Ωf∗ (2)

where εv = ε0ε f denotes the dielectric constant of the fluid phase. The electrical charge
density ρ∗ is defined by

ρ∗ =
N∑

k=1

F ZkC∗
k (3)

where N denotes the number of ionic species involved in the transfer.
The solid phase in cementitious saturated porous materials can be considered as non con-

ductive with respect to the fluid one. The boundary conditions associated with Eqs. (1) and
(2) write:

D∗
k (grad∗C∗

k + F Zk

RT
grad∗Ψ ∗) · n = 0 on Γ ∗

sf (4)

and

grad∗Ψ ∗ · n = 0 on Γ ∗
sf (5)

where n denotes the external unit normal to the solid domainΩs∗ . These Neumann boundary
conditions represent the non penetration of the ionic species and of the electrical field in the
solid phase Ωs∗ (the solid phase is considered non conductive).

Moreover, considering the homogeneous boundary condition (5) is equivalent to neglect
the electrocapillary adsorption at the liquid–solid interface, which constitutes the electrical
double layer. This is coherent with the homogenization procedure which will be performed
at the scale of the capillary porosity of the cement pastes considered, where the characteristic
length of the elementary cell is much larger than the Debye’s length so that the double layers
effect can be neglected in a first step of our researches.

Equation (1) must be completed with Stokes equation and the incompressibility condition
for the fluid:

div∗V ∗ = 0 in Ω∗
f (6)

However, in saturated cementitious materials the convection velocities are very weak and the
convection phenomena are negligible (see Sect. 3.3). Thus, in our study, the Stokes equation
will not be developed. It would lead after homogenization to the classical Darcy equation at
the macroscopic scale (Sanchez Palencia 1980; Auriault and Lewandowska 1996).

3 The Periodic Homogenization Procedure

The periodic homogenization technique relies on the assumption that the microstructure of
the material can be considered as periodical, i.e., as the repetition of an elementary cell the
size and complexity of which depend on the real microstructure. In general, even if this
assumption is never verified exactly, it constitutes a good approximation of the reality if the
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elementary cell is sufficiently complex and constitutes a kind of a REV. Once this assump-
tion admitted, the fields involved (concentration, electrical field,…) and their derivatives
must be considered as periodical on the cell boundary so that the problem is mathematically
consistent.

3.1 Description of the Periodic Microstructure

Let us consider at the macroscopic scale that the material studied (here a cement paste on
Fig. 1a) occupies the domain S∗ of the three-dimensional space R

3, with a characteristic
length L . At the macroscopic level, a current point of S∗ will be noted x∗ = (x∗

1 , x∗
2 , x∗

3 ).
We assume that the material S∗ has a periodic microstructure, or equivalently is consti-

tuted of the periodic repetition of an elementary cell Ω∗ = Ω∗
f ∪ Ω∗

s composed of a fluid
phaseΩ∗

f and of a solid phaseΩ∗
s (Fig. 1). The boundary Γ ∗ ofΩ∗

f is composed of the inner
boundary Γ ∗

fs between the fluid and the solid phases, and of the part Γ ∗
ff between the fluid

phases of two neighbouring cells. At the microscopic level, a current point of the elementary
cell Ω∗ is noted y∗ = (y∗

1 , y∗
2 , y∗

3 ).
Moreover, the size l of the elementary cellΩ∗ is assumed to be very small with respect to

the dimension L of the material. This is a condition of the homogenizability of the problem.
Thus, the aspect ratio ε satisfies

ε = l

L
� 1

Finally, problem (1)–(5) written at the microscale level (at the scale of the elementary cell)
must be completed with boundary conditions at the macroscale level or equivalently at the
scale of the material S∗. In this work, we consider that the concentrations C∗

k of the ionic
species are given on the boundary ∂S∗ of the structure S∗, and that the electrical field E∗
may be imposed on ∂S∗ if we are not in natural diffusion. Moreover, the initial conditions
at t∗ = 0 are assumed to be given by the experimental data (see experimental procedure
described in Sect. 3.3).

3.2 Dimensional Analysis of Equations

The dimensional analysis of Eqs. (1)–(6) is similar to that developed in Millet et al. (2008).
Following the reasoning of Auriault and Lewandowska (1996), Hamdouni and Millet (2003),
Millet et al. (1997, 2001), we define dimensionless physical data and dimensionless unknowns
of the problem:

y = y∗

l
, x = x∗

L
, t = t∗

tr
, Dk = D∗

k

Dr
, Ck = C∗

k

Cr
, Ψ = Ψ ∗

Ψr
, V = V ∗

Vr
(7)

where the variables indexed by r are the reference ones and the new variables which appear
(without a star) are dimensionless. The microscopic length l will be used to normalize the
spatial differential operators.

Introducing the dimensionless variables previously defined in Eqs. (1) and (2), we obtain
a new dimensionless problem posed in Ω f :

τ
∂Ck

∂t
+ div

(
−DkgradCk − RDkgradΨ ZkCk + PV Ck

)
= 0 in Ωf (8)

AΔΨ = −ρ in Ωf (9)
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where grad, div, and Δ denote respectively the three-dimensional gradient, divergence, and

Laplacian with respect to non-dimensional variables, and where we set ρ =
∑N

k=1
ZkCk .

The associated dimensionless boundary conditions become

Dk(gradCk + RgradΨ ZkCk) · n = 0 on Γsf (10)

(gradΨ ) · n = 0 on Γsf (11)

Hence, the dimensional analysis of Nernst–Planck and Poisson equations naturally leads to
dimensionless numbers characterizing the diffusion–migration–convection problem:

P = Vrl

Dr
, τ = l2

Drtr
, R = Ψr F

RT
, A = Ψrεv

Fl2Cr
. (12)

The first one is the classical Peclet number, ratio of the convective to the diffusive effects. The

dimensional number τ = l2

Drtr
represents the ratio of the characteristic time l2

Dr
of the molec-

ular diffusion at the microscale to the characteristic time at the macroscale tr defined in (7). It

is a small parameter of the problem. The dimensionless number R = Ψr F

RT
depends directly

on the applied electrical potential and can take important values. Finally, A = Ψrεv

Fl2Cr
cou-

ples the effects of the applied electrical potential and the concentrations of the ionic species
in the pore solution of the material.

3.3 Reduction to a One-Scale Problem

To apply the periodic homogenization procedure to the problem of ionic transport considered,

we must reduce first our dimensionless problem to a one-scale problem. To do this, ε = l

L
is chosen as the reference perturbation parameter. Then, the other dimensionless numbers,
which are given data for the cement pastes studied (see Sect. 5 of this paper), are linked to ε.

• First, the determination of the aspect ratio ε = l

L
of the homogenization problem comes

directly from the results of the mercury intrusion porosimetry (MIP). For the cement paste,
we will consider a characteristic length of the elementary cell3 l = 10μm. Therefore,
we have

ε = l

L
= 10−3

• We focus in this paper on diffusion–migration of chlorides through cements pastes, the
diffusion coefficient of which in infinite dilution in water at 25◦C is 10−9 m2 s−1 so
that we consider here that Dr = 10−9 m2 s−1. Moreover, in the chlorides migration
tests developed (see Sect. 5), the chlorides concentration involved is 0.5 mol l−1 (equiv-
alent to seawater concentration) so that we consider that the reference concentration is
Cr = 0.5 mol l−1.

• On the other hand, the convection velocity Vr of the fluid in the process of ionic transfer
studied is very slow. It is of the order of Vr = 10−13m s−1 (or equivalently 1 mm per
week) so that we have P = O(ε2).

3 For the homogenization process to be consistent, the mean pore radii must be small with respect to the size
l of the elementary cell.

123



Modeling the Chlorides Transport in Cementitious Materials 443

• Finally, in the case of a natural diffusion or a weak applied electrical field, the reference
time representative of the diffusion process is rather long; it could be of the order of
several weeks (or even several months) so that we shall consider tr = 106 s.

Therefore, in the case of a weak applied electrical field and a weak convection velocity,
the orders of magnitude of the dimensionless numbers considered stands:

R = O(1), A = O(ε2), τ = O(ε2) and P = O(ε2) (13)

4 The Macroscopic Diffusion–Migration Model for a Weak Applied Electrical Field
or a Natural Diffusion

For the order of magnitude of the dimensional numbers considered in (13), the non-dimen-
sional equations (8)–(9) reduce to:

ε2 ∂Ck

∂t
+ div

(
−DkgradCk − DkgradΨ ZkCk + ε2PV Ck

)
= 0 (14)

ε2ΔΨ = −ρ (15)

with the associated boundary conditions:

Dk(gradCk + ZkCkgradΨ ) · n = 0 on Γsf (16)

(gradΨ ) · n = 0 on Γsf (17)

4.1 Asymptotic Expansion of Equations

The classical procedure of periodic homogenization (Bensoussan et al. 1978; Sanchez
Palencia 1980) leads to search the unknowns Ck, Ψ, V of the problem as functions depending
on the macroscopic variable x , on the microscopic variable y, and on the time t , considered
as separate variables. This is justified because of the separation of scales (ε � 1). Moreover,
the unknowns Ck, Ψ, V of the problem are postulated to admit a formal expansion with
respect to ε:

Ck = C0
k (x, y, t)+ εC1

k (x, y, t)+ ε2C2
k (x, y, t)+ · · ·

Ψ = Ψ 0(x, y, t)+ εΨ 1(x, y, t)+ ε2Ψ 2(x, y, t)+ · · ·
V = V 0(x, y, t)+ εV 1(x, y, t)+ ε2V 2(x, y, t)+ · · ·

(18)

Finally, as ρ =
∑N

k=1
ZkCk , it admits as well an expansion will respect to ε, similar to (18).

An important point concerns the calculation of the derivative operators grad and div with
respect to the functions Ci

k(x, y, t), Ψ i (x, y, t), V i (x, y, t), for i ∈ N
∗. As these func-

tions depend on the independent space variables x and y, the derivatives must be considered
as composed derivative of several variable functions. In other terms, according to the sepa-
ration of variables with respect to the scales L and l = εL , and to the dimensional analysis
performed, we have

grad = ∂

∂y
+ ε

∂

∂x
; div = divy + εdivx ; Δ = Δy + 2ε

∂2

∂x∂y
+ ε2Δx (19)
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where
∂

∂y
, divy , and Δy denote respectively the gradient, the divergence, and the Lapla-

cian with respect to the local variable y,
∂

∂x
, divx , and Δx , respectively, the gradient, the

divergence, and the Laplacian with respect to the macroscopic variable x .
Replacing Ck, Ψ , and V by their expansions (18) in the dimensionless equilibrium equa-

tions (14)–(17) and equating to zero the factors of successive powers of ε, we obtain the
coupled problems P0, P1, . . ., corresponding respectively to the cancellation of the factors
of ε0, ε1, …

4.2 The Macroscopic Diffusion–Migration Model

Result 1 For orders of the dimensionless numbers such as R = O(1), A = O(ε2),

τ = O(ε2), and P = O(ε2), the leading terms C0
k of the expansion of Ck satisfy the

electroneutrality assumption at the first order:

ρ0 =
N∑

k=1

ZkC0
k = 0 (20)

Moreover, the macroscopic concentration C0
k and potential Ψ 0 at the scale of the material

are solution of the homogenized diffusion–migration model:

ϕ
∂C0

k

∂t
− divx

(
Dhom

k
∂C0

k

∂x
+ Dhom

k
∂Ψ 0

∂x
ZkC0

k

)
= 0 (21)

The homogenized diffusion tensor Dhom
k is given by

Dhom
k = 1

|Ω|
∫

Ω f

Dk

(
I + ∂χ

∂y

)
dΩ (22)

where the vector χ(y) is the solution of the boundary problem:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

divy

(
Dk

(
I + ∂χ

∂y

))
= 0 in Ωf

Dk

(
I + ∂χ

∂y

)
· n = 0 on Γsf

(23)

Demonstration : The demonstration of this result is split into four steps from (i) to (iv)

(i) The electroneutrality assumption
The cancellation of the factor of ε0 in Poisson equation (15) leads straightforward at
order zero to the electroneutrality condition:

ρ0 =
N∑

k=1

ZkC0
k = 0 (24)

Thus, for the orders of the dimensional numbers considered (corresponding to a weak
imposed electrical field or a natural diffusion), the electroneutrality assumption is jus-
tified at the first order from the asymptotic expansion of equations.

(ii) The fields C0
k and ψ0 do not depend on y
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The cancellation of the factor of ε0 in Nernst–Planck equations (14) and (16), leads to
problem P0 :

divy

(
−DkgradyC0

k − DkgradyΨ
0 ZkC0

k

)
= 0 (25)

with the associated boundary conditions:

Dk(gradyC0
k + ZkC0

k gradyΨ
0) · n = 0 on Γsf (26)

To prove that the fields C0
k and Ψ 0 do not depend on y at the leading order, let us write the

weak formulation associated to Eq. (25). To do this, let us multiply (25) by a test function
νk ∈ V , where V denotes the space of test functions without entering into mathematical
considerations4. Moreover, for the simplicity of the proof, let us consider that the diffusion
coefficient Dk is constant and does not depend on y (it is the case in the diffusion–migration
problems that will be considered in Sect. 5). Then, an integration upon the fluid domainΩf ,
by the divergence theorem, boundary conditions (26), and the periodicity of the fields on Γff ,
leads to

∫

Ωf

gradyC0
k · gradyνkdy +

∫

Ωf

ZkC0
k gradyΨ

0 · gradyνkdy = 0 νk ∈ V (27)

where the dot denotes the scalar product of R
3. Hence, choosing νk = ψ0 in (27), it stands:

∫

Ωf

gradyC0
k · gradyψ

0dy +
∫

Ωf

ZkC0
k ‖gradyΨ

0‖2dy = 0 (28)

where ‖u‖2 denotes the classical norm of vector u in R
3. Now, let us multiply (28) by Zk for

each k and sum the equations obtained. It leads to

∫

Ωf

grady

(
N∑

k=1

ZkC0
k

)
· gradyψ

0dy +
∫

Ωf

(
N∑

k=1

Z2
k C0

k

)
‖gradyΨ

0‖2dy = 0 (29)

Using the electroneutrality condition at order zero (Eq. (24)), the first term of Eq. (29) van-
ishes and we finally obtain

∫

Ωf

(
N∑

k=1

Z2
k C0

k

)
‖gradyΨ

0‖2dy = 0 (30)

As all the concentrations Ck are by definition positive or null, this stays valid at the leading
order and we have C0

k ≥ 0 ∀k. Moreover, at least one of the concentration is different from
zero, for the problem to be physically consistent so that there exists k such as C0

k 
= 0, and

by consequence
∑N

k=1
Z2

k C0
k > 0. Therefore, Eq. (30) implies that ‖gradyΨ

0‖2 = 0 or
equivalently:

Ψ 0 = Ψ 0(x, t) (31)

4 In fact, we have here V = H1(Ωf ) where H1(Ωf ) denotes the classical Hilbert space of order one.
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To finish, let us come back to the weak formulation (27). Accounting for (31), choosing
vk = C0

k , it reduces to:
∫

ΩP f

‖gradyC0
k ‖2dy = 0 (32)

which implies that gradyC0
k = 0 or equivalently:

C0
k = C0

k (x, t) (33)

Hence, we have proved that at the leading order, the fields C0
k and Ψ 0 do not depend on the

microscopic variable y.

(iii) Determination of Ψ 1 and C1
k

According to (31) and (33), the cancellation of the factor of ε1 in Nernst–Planck equations
leads to the problem P1 which reduces to5:

divy

(
Dk

(
∂C0

k

∂x
+ ∂C1

k

∂y

)
+ Dk

(
∂Ψ 0

∂x
+ ∂Ψ 1

∂y

)
ZkC0

k

)
= 0 in Ωf (34)

(
Dk

(
∂C0

k

∂x
+ ∂C1

k

∂y

)
+ Dk

(
∂Ψ 0

∂x
+ ∂Ψ 1

∂y

)
ZkC0

k

)
· n = 0 on Γsf (35)

Let us write Eqs. (34) and (35) on the following form:

divy

(
Dk

(
∂C1

k

∂y
+ ∂Ψ 1

∂y
ZkC0

k

))
= −divy

(
Dk

(
∂C0

k

∂x
+ ∂Ψ 0

∂x
ZkC0

k

))

(
Dk

(
∂C1

k

∂y
+ ∂Ψ 1

∂y
ZkC0

k

))
· n =

(
−Dk

(
∂C0

k

∂x
+ ∂Ψ 0

∂x
ZkC0

k

))
· n

and consider that the right hand side involving C0
k (x, t) and Ψ 0(x, t) is known. The left

hand side is elliptic with respect to C1
k + Ψ 1 ZkC0

k and we can prove that we have

C1
k + Ψ 1 ZkC0

k = A
1
(x, t)+ χ(y) ·

(∂C0
k

∂x
+ ∂Ψ 0

∂x
ZkC0

k

)
in Ωf (36)

where χ is a periodic function of the variable y of zero average on Ωf . Then, replacing
expression (36) in Eq. (34), according to boundary conditions (35), we obtain the boundary
value problem characterizing χ :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

divy

(
Dk

(
I + ∂χ

∂y

))
= 0 in Ωf

Dk

(
I + ∂χ

∂y

)
· n = 0 on Γsf

(37)

where I denotes the identity of R
3.

(iv) The macroscopic diffusion–migration model

5 The problem P0 is trivially satisfied according to (18).
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According to the previous results, problem P2 reduces to

∂C0
k

∂t
− divx

(
Dk

(
∂C0

k

∂x
+ ∂C1

k

∂y

)
+ Dk

(
∂Ψ 0

∂x
+ ∂Ψ 1

∂y

)
ZkC0

k

)

−divy

(
Dk

(
∂C1

k

∂x
+ ∂C2

k

∂y

))
−divy

(
Dk

(
∂Ψ 1

∂x
+ ∂Ψ 2

∂y

)
ZkC0

k

)

−divy

(
Dk

(
∂Ψ 0

∂x
+ ∂Ψ 1

∂y

)
ZkC1

k

)
= 0 in Ωf

(38)

The associated boundary conditions write

(
Dk

(
∂C1

k

∂x
+ ∂C2

k

∂y

)
+ Dk

(
∂Ψ 1

∂x
+ ∂Ψ 2

∂y

)
ZkC0

k

Dk

(
∂Ψ 0

∂x
+ ∂Ψ 1

∂y

)
ZkC1

k

)
· n = 0 on Γsf

(39)

The integration of the Eq. (38) on the fluid domain Ω f leads to

|Ωf |∂C0
k

∂t
−

∫

Ωf

divx

(
Dk

(
∂C0

k

∂x
+ ∂C1

k

∂y

)
+ Dk

(
∂Ψ 0

∂x
+ ∂Ψ 1

∂y

)
ZkC0

k

)
dΩ = 0 in Ωf

where we have used the divergence theorem, the boundary conditions (39), and the periodicity
conditions on Γff to simplify the result.

To finish, let us replace C1
k + Ψ 1 ZkC0

k by its expression (36) in the previous equation.
We obtain the macroscopic diffusion–migration model of result 1:

ϕ
∂C0

k

∂t
− divx

(
Dhom

k
∂C0

k

∂x
+ Dhom

k
∂Ψ 0

∂x
ZkC0

k

)
= 0

where the homogenized diffusion tensor Dhom
k is given by

Dhom
k = 1

|Ω|
∫

Ωf

Dk

(
I + ∂χ

∂y

)
dΩ

and where χ is the solution of the boundary value problem (23).

4.3 Back to Dimensional Variables

To go back to the initial dimensional variables, let us define

C∗0
k = CrC

0
k , ψ∗0 = ψrψ

0, D∗hom
k = Dr Dhom

k , χ∗ = lχ (40)

We then have the following result:

Result 2 For orders of the dimensionless numbers such as R = O(1), A = O(ε2),

τ = O(ε2), P = O(ε2), the leading terms C∗0
k satisfy the electroneutrality assumption

at the first order:

ρ∗0 =
N∑

k=1

ZkC∗0
k = 0 (41)
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Moreover, the macroscopic concentration C∗0
k and potential Ψ ∗0 at the scale of the material

are solutions of the dimensional homogenized diffusion–migration model:

ϕ
∂C∗0

k

∂t∗
− divx∗

(
D∗hom

k
∂∗C∗0

k

∂x∗ + F Zk

RT
D∗hom

k
∂∗Ψ ∗0

∂x∗ C∗0
k

)
= 0 (42)

The homogenized dimensional diffusion tensor D∗hom
k is given by:

D∗hom
k = 1

|Ω∗|
∫

Ω∗
f

D∗
k

(
I + ∂∗χ∗

∂y∗

)
dΩ∗ (43)

where the vector χ∗(y∗) is the solution of the boundary problem:
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

divy∗
(

D∗
k

(
I + ∂∗χ∗

∂y∗

))
= 0 in Ωf∗

D∗
k

(
I + ∂∗χ∗

∂y∗

)
· n = 0 on Γ ∗

sf

(44)

Proof Let us go back to the physical variables (40) in equations of result 1. It stands

ϕtr
Cr
ϕ
∂C∗0

k

∂t∗
− divx∗

( L2

Cr Dr
D∗hom

k
∂∗C∗0

k

∂x∗ + L2

DrψrCr
ZkD∗hom

k
∂∗Ψ ∗0

∂x∗ C∗0
k

)
= 0

or equivalently

ϕε2

τ

∂C∗0
k

∂t∗
− divx∗

(
D∗hom

k
∂∗C∗0

k

∂x∗ + 1

R

F Zk

RT
D∗hom

k
∂∗Ψ ∗0

∂x∗ C∗0
k

)
= 0

Then using the order of magnitude of the dimensionless numbers given by (13), we have
τ = O(ε2) and R = O(1), which leads to the dimensional equation (42). The end of the
proof of the result does not contain any difficulty and is left to the reader. ��

5 Experimental Study

In this experimental study, two cement pastes were submitted to electrodiffusion test by
applying an external electrical field to accelerate the transport process (Amiri et al. 1997).
In addition of the microstructure parameters given by the literature (Aït-Mokhtar et al. 1999,
2004) some other parameters involved in this experimental study served in parallel for the
boundary conditions used in the simulations carried out in the sections below.

5.1 Materials

Prismatic specimens (12 × 12 × 20) cm of two cement pastes (with two water/cement w/c
ratios: 0.5 and 0.7) were manufactured without any workability agent. The cement used is of
type CEM I 52.5 (according to European standards EN 197-1) with the chemical composi-
tion given in Table 1. In order to avoid leaching phenomena, the specimens have been cured,
just after being turned, during 28 days in an alkaline solution, which is closed to the natural
interstitial solution of cement-based materials, namely 83 mol m−3 KOH, and 25 mol m−3

NaOH (Amiri et al. 2001a,b; Friedmann et al. 2004, 2008).
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Table 1 Chemical composition of cement used

Oxides CaO SiO2 Al2O3 Fe2O3 MgO K2O
Composition (wt%) 64.02 19.81 5.19 2.38 0.9 1.11
Oxides Na2O SO3 TiO2 MnO SiO P2O5
Composition (wt%) 0.06 3.5 0.28 0.05 0.15 0.16

Table 2 Characteristics of the
tested cement pastes

Type of cement paste w/c Porosity Hg (%)

Paste 1 0.5 18
Paste 2 0.7 29
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Fig. 2 Pore size distributions of the cement pastes obtained by MIP

5.2 Porosimetry Tests

The porosities and the pore size distribution of the cement pastes were measured by the
MIP. Samples were appropriated from the heart of the prismatic specimens and then dried
during 24 h at 70◦C. Mercury injection measurements were done with Micromeritics poros-
imeter (Autopore III 9420) the range of pressure of which reaches more than 400 MPa. This
pressure allows the mercury to penetrate pores of 3 nm of diameter approximately, according
to Laplace law:

d = −4σ cos θ

p

where d is the equivalent diameter of the intruded pores, σ the surface tension of mercury
(0.485 Nm−1), θ the contact angle between mercury and the pore walls system (130◦), and p
is the pressure at which a given increment of mercury intrudes the pores (Aït-Mokhtar et al.
1999, 2004).

The values of the obtained porosities and of the pore size distributions are shown, respec-
tively, in Table 2 and in Fig. 2.

Figure 2 shows that paste 1 (with w/c = 0.5) presents mono-modal distribution corre-
sponding to capillary porosity. On the other hand, the paste 2 (with w/c = 0.7) presents a
tri-modal distribution corresponding to weak micro porosity and a large capillary porosity.
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Fig. 3 Experimental device used for electrodiffusion tests

In addition of the capillary porosity, this distribution highlights a larger pore diameter, respec-
tively around 0.6 and 200μm, approximately.

5.3 Electrodiffusion Test

Samples tested in electrodiffusion were obtained by a technique of core sampling and cutting
to a disk measuring 6.5 cm in diameter and 1 cm in thickness. This kind of samples allows
avoiding wall effects, classically encountered in cementitious materials. The lateral surface
was covered with a resin to insure a unidirectional transfer. The experimental setup is depicted
in Fig. 3. The sample is placed between two compartments. The upstream one is of 2 l vol-
ume, while the downstream one is 1 l, so as it allows detecting earlier chlorides by dosage in
this downstream compartment. A voltage is applied between two platine electrodes using a
potentiostat with a four electrode device. The two other electrodes are reference electrodes
used to monitor a constant electrical field accurately (300 V m−1) between the opposite faces
of the sample. The concentrations of NaOH and KOH are the same as those used for the cure
described in Sect. 5.1. In a first step, the electrical field is applied to the cell containing the
same basic solution of KOH and NaOH in upstream and downstream compartments. After
reaching a first steady state regime, 500 mol m−3 concentration of NaCl was added to the
upstream and, once again, the electrical field is applied. Then, chlorides migrate through the
sample toward the downstream. The chloride concentration is measured in the downstream
by potentiometric titration until obtaining a constant chloride flux corresponding to the steady
state (see Fig. 4). The titration method consists in comparing the measured potential between
two electrodes in a solution of unknown chloride concentration (selective electrode) with
potential measured in a solution of known chloride concentration (working electrode). The
two electrodes are connected to a millivoltmeter. After each dosage, the two compartment
solutions are renewed with respect to the boundary conditions: a constant chlorides concen-
tration at the upstream (500 mol m−3) and no chlorides at the downstream.
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Fig. 4 Evolution of the cumulated chlorides concentration in the downstream compartment according to time

5.4 Results

The evolution of cumulated chloride concentration according to time, in the downstream
compartment is given in Fig. 4. The gradient of the linear part of the curve gives the constant
flux at the steady state:

J ∗ = ΔC∗
Cl− Va∗

Δt∗ A∗ (45)

where Va∗ is the volume of the downstream compartment of the cell, A∗ is the sample surface
submitted to ionic transfer andΔC∗

Cl− is the variation of the chloride concentration measured
during a period of time Δt∗.

The determination of the experimental macroscopic diffusion coefficient is given by the
available literature (Amiri et al. 2001b) which shows that it can be expressed as:

D∗exp
Cl− = RT J ∗

ZCl− F‖E∗0‖C∗
0

(
1 − exp

(
− ZCl− F

RT
Ue

))
(46)

where C∗
0 denotes the initial chloride concentration in the upstream compartment, Ue the

potential difference applied over the sample’s length L . Note that literature highlights that
the macroscopic diffusion coefficient is the same whatever the value of the accelerated elec-
trical field, i.e., migration or natural diffusion.

For the two cement pastes considered, the measured chloride flux J ∗ and the value of the
diffusion coefficient D∗exp

Cl− are obtained from the numerical application of Eq. (46). They are
summarized in Table 3.

Table 3 Values of flux and
diffusion coefficient obtained for
the two cement pastes tested

Type of cement paste w/c = 0.5 w/c = 0.7

J∗ (mol m−2 s−1) 3.42 × 10−5 7.72 × 10−5

D
∗exp
Cl− (m2 s−1) 5.95 × 10−12 13.40 × 10−12
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y1

y2*

*

Fig. 5 Periodic microstructure with cylindrical pores

6 Simple Cylindrical Pore Model

6.1 Analytical Solution for Cylindrical Pore Geometry

Let us consider the simple case of a porous material the microstructure of which is constituted
of cylindrical pores6, where the direction y∗

3 is that of the axis of the pores (Fig. 5). In that
case, we can exhibit an analytical solution χ∗(y∗) of problem (47). It is generally not the
case as soon as the microstructure is more complex.

For sake of simplicity, we consider that the transfer in the fluid phase is isotropic, and that
the diffusion coefficient D∗

k is constant. The expression of D∗hom
k becomes

D∗hom
k = D∗

k

|Ω∗|
∫

Ωf∗

(
I + ∂∗χ∗

∂y∗

)
dΩ∗

where the vector χ∗(y) is solution of the Neumann problem:
⎧
⎨
⎩
Δy∗χ∗ = 0 in Ωf∗
∂χ∗

∂y∗ · n = −n on Γ ∗
sf

(47)

The periodical condition of χ∗ on the cell boundary Γ ∗
ff is automatically satisfied (because

of the geometry of the cell). According to the geometry of the problem, we search a solution
χ∗(y∗

1 , y∗
2 ) not depending on the variable y∗

3 , the components χ∗
i of which are solution of

Δy∗χ∗
i = 0 in Ωf∗ for i = 1, 2, 3

with the associated boundary conditions
(
∂χ∗

1

∂y∗
1

+ 1

)
n1 + ∂χ∗

1

∂y∗
2

n2 = 0 on Γ ∗
sf

∂χ∗
2

∂y∗
1

n1 +
(
∂χ∗

2

∂y∗
2

+ 1

)
n2 = 0 on Γ ∗

sf

∂χ∗
3

∂y∗
1

n1 + ∂χ∗
3

∂y∗
2

n2 = 0 on Γ ∗
sf

6 We recall that in the mathematical sense, a cylinder is constituted of generators which lean against any
closed curve (the shape of the cylinder).
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It is clear that the solution of this problem writes

χ∗
1 (y

∗
1 , y∗

2 ) = −y∗
1 + a

χ∗
2 (y

∗
1 , y∗

2 ) = −y∗
2 + b

χ∗
3 (y

∗
1 , y∗

2 ) = c

where a, b, c are the arbitrary constants7 which can be determined by a zero average con-
dition for χ∗ onΩf∗ . However, they do not influence the value of D∗hom

k the computation of
which leads to

D∗hom
k = ϕD∗

k

⎛
⎝

0 0 0
0 0 0
0 0 1

⎞
⎠ (48)

where we recall that ϕ = |Ω∗
f |

|Ω∗| denotes the porosity of the material. This result is here
established, in general, for any cylindrical pores. Thus, whatever the cylinder shape is (not
necessary circular), we always obtain the same value of the homogenized tensor D∗hom

k given
by (48).

6.2 Comparison with Experimental Results

For the cement pastes considered experimentally in Sect. 5, their respective porosities is given
in Table 2. The application of formula (48) leads to a value of the homogenized chlorides
coefficient D∗hom

Cl− which is far from the experimental one given in Table 3. This difference
can be attributed in particular to

(i) a too simple geometric description of the microstructure with the cylindrical pore model
considered. In reality, the pores have a complex geometry with mainly a tortuosity and
constrictivity. These parameters influence the materials’ diffusivity; they contribute to
slow down the transfer.

(ii) the neglecting of the adsorption phenomena which occur at the interface between the
solid phase and the liquid one within the material called electrical double layer (Amiri
et al. 2001b). They can have a strong effect on the ionic transfer in pores with small
sizes. In what follows, we will focus on point (i) and consider more complex geometric
models for the elementary cell, leading to a larger tortuosity and constrictivity.

7 Numerical Resolution for More Complex Cell Geometries

We consider in this section a more complex material microstructure through a more com-
plex cell geometry, and compute the corresponding homogenized diffusion tensor D∗hom

k .
In those cases, analytical solutions of problem (47) do not exist and we will have recourse
to numerical resolution and calculation of D∗hom

k , first for a two-dimensional cell geometry
and then for three-dimensional ones. In all the cases studied, we will consider to simplify
the calculations that the diffusion coefficient D∗hom

k is constant so that the problem to solve
reduces to problem (47) to determine the vector χ∗(y∗). An important point to quote is that

7 We recall that the solution of Neumann problem (47) is defined up arbitrary constants.

123



454 K. Bourbatache et al.

the three componentsχ∗
i (for i = 1, 2, 3) of χ∗ can be determined independently by solving:


y∗χ∗
i = 0 in Ωf∗ (49)

∂χ∗
i

∂y∗ · n = −ni on Γ ∗
sf (50)

χ∗
i is periodic on Γ ∗

ff (51)

〈χ∗
i 〉 = 0 i = 1, 2, 3 (52)

where 〈χ∗
i 〉 denotes the average of χ∗

i on Ω∗. Once χ∗ computed numerically, we calculate
the homogenized diffusion tensor D∗hom

k as follows:

D∗hom
k = D∗

k

|Ω∗|
∫

Ωf∗

(
I + ∂∗χ∗

∂y∗

)
dΩ∗

= ϕD∗
k

⎛
⎜⎝I + 1

|Ω∗
f |

∫

Γ ∗
sf

n ⊗ χ∗dΓ ∗

⎞
⎟⎠ (53)

using the divergence theorem and the periodicity condition on the boundary Γ ∗
ff , where ⊗

denotes the tensorial product.
The numerical resolution of Neumann problem (49)–(52) is performed by the software

Comsol Multiphysics � based on the finite element method.

7.1 Two Dimensional Problem

Let us consider a porous medium the microstructure of which is composed of the periodical
repetition of an elementary cell, itself composed of a disk located at the center of the cell,
and of a quarter of disk of smaller radius located at each corner of the cell (Fig. 6a).

The size of the periodic cell is 1 × 1. The bigger disk, located at the center (0.5, 0.5),
has a radius R = 0.45. The quarters of disk have a varying radius r ∈ [0.05, 0.255], leading
to porosities of the material ϕ ∈ [0.16, 0.37]. The external boundaries (1–4) represent the
fluid–fluid interface Γ ∗

ff between cells, on which χ∗ is imposed to be periodical for the res-
olution. The boundaries 5–9 represent the solid–fluid interface Γ ∗

sf on which the boundary

(a)
(b) 

Fig. 6 A bi-circular inclusion model. a The elementary cell. b The material with the associated periodic
microstructure
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Fig. 7 Relative homogenized diffusion coefficient versus porosity for bi-circular inclusion model

conditions are imposed for χ∗. For various values of r ∈ [0.05, 0.255], we solve numer-
ically the Neumann problem (49)–(52) by Comsol Multiphysics�, for the elementary cell
of Fig. 6a. Once χ∗(y∗) determined, we compute numerically the homogenized diffusion
coefficient D∗hom

k /D∗
k by (53) as previously. According to the geometry of the cell, it is iso-

tropic. For various values of the porosity ϕ, we plot D∗hom
k /D∗

k with respect to ϕ on Fig. 7.
We observe a very strong decreasing of D∗hom

k /D∗
k when the porosity becomes lower than

0.25. With this geometry of the elementary cell, we can attempt weak porosities close to the
experimental values of the cement pastes considered in Sect. 5. Thus, the comparison with
the experimental values of Table 3 of D∗exp

Cl− is relevant. For a porosity ϕ = 0.18, modeled
with such a geometry of the elementary cell, we find that D∗hom

Cl− = 8 × 10−11 m2/s. This
value is 12 times larger than the experimental one D∗exp

Cl− = 5.95 × 10−12 m2/s obtained in
Table 3 for the cement paste which has the same porosity (see Table 2). The same ratio of the
theoretical value to the experimental one of D∗hom

Cl− is obtained for the cement paste 2 consid-
ered. However, the result being strongly dependent on the topology of the porous network of
the elementary cell, we will consider in the next section three-dimensional geometries closer
to the real microstructure.

7.2 Three-Dimensional Problems

The problem to solve is still the Neumann problem (49)–(52), where the domainΩf∗ is now
three-dimensional so that the unknown function χ∗ depends on y∗

1 , y∗
2 and y∗

3 . In all the
cases considered, according to the symmetries of the cells, the homogenized diffusion tensor
will be isotropic (spherical) so that only the diffusion coefficient D∗hom

k will be computed
numerically, as previously for 2D problems.

Let us consider a complex 3D elementary cell (similar to that considered in 2D) com-
posed of a sphere of varying radius R ∈ [0.2, 0.475] located at the center, and of 1/8th of
spheres of radius r varying in [0.1, 0.375] located at the corners of the cell. The variation
of r ∈ [0.1, 0.375] implies a variation of the porosity ϕ ∈ [0.33, 0.962]. The surface of the
inclusions represents the solid–fluid interface �∗

s f , where the boundary conditions (50) are
imposed. Periodic conditions for χ∗ are imposed on the external boundary of the cell. The
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Fig. 8 Variation of the relative homogenized diffusion coefficient D∗hom
k /Dk∗ versus the porosity

(a) (b) 

Fig. 9 Complex inclusion by octahedric distribution of two types of spherical inclusions. a Elementary cell.
b The associated material with periodic microstructure

mesh used for the 3D numerical resolution by Comsol Multiphysics is composed of Lagrange
quadratic tetrahedral elements in Ωf∗ and triangular elements on the boundaries.

In Fig. 8, the variation of D∗hom
k /D∗

k is plotted with respect to the porosity ϕ. We observe
a decrease of D∗hom

k /D∗
k when ϕ decreases. However, unlike the two-dimensional case, we

cannot here attempt porosities close to 0.18 corresponding to the cement pastes studied.
With the 3D cell considered here, we are limited to porosities close to 0.3. This is due to
the very different topology of the porous network in 2D and in 3D. Therefore, to attempt
lower porosities (lower than ϕ = 0.20), we will consider a last more complex elementary
cell (Fig. 9a). It is composed of the same previous elementary cell of Fig. 10a, to which we
added 1/4th of spheres of the same varying radius r located on each side of the cell. The
size of the bigger sphere located at the center does not vary. Only the radius r of the 1/4th
and 1/8th of spheres varies in the interval [0.2, 0.7]. During this increase of size, the sphere
located on each side of the elementary cell are allowed to interpenetrate those at the corners.8

With this elementary cell, for r varying in the interval [0.2, 0.7], we have ϕ ∈ [0.09, 0.60]
8 This penetration could be representative of the hydration process of the cement pastes.
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Fig. 10 The periodic medium
with elementary cell with two
types of spherical inclusions. a
Elementary cell containing two
types of spherical inclusions
(solid phase). b Associated
material with periodic
microstructure

(a) (b)

Fig. 11 Relative homogenized diffusion coefficient as function of porosity

and we can attempt weak porosities. The variation of the relative homogenized diffusion
coefficient D∗hom

k /D∗
k with respect to ϕ is plotted on Fig. 11. We observe a slow decrease

of D∗hom
k /D∗

k when ϕ decreases, even for very weak porosities. Once again in 3D, we do
not observe a strong decrease of the homogenized diffusion coefficient for ϕ around 0.15.
That was a particularity of the 2D cell considered in Fig. 6a, for dense circular inclusions,
when the 2D disks were very closed together, leading to a very weak percolation between
inclusions.

8 Conclusion

This study highlights the relevance of the use of the periodic homogenization technique for
studying ionic transport in saturated porous materials. The heterogeneity of the material is
taken into account by a periodic distribution of an elementary cell. The dimensional analysis
of Nernst–Planck equation allows characterizing the problem through some dimensionless
numbers. For a weak applied electrical field, we obtained a macroscopic model coupling
diffusion and migration. The expression of the homogenized diffusion tensor only involves
the geometrical properties of the material microstructure.

We proposed in the second part of this paper, analytical (when it was possible) and numer-
ical calculations of the homogenized diffusion tensor D∗hom

k for various 2D and 3D cell
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geometries leading to gradual complexities of the periodical porous network. All the homog-
enized diffusion coefficients computed numerically, in particular for complex three-dimen-
sional cells, do not allow getting values close to the experimental ones, which are quite
weaker. These results highlight that the chemical and electrocapillary adsorption phenomena
(or electrical double layer effect) cannot be neglected for ionic diffusion in cementitious mate-
rials. It contributes to slow down the ionic transfer, particularly in pores of small diameters
(nanopores), even more than a complex tortuosity and constrictivity of the porous network.
Moreover, the multi-scale character of cementitious materials, containing porosities at very
different scales, must be taken into account as well.
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