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Abstract The flow characteristics of an unsteady axisymmetric two-dimensional (2D)
blood flow in a diseased porous arterial segment with flexible walls are investigated. The
arterial walls mimic the irregular constrictions whereas the lumen containing the thrombus,
cholesterol, and fatty plaques represents the porous medium. The governing equations with
appropriate initial and boundary conditions are solved numerically using MAC method. The
discretization is done on staggered grid with non-uniform grid size and pressure-poisson
equation is solved following SOR method. The pressure and velocity corrections are made
cyclically until the steady state is achieved. It is observed that for decreasing permeability,
flow is highly decelerated while pressure drop and wall shear stress increases. The sepa-
ration zones and re-circulation regions are found for severe stenoses. Flow separation and
re-circulation diminishes for decreasing permeability of the porous medium. Comparisons
are provided with published experimental and numerical results.

Keywords Blood flow · Porous medium · MAC method · Flow separation ·
Multi-irregular stenoses

1 Introduction

The atheromal reduction of atherosclerotic lesions up to a critical limit disturbing the normal
blood flow in the human arterial system is the main cause (Nerem and Seed 1972; Liepsch
2002) of many cardiovascular diseases resulting in cerebral infarction, myocardial infarction,
cardiac arrest, epilepsy, and others. The occlusion in the artery called stenoses is due to the
deposition of carbohydrates, fibrous tissues, and fats in the lumen. Initially, Young (1968) and
then other researchers (Srivastava and Saxena 1997; Sud and Sekhon 1987; Srivastava et al.
2010; Mekheimer and Kot 2008) made efforts for the analytical treatment of the flow around
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the smooth stenoses. However, smooth stenoses is not suitable in real situations because the
constriction in the arterial segment is highly irregular in nature as evident from the experi-
mental study of Back et al. (1984). Keeping this fact in mind (Johnston and Kilpatrick 1991;
Yakhot et al. 2005; Andersson et al. 2000; Mustapha et al. 2010; Jeong and Rhee 2009)
considered irregular arterial constriction with valleys and ridges, in their investigations for
blood flow.

The physiological domain for blood flow particularly in some pathological cases and blood
diseases like thrombosis (formation of blood clots inside the lumen obstructing the flow),
polycythemia or erythrocytoses, and other microangiopathic diseases refers to the blood flow
in porous medium. Blood flow in the excess of fats, cholesterol plaques and blood clots (Dash
et al. 1996; El-Shahed 2003), blood flow in kidneys, lungs, and small capillaries presents
best examples for porous medium. Also biological tissues containing dispersed cells sepa-
rated by voids, blood enters these tissues through arteries and perfuse into the tissue cells via
blood capillaries which serves as porous medium (Khaled and Vafai 2003). Khaled and Vafai
(2003) also suggested that the transport models through porous media are widely applicable
to the simulation of blood flow across the tumor. The growth of tumor and its response to
therapy are determined by transport of diffusive drugs to cancer cells and by their blood
supply. Baish et al. (1997) considered the blood flow through a network of permeable vessel
in an isotopic porous medium using Darcy law (1856). Lei et al. (1998) investigated the
transvascular and extravascular transport of both fluid and macromolecules in a spherical
solid tumor considering microvascular lymphatics and tissue space as porous medium. Their
study and Milosevic et al. (1999) revealed that interstitial pressure was a major barrier in the
macromolecular drug penetration in tumor.

The influence of geometrical features on hemodynamics and the impact of arterial wall
layers on transport phenomenon and wall shear stress are imperative in study of porous media.
Yang and Vafai (2006) presented a model for the low-density lipoprotein (LDL) transport in
homogeneous porous four layered arterial wall coupled with blood flow in lumen. The perme-
ability of each layer of arterial wall and osmotic pressure are characterized by the Staverman
filtration and osmotic reflection coefficient. They concluded that pressure-induced increase
of endothelial diffusive permeability and pressure-associated convective flow are respon-
sible for the enhanced LDL uptake at higher transmural pressure which is susceptible for
the increase of atherosclerosis in the presence of hypertension. Filtration velocity and LDL
concentration profiles are dependent on different boundary conditions. Pulsatile flow plays
a minor role in LDL transport within artery. Again for the same model (Yang and Vafai
2008) obtained the analytical solution based on primary transport in lateral direction. Ana-
lytical solutions are compared with numerical solutions and found better in estimation of
LDL transport in straight geometry. A study of coupled macromolecule transport in blood
stream and arterial wall is presented by Ai and Vafai (2006). They concluded that hyper-
tension is the main cause for increase in transmural filtration and concentration polarization
at lumen–endothelium interface. The maximum shear rate reaches its maxima before and
velocity reaches its maxima after the constriction. The wall concentration shoots in stenosed
region and dies out after the constriction.

Khakpour and Vafai (2008b) conducted the first geometrical gender-based study on the
coupled blood flow and macromolecular transport phenomenon within the lumen and macro-
scopic homogeneous porous four layered arterial wall of the asymmetric aorta-iliac bifurca-
tion. For selective permeability of each porous layer they introduced the Staverman filtration
coefficient. They found that higher concentration of macromolecules such as LDL at the
lumen–endothelium interface, different radius of curvature, take off angle, and the bifurca-
tion points play vital role in the development of atherosclerosis. With constant endothelial
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properties the concentration decreases up to 0.5% in recirculation region and in females,
higher shear stress at aorta-iliac bifurcation is reported. Both shear stress and macromolec-
ular concentration profiles are greatly affected by asymmetry and found uniform in males.
Critical assessment of the several arterial transport models involving the study of fluid flow
and mass transfer within the arteries highlighting the role of porous media was carried out by
Khakpour and Vafai (2008a). Based on the arterial anatomy and related transport processes
these models are classified into wall free, homogeneous wall, and multilayer wall model.
The authors highlighted the three main challenges in modeling the arterial transport, they
are: the accurate description of the artery, proper set of governing equations, and appropriate
choice of boundary conditions. Three models are analyzed and multilayer model is given
preference because it describes the arterial anatomy accurately. Authors also reported that
these models do not include selective permeability for each porous layer and the osmotic
pressure. To overcome this flaw, they suggested the incorporation of Staverman filtration
and osmotic reflection coefficients as discussed by Yang and Vafai (2006) and Ai and Vafai
(2006).

Dash et al. (1996) using Brinkman model investigated the pathological blood flow in
porous medium by taking constant and radially varying permeability. The porous medium
contains the accumulation of fatty plaques of cholesterol and artery-clogging blood clots in
the lumen of the artery. They solved the governing equations for casson fluid model and
concluded that the frictional resistance increases while flow rate decreases with decreasing
permeability. Multilayer model (Khakpour and Vafai 2008a) best describes the arterial anat-
omy but the present model particularly represents the blood flow in diseased artery when the
lumen contains the thrombus (blood clot), cholesterol, and fatty plaques depicting the lumen
a porous media. The continuous accumulation of these substances near the intima gives rise
to the constrictions and once the mild stenoses is generated; the resulting flow increases the
disease evidently (Liepsch 2002). This attempt is devoted to study the effects of permeability
on blood flow in a constricted porous-diseased arterial segment. The further assumptions
taken into account are unsteadiness, flexibility of wall, couple of irregular stenoses, and the
inlet boundary condition derived for porous medium (El-Shahed 2003). The MAC method
given by Harlow and Welch (1965) and Welch et al. (1966) is adopted for the numerical
simulation of governing equations in cylindrical coordinates.

2 Governing Equations

Consider the unsteady 2D incompressible viscous blood flow in the circular porous stenosed
artery (Fig. 1). The blood flow is taken axisymmetric and fully developed in the arterial
segment with couple of mild stenoses with 48% areal occlusion. The geometrical shape of
the stenoses is irregular, presenting actual surface irregularities, taken from a main coronary

Fig. 1 Schematic diagram of porous artery with multiple stenoses
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artery of human cadaver developed by Back et al. (1984). The time-dependent geometry of
the stenoses is given by

R̄
(
z̄, t̄

) = {
1 + kRcos

(
ωt̄ − φ

)}
R̄(z̄), (1)

where R̄(z̄) is the radius of the constricted region taken from the data developed by Back et
al. (1984), kR is a constant, ω = 2π fp is the angular frequency with fp the pulse frequency
and φ is the phase difference.

The mathematical model for considered blood rheology is based on the mass and momen-
tum balances given by

div (V) = 0, (2)

ρ
DV
Dt̄

= div (T) + R, (3)

where T = −pI+μA1 is the Cauchy stress tensor with p the isotropic pressure, I the identity
tensor, μ the blood viscosity, and A1 the Rivlin Ericksen tensor. R = −μ

k V is the Darcy
resistance (1856) with k the permeability of the porous medium.

The continuity and momentum equation in conservative form

r̄
∂w̄

∂ z̄
+ ∂(r̄ ū)

∂ z̄
= 0, (4)

ρ

{
∂ ū

∂ t̄
+ ∂ ū2

∂ r̄
+ ∂ (ūw̄)

∂ z̄
+ ū2

r̄

}
= −∂ p̄

∂ r̄
+ μ

{
∂2ū

∂ r̄2 + 1

r̄

∂ ū

∂ r̄
+ ∂2ū

∂ z̄2 − ū

r̄2

}
− μ

k
ū, (5)

ρ

{
∂w̄

∂ t̄
+ ∂ (ūw̄)

∂ r̄
+ ∂w̄2

∂ z̄
+ w̄ū

r̄

}
= −∂ p̄

∂ z̄
+ μ

{
∂2w̄

∂ r̄2 + 1

r̄

∂w̄

∂ r̄
+ ∂2w̄

∂ z̄2

}
− μ

k
w̄, (6)

and the initial and boundary conditions

at r̄ = 0, ū
(
r̄ , z̄, t̄

) = 0,
∂w̄

(
r̄ , z̄, t̄

)

∂ r̄
= 0, (7)

at r̄ = R̄
(
z̄, t̄

)
, ū

(
r̄ , z̄, t̄

) = ∂ R̄

∂ t̄
, w̄

(
r̄ , z̄, t̄

) = 0, (8)

at z̄ = 0, ū
(
r̄ , z̄, t̄

) = 0, w̄
(
r̄ , z̄, t̄

) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2U0

{
1 −

(
r̄
R̄

)2
}
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{
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(
R̄√
k
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R̄√
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−1

} {
1 − I0(r̄/

√
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√

k)

}
for k < ∞,

(9)

at z̄ = L ,
∂w̄

(
r̄ , z̄, t̄

)

∂ z̄
= 0,

∂ ū
(
r̄ , z̄, t̄

)

∂ z̄
= 0, (10)

at t̄ = 0, ū
(
r̄ , z̄, t̄

) = 0, w̄
(
r̄ , z̄, t̄

) = 0, p̄
(
r̄ , z̄, t̄

) = 0, for z̄ > 0, (11)

where I0 is the modified Bessel function of first kind and L is the length of the arterial
segment considered. The axial velocity gradient and normal velocity vanishes along the axis
of symmetry. The arterial wall is considered as flexible moving only in vertical direction
while the longitudinal motion of the wall is neglected (Carew et al. 1968; Patel et al. 1968).
Consequently, at outer boundary the axial velocity vanishes while the radial velocity is equal
to the rate of wall movement. For the non-porous artery with infinite permeability, k → ∞
the inlet boundary condition corresponds to the Hagen-poiseuille flow whereas in case of
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artery with finite permeability k < ∞ the blood flow faces the Darcy’s resistance for which
the inlet boundary conditions (El-Shahed 2003) are derived following the same methodology
adopted by Midya et al. (2003) for Hartmann flow.

Using the following dimensionless quantities

p = p̄

ρU 2
0

, t = U0

r0
t̄, r = r̄

r0
, z = z̄

r0
, u = ū

U0
,

w = w̄

U0
, R = R̄

r0
, Re = ρU0r0

μ
, K = ρU0k

r0μ
, (12)

and the radial transformation

x = r

R(z, t)
, (13)

the Eqs. 4–6 takes the form
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(16)

and the initial and boundary conditions (7–11) becomes

at x = 0, u (x, z, t) = 0,
∂w(x, z, t)

∂x
= 0, (17)

at x = 1, u (x, z, t) = ∂ R

∂t
, w (x, z, t) = 0, (18)

at z = 0, u (x, z, t) = 0, w (x, z, t) =

⎧
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2
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√
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(19)

at z = L ,
∂w(x, z, t)

∂z
= 0,

∂u(x, z, t)

∂z
= 0, (20)

at t = 0, u (x, z, t) = 0, w (x, z, t) = 0, p (x, z, t) = 0, for z > 0. (21)

3 Numerical Method

The MAC method (Harlow and Welch 1965; Welch et al. 1966) is used to solve the highly
non-linear unsteady coupled PDE’s (14–16) along with the initial and boundary conditions
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(17–21). This method is based on finite difference scheme using staggered grid, calculates the
velocities at faces while pressure at the center of the MAC cells (Fig. 2). The time derivative
terms are discretized using first order accurate two-point forward time difference formula,
while convective terms in the momentum equations are discretized using hybrid formula
consisting of central differencing and second order upwinding. However, the diffusive terms
are discretized by second order accurate three-point central difference formula. We define
x = j�x, z = i�zi , t = n�t , and p (x, z, t) = pn

i, j , where �x, �zi represents the width,
length of the (i,j)th cell and �t refers to the time step size.

The continuity and momentum equations after discretization at (i,j)th cell takes the form

xl j Rli

{
wn

i, j − wn
i−1, j

�zi

}

− x2
l j

(
∂ R

∂z

)

li

{
wat − wab

�x

}
+

{
x j un

i. j − x j−1un
i. j−1

�x

}

= 0,

(22)
{

un+1
i, j − un

i, j

�t

}

= 1

Rn
li

{
pn

i, j − pn
i, j+1

�x

}

+ (ume)n
i, j − un

i, j

K
, (23)

{
wn+1

i, j − wn
i, j

�t

}

= 2

{
pn

i, j − pn
i+1, j

�zi + �zi+1

}

+ xl j

Rn
i

(
∂ R

∂z

)n

i

{
pt − pb

�x

}
+ (wme)n

i, j − wn
i, j

K
,

(24)

where

xl j = x j − �x

2
, zli = zi − �zi

2
, Rli = R(zli ), (25)
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(ume)n
i, j = Con(u)n

i, j + 1

Re
(Diff(u)n

i, j ),

(wme)n
i, j = Con(w)n

i, j + 1

Re

(
Diff (w)n

i, j

)
, (26)

where Con(u)n
i, j and Con(w)n

i, j are convective terms while Diff(u)n
i, j and Diff(w)n

i, j are dif-
fusive terms for u and w-momentum equation and at the nth time level at the (i, j) cell,
respectively.

The radial and axial momentum equations are used in the continuity equation to obtain
the Poisson equation for pressure. The final form of the Poisson equation is

{
Divn+1

i, j − Divn
i, j

�t

}

= Ai, j pn
i, j + Bi, j pn

i+1, j + Ci, j pn
i−1, j + Di, j pn

i, j+1

+Ei, j pn
i, j−1 + Fi, j pn

i+1, j+1 + Gi, j pn
i+1, j−1 + Hi, j pn

i−1, j−1

+Ii, j pn
i−1, j+1 + xl j Rli

{
(wme)n

i, j − (wme)n
i−1, j

�zi

}

+
{

x j (ume)n
i. j − x j−1(ume)n

i. j−1

�x

}

− xl j Rli

{
wn

i, j − wn
i−1, j

K�zi

}

−
{

x j un
i. j − x j−1un

i. j−1

K�x

}

, (27)

Here, Divk
i, j represents the divergence of velocity field at the (i, j) cell. The Poisson equa-

tion for pressure is then solved iteratively by the Successive-Over-Relaxation (SOR) method
with a certain number of iterations to get the intermediate pressure field at the nth time step.
To increase the rate of convergence the value of over-relaxation parameter is taken, 1.2.

3.1 Pressure and Velocity Corrections

Since, the pressure obtained after solving the pressure equation is intermediate so the result-
ing velocity will not satisfy the continuity equation. To calculate the correct velocity, we use
the pressure correction relation

pn
i, j = p̄i, j + α�pi, j , (28)

where p̄i, j is intermediate pressure after solving the pressure equation, α, 0 < α < 0.5 is
the under relaxation parameter and �pi, j is the pressure error term given by

�pi, j = − Divi, j

�t Ai, j
, (29)

where Divi, j is the divergence of intermediate velocity. The velocity correction formulas are

wn+1
i, j = w̄i, j + 2�t�pi, j

(�zi + �zi+1)
, (30)

un+1
i, j = ūi, j + �t�pi, j

Rli�x
, (31)

where w̄i, j and ūi, j are the intermediate velocity components obtained using intermediate
pressure.

123



266 O. U. Mehmood et al.

3.2 Stability Restriction and Numerical Scheme

The step-by-step time interval is chosen as suggested by Welch et al. (1966) and Amsden
and Harlow (1970) to reduce the running time. The first stability condition is adopted from
Welch et al. (1966) which depends upon Reynolds number and spatial step size

�t1 ≤ Min

(
Re�x2�z2

i

2(�x2 + �z2
i )

)

i, j

. (32)

The second condition used by Markham and Proctor (1983) which requires that no particles
should cross more than one cell boundary in a given time interval.

�t2 ≤ Min

(
�zi

|w| ,
�x

|w|
)

i, j
. (33)

In view of both the conditions the stability condition is taken as

�t = γ Min (�t1,�t2)i, j , (34)

where γ, 0 < γ < 1 is used to save the computation time as evident from Markham and
Proctor (1983). Moreover, the upwinding parameter β is selected as

1 > β > Max

(∣∣∣∣
w�t

�zi

∣∣∣∣ ,
∣∣∣∣
u�t

�x

∣∣∣∣

)

i, j
. (35)

This inequality yields a very small value of the parameter β. As a safety measure the value
is multiplied by a factor 1.2.

For numerical computations, the arterial segment has been confined to 60 times the non-
dimensional radius. To avoid any distortion in the beginning of stenoses and inlet boundary
condition the upstream arterial length is taken to be eight radii and downstream length is taken
ten radii to re-establish the fully developed flow. Also, the couple of stenoses is separated
by the two radii non-stenotic arterial segment. For this computational domain, solutions are
computed on the staggered grids with 39,160 grid elements. The finer mesh is obtained by
interpolating the experimental data of Back et al. (1984). The physiological range of mean
Reynolds number is 100–400 for blood flow through healthy main coronary artery (Back and
Banerjee 2000) but in case of diseased state like stenosed artery or blood flow with anemia
(lower hematocrit), the Reynolds number becomes high resulting turbulent blood flow. So,
in this problem, Re= 450 and 1,000 are chosen for the study of blood flow in multi-irregu-
lar-diseased stenosed artery. The numerical values of permeability parameter K are chosen
following Dash et al. (1996) and El-Shahed (2003) which represent different ratios for the
porous medium while the numerical values of other involving parameters are taken within
the physiological range (Mekheimer and Kot 2008; Johnson et al. 1992; McDonald 1974) as
follows:

ρ = 1050 kg

m3 , ω = 2π fp, fp = 1.2 Hz, φ = 0, �x = 0.025.

4 Discussions

The numerical simulation is performed for governing equations and the numerical solutions
are calculated under physiological flow conditions. The results presented are obtained after
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Fig. 3 Comparisons of pressure drop for present model (K → ∞) with single stenoses
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Fig. 4 Grid independence analysis for a axial velocity profile at z = 18.85 and b wall shear stress for different
grid size with fixed K=10 and Re=1,000

the steady state achieved in the simulation. The effects of permeability parameter K and
Reynolds number Re on the pressure drop, velocity profiles, separation zones, re-circulation
regions, and vorticity are examined graphically to investigate the influence of constricted
geometry and porous media on blood rheology.

4.1 Model Validation

To assure the validity of this model, the results for pressure drop calculated for single stenoses
in non-porous artery (K → ∞) are compared with the experimental results of Back et al.
(1984), Back et al. (1986), and numerical results of Andersson et al. (2000). The compari-
sons for pressure drop versus Reynolds number and axial position are presented in Fig. 3a, b,
respectively. These results clearly depict a close agreement between predicted pressure drop
and experimentally measured pressure drop (Back et al. 1984, 1986) with a slight deviation
which is due to the unsteadiness of flow, different mesh size, and other factors involved. These
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Fig. 5 Pressure drop against
permeability parameter K for
Re=450 and 1,000
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Fig. 6 Axial velocity profile against radial position for different K at cross section z = 18.85

comparisons are followed by the study of Yakhot et al. (2005) and Johnston and Kilpatrick
(1991).

To verify this model, the grid independence study is accomplished for velocity and wall
shear stress. A number of numerical simulations are performed for different time step and
grid size for refined mesh with 24475, 39160, and 48950 MAC cells. The axial velocity
profiles at the point of maximum constriction for these cases are shown in Fig. 4a while wall
shear stress for different meshes is presented in Fig. 4b with fixed K=10 and Re=1000.
It can be seen clearly that the velocity profiles and wall shear stress are almost overlapping
for different mesh size. This analysis is done to examine the measure of error related with
different grid size; the error found is of negligible order which assures the correctness of the
solutions obtained.
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Fig. 7 Axial velocity profile against radial position for different K at cross section z = 30

Fig. 8 Centerline velocity
against axial position for
different K at Re=450
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4.2 Mild Stenoses

The dimensionless pressure drop against the permeability parameter K is plotted in Fig. 5
for different Re. It is noticed that pressure drop decreases with the increase in permeability
parameter. This decrease in pressure drop becomes sharp for larger values of the permeability
parameter. It is also seen that the pressure drop is a decreasing function of Reynolds number.

Figures 6 and 7 illustrate the effects of permeability parameter on axial velocity profile
against radial direction at the point of maximum constriction (z = 18.85) of the proximal
stenoses and in the unstenosed region (z = 30), respectively. It is observed that the veloc-
ity profile is in increasing trend for increasing permeability parameter. The reason for this
behavior is may be the decrease in resistance (for increasing permeability) provided by the
porous medium. It is also observed that for infinite permeability the velocity profile is almost
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Fig. 9 Wall shear stress for
different values of K at Re=450
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Fig. 10 Wall shear stress for
different values of K at
Re=1,000
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parabolic which becomes steeper on decreasing the permeability of the medium. The results
are in quite good agreement with Dash et al. (1996). The comparison of Figs. 6 and 7 shows
that the magnitude of velocity is larger at the point of maximum constriction when com-
pared to the velocity in the unstenosed artery. The centerline velocity is plotted with axial
coordinate for different values of permeability parameter in Fig. 8. The centerline velocity
decreases for decreasing permeability parameter. It is worth to mention that for small per-
meability parameter (K=1) the centerline velocity diminishes and the blood flow reaches to
the stationary state.

The points where the shear stress at the wall becomes zero or changes its sign are termed as
flow separation points. Followed by the flow separation points, the reattachment points exist
when the shear stress at the wall changes its sign again. The region between the flow separa-
tion point and the reattachment point is characterized as flow separation region or separation
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Fig. 11 Original stenoses with 48% areal occlusion and modified stenoses with 80% areal occlusion

Fig. 12 Wall shear stress for
different K with severe (80%)
stenoses at Re=450
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zone. For mild (48%) stenoses, the wall shear stress distribution for different values of per-
meability parameter is presented in Figs. 9 and 10 for Re=450 and 1,000. It is observed
that for increasing permeability parameter wall shear stress distribution decreases but the
peak values of wall shear stress distribution increases at the points of severe stenoses in the
arterial segment. No separation zones are found for finite permeability parameter. Moreover,
for infinite permeability, the critical value of Reynolds number for which the separation zones
are found along the downstream of both stenoses is Re= 450 and for Re=1,000 quite large
separation zone are found in the downstream of both stenoses.
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Fig. 13 Stream line patterns with 80% areal occlusion at Re=450 for different K

4.3 More Severe Stenoses

The original experimental data of Back et al. (1984) is with 48% areal occlusion having mild
stenoses. This data is modified to obtain the severe stenoses with 80% areal occlusion main-
taining the original shape of stenoses with similar irregularities. This modification is made,
to further investigate the separation zones, re-circulation regions and vorticity contours for
severe stenoses. The geometry of mild and severe stenoses is presented in Fig. 11.

Figure 12 is plotted to examine the effects of severe stenoses (80%) on flow separation
both in case of porous and non-porous medium. For this reason, wall shear stress distribution
is sketched for different permeability parameter K=10 and K → ∞ with Reynolds number
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Fig. 14 Vorticity contours with 80% areal occlusion at Re=450 for different K

of 450 under 80% areal occlusion. This Fig. 12 depicts that for non-porous medium, large
separation zones are found in the downstream of both stenoses. Moreover, it is worth to
mention that in case of porous medium, although small, but separation zones are seen across
both stenoses as those were not seen in case of mild stenoses (Figs. 9, 10).

The stream line patterns for different values of permeability parameter with Re=450 and
80% areal occlusion are exhibited in Fig. 13. The large re-circulation regions are found in the
downstream of both stenoses for infinite permeability parameter. These re-circulation regions
reduce with decreasing permeability parameter. Further, for small permeability (K=1) the
re-circulation regions completely disappear. Figure 14 records the behavior of vorticity con-
tours for permeability parameter with 80% areal occlusion. It is noticed that in non-porous
medium (K → ∞) the tortuous vorticity contours are found adjacent to maximum point of
constriction. These contours move toward the centerline as the mean flow decelerates. For
decreasing permeability parameter these contours diminishes and furthermore these contours
disappear completely for small permeability parameter (K=1). These results are compatible
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with those found in Figs. 12 and 13 i.e., the reduction of separation zone and recirculation
region with the decrease in permeability parameter.

5 Conclusions

This attempt is devoted to the study of blood flow in a 2D unsteady axisymmetric-diseased
porous arterial segment with a couple of constrictions with real surface irregularities. The
governing equations are solved numerically using MAC method following finite difference
scheme. The grid independence study is performed to verify the model and comparisons with
existing experimental and numerical work is presented. This model will be helpful partic-
ularly in the study of diseased arterial blood flow when the artery contains the thrombus,
cholesterol, fatty plaques, etc. The following results are noted:

• The mathematical model is independent of the grid size and time step.
• Pressure drop decreases with increasing permeability parameter.
• The velocity profile entirely depends upon the permeability of the medium, smaller per-

meability highly decelerates the flow.
• Wall shear stress is a decreasing function of permeability parameter. For mild (48%)

stenoses, no separation zones are found whereas, although, small separation zones are
found for severe (80%) stenoses in case of porous medium.

• The re-circulation/eddy and vortex contours exist in the downstream of each stenoses
in non-porous artery which diminishes with the decreasing permeability of the porous
medium.
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