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Abstract We present a dynamic model of immiscible two-phase flow in a network rep-
resentation of a porous medium. The model is based on the governing equations describing
two-phase flow in porous media, and can handle both drainage, imbibition, and steady-state
displacement. Dynamic wetting layers in corners of the pore space are incorporated, with
focus on modeling resistivity measurements on saturated rocks at different capillary numbers.
The flow simulations are performed on a realistic network of a sandpack which is perfectly
water-wet. Our numerical results show saturation profiles for imbibition in agreement with
experiments. For free spontaneous imbibition we find that the imbibition rate follows the
Washburn relation, i.e., the water saturation increases proportionally to the square root of
time. We also reproduce rate effects in the resistivity index for drainage and imbibition.

Keywords Network model · Two-phase flow · Reconstructed porous media ·
Imbibition · Resistivity index

1 Introduction

Petrophysical parameters like relative permeability, residual saturation and electrical resistiv-
ity are key parameters to predict the production of oil and gas from reservoirs. Traditionally
such parameters are measured by laboratory testing on core plugs, which is a time-consum-
ing process. Computer simulation of multiphase flow on a network has the advantage that
it is far less time-consuming than doing experiments, or doing flow simulations on a grid
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model of the pore space. Another advantage over grid-based models (e.g. Lattice Boltzmann
model) is that network models allow infinite geometrical resolution. This is an important
feature in order to capture thin wetting layers residing in corners and crevices in the pores
space. Wetting layers are stabilized by capillary forces, and have a significant effect on the
resistivity of saturated rocks.

The networks are constructed by simplifying the pore-space into a network of intercon-
nected pores and throats. Realistic networks have been introduced the last decades (Bryant
and Blunt 1992). The networks may be extracted from a real pore space, which is generated
from microtomographic images and process based reconstruction (Øren and Bakke 2003;
Bakke and Øren 1997). In this way, the shape of each pore and throat is simplified, but the
pore-size distribution and topology are preserved. The flow models are based on pore-scale
displacements observed in micromodel experiments (Lenormand et al. 1983). By controlling
parameters like pore-size disorder, viscosity, and flow rate, simulation of multiphase flow on
networks has proved to be an attractive way of understanding the mechanisms of multiphase
flow in porous media.

Among the first approaches to flow simulation on a network was the invasion percola-
tion method, proposed by Wilkinson and Willemsen (1983) as a description of drainage in a
porous medium. The premise for this method is the quasi-static flow condition that neglects
the effects of viscous forces. The quasi-static model is at present the state of the art model to
simulate multiphase flow at low capillary numbers. It has provided not only more insight in
the physics of multiphase flow in porous media, but also the ability to predict petrophysical
parameters (Øren et al. 1998; Bakke and Øren 1997; Valvatne and Blunt 2004; Patzek 2000;
Man and Jing 2001).

However, in some cases the slow flow condition for the quasi-static model is not met,
such as in highly permeable rocks, surfactant flooding, fractures, and in the vicinity of wells.
In these cases, viscous forces can have significant effect on the fluid displacement, such as
mobilization of discontinuous phases.

In order to capture the effects of viscous forces, the dynamic flow models have been devel-
oped (Dias and Payatakes 1986a,b; Lenormand et al. 1988; Aker et al. 1998; Hashemi et al.
1998; Dahle and Celia 1999; Hughes and Blunt 2000; Knudsen et al. 2002; Ferer et al. 2003).
They take into account both the capillary and viscous pressure drops, and dynamic models
are thereby not limited to low capillary numbers. The term “fully” dynamic is sometimes
used when the capillary pressure is included in the pressure solver, and a small timestep is
used.

In the last decade, there have been different approaches to include wetting layer flow
into dynamic network models. For example, Mogensen and Stenby (1998) developed a fully
dynamic model. To avoid solving a nonlinear equation for the pressures every timestep,
they assumed a fixed thickness and conductance of the wetting layers. Another simulator of
imbibition was reported by Constantinides and Payatakes (2000). They studied the effects
of precursor wetting layers in primary imbibition. Microroughness was introduced, and the
wetting layers advanced due to capillary suction of micromenisci. Singh and Mohanty (2003)
studied the flow regimes in drainage with a dynamic model. They considered the bulk flow
and layer flow as two linear flow problems. The two pressure solutions gave the capillary
pressure and the layer thickness. The non-linearity of the problem was approximated by
a heuristic approach. Nguyen et al. (2004) developed a realistic model for swelling of the
wetting layers in imbibition. They assumed constant pressure in the nonwetting phase, and
used a quasi-static approach for the frontal displacement. They modeled the swelling of
wetting layers as a nonlinear diffusion process driven by the capillary pressure gradients,
which is observed in capillary tubes by Dong and Chatzis (1995). The model is able to
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reproduce the rate dependent competition between snap-off and frontal displacement in a
realistic manner. However, the quasi-static approach limits the model to low capillary num-
bers. A fully dynamic model with wetting layer flow for both drainage and imbibition was
developed by Al-Gharbi and Blunt (2005). Pressures were found solving a single phase prob-
lem, and fractional flow rates was calculated using equivalent hydraulic resistances. Wetting
layer thickness given by capillary pressure at main menisci enabled a unique determination
of fluid configuration in a pore/throat from known volume of wetting phase. They studied
viscous effects on fractional flow curves. Recently, Idowu and Blunt (2009) developed a rule-
based model for imbibition based on a model by Hughes and Blunt (2000), in which they
extend the invasion percolation algorithm to include viscous pressure drops in both phases.
Pressure drops across menisci are not included in the pressure solution, hence mobilization of
trapped clusters is not possible. To reduce the computational cost, they allow several elements
to fill every timestep. It makes this type of model much faster than fully dynamic models,
where the pressure distribution is updated every timestep.

As far as we know, none of the existing network models incorporate dynamic wetting
layers and viscous effects in both drainage, imbibition and steady-state. There has also been
little focus on modeling resistivity measurements in dynamic network models. In this arti-
cle, we present a dynamic model for two-phase flow in a network. It is an extension of the
previous model proposed by Aker et al. (1998), and accounts for the dynamics of wetting
layers. It is fully dynamic, and may be used as a unified model for both drainage, imbi-
bition and steady-state. However, this can not be realized without a significant increase in
computational cost, compared to more rule-based network models. As a validation of the
model, we use it to study saturation profiles of imbibition. We also look at the resistivity
index for drainage and imbibition at different capillary numbers, and the free spontaneous
imbibition rate. The network we use in this study is reconstructed from a realistic pore space
of a sandpack. Following this study, the model has been applied to steady-state simulations
of electrical resistivity in sandstones (Tørå et al. 2010).

2 The Model

We base our model on the model proposed by Aker et al. (1998). In order to incorporate
wetting layers in the model, the tubes have angular corners where the wetting fluid can flow
between the nonwetting fluid and the tube walls. The cross-sectional shape is characterized
by a dimensionless shape factor, G, defined as G = A/P2 (Mason and Morrow 1991).
A is the cross-sectional area, and P is the perimeter length. In this work, we use equilateral
triangular shape of the cross-section of the tubes with G = 0.048 (see Fig. 1a). A charac-
teristic feature of the model is that the nodes have no volume, so the tubes consist of both
the pore and throat volume. A tube IJ is characterized by a length lIJ, a throat radius rIJ

in the middle of the tube, and two pore radii rI and rJ in the nodes connected to the tube
(see Fig. 1b). The wetting fluid exists in all tubes, either as bulk or layer, giving the wetting
fluid the same connectivity as the network itself. The throats and pores in a porous medium
are represented by a network of tubes connected to each other through nodes, as shown in
Fig. 2a. The electrical analog in Fig. 2b shows how the bulk flow and layer flow is separated in
two parallel networks, connected where there are menisci. We assume a perfectly water-wet
network with contact angle θ = 0. Across a meniscus at position x in a tube, we assume a
static capillary pressure
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Fig. 1 a Crossection of a tube. r is the inscribed radius, rw is the radius of curvature of the arc meniscus, Aw
and Anw are the cross-sectional areas of the wetting (water) and nonwetting phase (oil), respectively. Pnw is
the nonwetting pressure, and pw is the wetting pressure. b Illustration of one single tube

(a) (b)

Fig. 2 a Illustration of how the tubes are connected to eachother through the nodes at the intersections of the
dashed lines. Nonwetting fluid is shaded, and wetting fluid is white. b Electrical analog of the network. The
bulk flow and layer flow is separated into an upper and lower network, respectively. The two networks are
connected where there are menisci. Nonwetting fluid is drawn as solid lines, while wetting fluid is drawn as
dashed lines

Pc(x) = γ
1 + 2

√
πG

r(x)
, (1)

where r(x) is the inscribed radius, and γ is the interfacial tension. Pc(x) varies sinusoidally
to give the tubes an effective shape of an hourglass.

2.1 Fluid Configurations

To simplify the movement of the fluids within a tube, only certain configurations are allowed.
They consist of different fluid elements, and a conductance and flow rate are assigned to each
element. The maximum number of menisci in each tube at the same time is restricted to two,
and only the configurations shown in Fig. 3 are possible.

2.2 Computing the Hydraulic Conductances

By neglecting flow in thin films between the oil and solid, the cross-sectional areas open to
flow are given by Bakke and Øren (1997)

Aw = r2
w

(
1

4G
− π

)
, (2)

for the water layer, and
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Fig. 3 The four configurations: a Only water present in tube. b Water present in layer and oil present in bulk.
c Only one meniscus present in the tube (facing either direction). d Two menisci present with the water in the
middle of the tube. QIJ,0 and QIJ,1 are the flow rates in the bulk, qIJ,0 and qIJ,1 are the flow rates in the water
layer, PI and PJ are the node pressures in the bulk, and pI and pJ are the node pressures in the water layers

Anw = r2

4G
− Aw, (3)

for the oil. rw is the radius of curvature for the arc meniscus, and r is the inscribed radius of
the tube. By assuming that rw is much smaller than the radius of curvature along the length
of the tubes, the Young–Laplace equation yields

rw = γ

Pc
, (4)

where Pc is the capillary pressure across arc menisci. The hydraulic conductance of a water
layer element is given by Hagen–Poiseuille’s law

gw = r2
w Aw

8βμwl
, (5)

where β is a flow resistance factor, μw is the water viscosity, and l is the length of the element.
We use no-slip boundary condition giving β = 5.3 (Ransohoff and Radke 1988). For the
bulk conductance, a mean hydraulic radius R is used, defined as

Ri = 1

2
(r + rv,i), i = w, nw, (6)

where rv,i is an equivalent volume radius defined as

rv,i =
√

Ai

π
, i = w, nw. (7)

The hydraulic conductance of a bulk element is given by

gi = R2
i Ai

8μil
, i = w, nw. (8)

If fluid i is oil, then Ai is given by Eq. 3. If fluid i is water, then Ai = Atot = r2/4G. For
simplicity, the inscribed radius r can only take three values, rI, rJ or rIJ. Boundaries between
pore and throat are defined at one third and two thirds of the tube length. The effective bulk
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conductance of elements spanning pore/throat boundaries are given by the harmonic mean
of the pore and throat conductances.

To calculate the water saturation Sw, a bulk water volume is given by

Vbulk =
x2∫

x1

Atot dx, (9)

where for simplicity, Atot is assumed to vary linearly between the three fixed areas at rI, rJ

and rIJ. The volume of a water layer element is given by Vlayer = Aw(x2 − x1).

2.3 Solving for Pressures

We define a pressure P in the bulk flow in the nodes, and p in the water layer in the nodes. We
assume Poiseuille flow, hence, a linear relation between local flow rate of a fluid element and
pressure drop across the element. As an example we set up the equations for configuration
(D) in Fig. 3,

QIJ,0 = gIJ,0(PI − PI,A) (10)

QIJ,1 = gIJ,1(PJ,B − PJ) (11)

qIJ,0 = gIJ,2(pI − pI,a) (12)

qIJ,1 = gIJ,3(pJ,b − pJ) (13)

QIJ,0 + qIJ,0 = QIJ,1 + qIJ,1 = gIJ,4(pI,a − pJ,b), (14)

where gIJ,0 to gIJ,4 are the hydraulic conductances in the respective fluid elements. The
capillary pressure drops across the menisci are given by

PI,A = pI,a + Pc(IJ, x1) (15)

PJ,B = pJ,b + Pc(IJ, x2), (16)

where x1 and x2 are the positions of the menisci. From the above equations, we eliminate the
pressures pa, pb, PA, and PB in the tube, and end up with the four flow rates as functions of
the four unknown pressures in the nodes, PI, pI, PJ, and pJ. To solve for these pressures, we
impose the condition that the net flux through a node of the bulk flow and the layer flow is
zero. This gives a set of equations∑

J

qIJ = 0
∑

J

QIJ = 0, (17)

where J runs over the tubes connected to node I, and Q and q are flowrates into or out of
node I. The equations can be written in the form

A(p)p = b(p), (18)

where p includes the node pressures P and p. A(p) is a matrix of the conductances, and
b(p) is a vector dependent on the outlet and inlet pressures, and the conductances of the
tubes connected to the outlet and inlet. This is a system of nonlinear equations where the
conductance of a tube is dependent on the pressures through Eq. 4. It can be solved with for
example successive substitution (Mogensen et al. 1999), but is very computational expen-
sive. However, assuming A(p) and b(p) to be constant when the pressure field is calculated,
yields a system of linear equations, which gives sufficient accuracy in the flow rates for small
timesteps.
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2.4 Film Dynamics

In a one-dimensional network, a differential form of Eq. 17 for the water layers may be
written as

∂

∂x

(
gwl

∂pw

∂x

)
= 0. (19)

However, this equation assumes that the thickness of the water layer is stationary, which is
not the case in our model. The solution to Eq. 19 is the steady solution to the equation of the
layer dynamics

∂

∂x

(
gwl

∂pw

∂x

)
= ∂ Aw

∂t
, (20)

which takes into account swelling and shrinking of the water layer. However, this equation,
together with the corresponding equation for the oil phase, gives a coupled nonlinear diffusion
equation. Solving this requires computations that require excessive computational times. We
will instead use the steady-state solution given by Eq. 18. As an approximation to the layer
dynamics, we then use a linear relation to relax the layer thickness in time. This is analog to
the concept used for macroscopic capillary pressure by (Hassanizadeh and Gray 1993), and
similar to the procedure implemented by Singh and Mohanty (2003). The relaxation equation
for a single node yields

∂ Aw

∂t
= K

(
Pc − Pcalc

c

) = K

(
γ

rw
− (Pnw − pw)

)
, (21)

where K is a damping coefficient, and γ
rw

is the capillary pressure. The capillary pressure

solution obtained from Eq. 18 is denoted Pcalc
c = Pnw − pw. Equilibrium is reached when

γ
rw

= Pcalc
c . Following the idea of macroscopic equilibrium, K is connected to the mobility

of the layer thickness. A very large K means that the thickness of the layers will reestablish
to the equilibrium thickness virtually instantaneously. While if K is very small, the layers
will swell or shrink very slowly. This means that K is a measure of the rate of change in
layer thickness. Singh and Mohanty (2003) used the assumption that the layer conductance
is approximately two orders of magnitude smaller than the bulk conductance. To obtain a
realistic and consistent value of K , we compare the solution of Eq. 21 with the solution of a
nonlinear diffusion process in a single capillary tube of length L , and uniform radius, which
represents a simplified version of the network. The tube is illustrated in Fig. 4. One meniscus
is present in the tube with a high initial capillary pressure. Then the capillary pressure is
decreased, and the meniscus reestablish to a new equilibrium position. Water will start to
imbibe into the water layer. By assuming that the pressure in the oil phase is constant, we
can combine Eqs. 20, 2, 4, and 5 to the following nonlinear diffusion equation

∂ Aw

∂t
= B

∂

∂x

(√
Aw

∂ Aw

∂x

)
, (22)

where

B = γ

16βμw

√
1

4G − π

. (23)
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Fig. 4 Illustration of how the water layer (gray shaded) is diffusing into a tube according to Eq. 22. The
dashed line shows the initial position of the meniscus, and the initial layer thickness. The full line shows the
final position of the meniscus, and the final layer thickness at t → ∞

Fig. 5 Scaled volume as a
function of scaled time for Eq. 22
(full red line), and Eq. 21 (dashed
red line) for parameters
G = 0.048, μw = 1 mPa s,
γ = 30 mN/m, L = 4 mm.
Equation 22 (full blue line), and
Eq. 21 (dashed blue line) for
parameters G = 0.04, μw = 5
mPa s, γ = 60 mN/m, L = 8
mm. Note that the curves are
collapsed on top of each other 6 80 2 4 10 12
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Dong and Chatzis (1995) showed, both theoretically and experimentally, that the imbibed
volume Vimb at time t yields

Vimb ∝
(

1

4G
− π

) (
γ

μwβ

)1/2

t1/2. (24)

We now define

V = Vimb

L
( 1

4G − π
) , (25)

and

T = 1

L

(
γ

μwβ

)1/2

t1/2. (26)

We solve Eq. 22 numerically for the single tube. By plotting V versus T , the curves are col-
lapsing for different values of G, μ, β, γ , and L . This is shown in Fig. 5. In order to collapse
Eq. 21 with the same scaled variables V and T , we realize that Vimb ∝ L Kγ t . This gives

K = K ∗ ( 1
4G − π

)
μwβL2 , (27)

where K ∗ is a constant chosen so that Eq. 21 matches with the diffusion result of Eq. 22,
and L is the length of the network. Notice that the initial and final radius of curvature are
assumed constant and are included in K ∗. We use Eq. 27 also for shrinking of the water layers
(drainage), with the same K ∗ as for swelling. This is partly to ensure a unified model for
drainage and imbibition, and because it is reasonable to assume that swelling and shrinking
of water layers occur on the same time scale.
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(a) (b) (c) (d)

Fig. 6 A mixture of oil (shaded) and water (white) flow into the node from the right and bottom tubes. The
time proceeds from a to d, and the figures show how the fluid is distributed to the left and top tube

Combining Eq. 2 with Eq. 21 gives

∂rw

∂t
= �

(
γ

r2
w

− 1

rw
(Pnw − pw)

)
, (28)

where � = K/2
( 1

4G − π
)
. This equation is solved using an implicit finite-difference scheme

written as

rn+1
w = ��t

(
γ

(rn+1
w )2

− 1

rn+1
w

(Pn+1
nw − pn+1

w )

)
+ rn

w, (29)

where t = n�t . The nonlinear relation is solved with the Newton–Raphson method. We
solve the following system of linear equations once every timestep

A
(
rn

w

)
pn+1 = b

(
rn

w

)
, (30)

where rn
w is given by Eq. 29. Equation 30 is solved by a conjugate gradient method. As menisci

move through pores and throats, water layers are created. We use the pressure solution of
Eq. 18 as an approximation for the capillary pressure close to menisci, and the thickness of
a newly created wetting layer is given by

rw = γ

Pcalc
c

. (31)

Pcalc
c is only calculated in nodes, but wetting layers are created in both nodes and throats. For

the throats, rw is given by the entry capillary pressure Pc = 2γ /rIJ, which yields rw = rIJ/2.

2.5 Flow Mechanisms

When menisci positions are updated, we us an effective area of the tubes to calculate the
new positions, consistent with Aker et al. (1998). The fluid entering a node each timestep is
simply mixed in the node, and distributed to the tubes where it flows out of the node. Excess
menisci are coalesced according to rules which are illustrated in Fig. 6. Oil and water is
entering the node from the right and bottom tube in Fig. 6a. The fraction of water entering
the node will enter the left and top tube, and the fraction of oil will subsequently follow, as
we see in Figs. 6b and c. If the size of the oil bubble is more than half of the tube length, and
more than 50% water enters the tube, then this bubble is pushed to the other side of the tube.
The fraction of water then follows, and finally the fraction of oil enters the tube. This event
is illustrated in the upper tube in Fig. 6d. Bubbles of oil in the throat are not accounted for
by these rules. The reason is that small bubbles in throats are short-lived and should not be
important for the overall properties of the flow.
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We choose the timestep so that the meniscus with the highest velocity will move 10% of
the length of the tube.

This mixing rules can be justified for high capillary numbers. For low capillary numbers,
the approximation becomes less accurate because of cooperative pore filling and additional
fluid configurations in pore nodes/bodies that are not accounted for. This limits the applica-
bility range of the model to capillary numbers where both capillary and viscous forced are
important.

2.5.1 Snap-off

The most described mechanism behind snap-off is the “Roof snap-off”, after the work of Roof
(1970) who studied penetration of narrow throats by nonwetting fluid. Due to local capillary
pressure gradients caused by the expanding meniscus in a downstream pore, a snap-off will
happen if the radius of the pore-body is about twice the radius of the constriction. As the
snap-off process repeats itself, some of the bubbles will coalesce into bigger bubbles. Hence,
one may argue that snap-off is not important for the displacement in drainage.

Experiments on micromodels by Lenormand et al. (1983), Bernadiner (1998), Tzimas
et al. (1997), Kovscek et al. (2007), Li and Wardlaw (1986) show that snap-off in imbibi-
tion is an important mechanism for disconnection and trapping of nonwetting fluid at low
capillary numbers. The mechanism behind snap-off in imbibition is understood as due to
fluctuations in the capillary pressure around a constriction. Snap-off happens when enough
fluid has accumulated in the neck of the throat so that the radius of curvature of the water
layer reaches a critical value. This is a complicated phenomena, and is linked to the structure
of the corners and crevices in the rock. Gauglitz and Radke (1990) examined the dynam-
ics of layer swelling in constricted cylindrical capillaries, and developed a fourth order
partial differential equation for the thickness of the layer. They showed that the time for
snap-off is dependent on the initial profile of the layer, the film thickness, and the flow-
rate.

In order to incorporate snap-off in the model, we use a simple criteria for the layer thick-
ness in the throat. At a critical thickness, the oil in the bulk is no longer in contact with the
walls, and the oil bubble snaps off. The snap-off results in a collar of water between two
bubbles of oil. For a perfectly wetting medium the threshold for snap-off is when rw exceeds
the inscribed radius (Ransohoff et al. 1987)

rw,IJ ≥ rIJ. (32)

Snap-off is only possible in tubes of type (B). When snap-off happens, the tube is changed
into type (D), with a small bubble of water in the throat. This makes it possible for the water to
flow from the layer into the bulk. We emphasize that the we use a unified model for drainage
and imbibition. Hence, snap-off is possible in drainage, but is a rare event, and is insignificant
compared to effect of the mixing rules.

2.6 Boundary Condition

We use non-periodic boundary conditions in all directions. Fluid is injected at the inlet by
applying a constant pressure or a constant flowrate. In order to keep a constant flowrate, the
pressure in the bulk at the inlet is adjusted using a proportional regulation. To reduce capil-
lary end effects, there will always exist a meniscus in tubes where oil has reached the outlet
when a drainage process is performed. Hence, the capillary pressure at the outlet is given
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by the radius of curvature of this meniscus. For an imbibition process, the outlet and inlet is
interchanged, and an average capillary pressure over the total network is used as capillary
pressure at the outlet.

3 Capillary Number

The capillary number Ca is used as a measure of the relative importance of the capillary and
viscous forces in immiscible displacement in porous media. It is expressed as

Ca = μv

γ
, (33)

where μ is the largest viscosity of the two fluids, and v is the average flow velocity. Since
viscous forces are proportional to the length L of the system in the direction of flow, it is
more constructive to use a capillary number CA when comparing results for different system
lengths. It yields

CA = 4CaL

reff cos θ
, (34)

where reff is a pore radius characteristic for the system. It is derived for a single cylindrical
tube (Dullien 1992). For free spontaneous imbibition, FSI, the viscous force and the cap-
illary force are in balance because the pressure drop across the system is zero. This gives
CAFSI = 1. Imbibition at CA < 1 is referred to as controlled spontaneous imbibition, CSI,
and at CA > 1 as forced imbibition, FI. By keeping all parameters in Eq. 34 constant except
the flowrate, the value of CA is found by CA = q/qFSI, where qFSI is the flowrate at free
spontaneous imbibition.

4 Results

4.1 The Reconstructed Network

The network is constructed by first generating the pore space using a process based recon-
struction. More details can be found in Bakke and Øren (1997). Then the network is extracted
by defining pore and throat radii and throat lengths. The simulations are carried out on one
realization of size (4.5 × 1.5 × 1.5) mm3 consisting of 767 nodes and 1750 tubes. The
porosity is 35%, the permeability is measured to 48 Darcy, and the formation factor is 3.
The characteristics of the network are in agreement with sandpacks used by Dong et al.
(1998) and Meleán et al. (2003). They performed imbibition experiments for CA ≈ 0.01–10
(Ca = 10−8 − 10−5) with strongly water-wet conditions at samples about 100 times longer
than the network we consider.

The computation time greatly depends on the capillary number. A on this particular net-
work a drainage-imbibition cycle takes about two hours for CA = 10. However, for CA = 0.1
the time increases to a couple of days. Because of the explicit time-stepping and the changing
capillary pressure in the tubes the menisci are oscillating back and forth. And as the time
step is increased the amount of oscillations also increases. This makes the model inefficient
for low capillary numbers. The optimal time step also depends on the capillary number, and
to be consistent a time step of 10% of the length of the tubes is chosen.
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(a)
(b)

(c)

Fig. 7 Controlled spontaneous imbibition at CA = 0.1 (Ca ≈ 1.5×10−5) with Swi = 15%. Water is injected
from the left. a Snapshot of oil (red) and water (blue) in the network for Sw = 35%. b Time evolution of
the water saturation profile. c Time evolution of the radius of curvature profile. The legends show the average
network water saturation Sw

4.2 Saturation Profiles

We carry out imbibition simulations for capillary numbers ranging from CA = 0.1 to CA =
10 with initial water saturation Swi = 15%. We use equal viscosity μ = 1 mPa s for both
phases, and γ = 30 mN/m. A primary drainage process is performed prior to the imbibition
by gradually increasing the applied pressure drop until the desired Swi is reached.

Figure 7a shows a snapshot of the distribution of water (blue color) and oil (red color)
during controlled spontaneous imbibition at CA = 0.1. Water is injected from the left. There
is no distinct front visible, and snap-offs seem to occur randomly across the entire network.
This behavior is also visible in Fig. 7b, where the time evolution of the saturation profile is
shown. Fig. 7c shows the average radius of curvature rw in cross-sections along the length
of the network. The even increase in rw across the network supports the random occurrence
of snap-offs.

Figure 8 shows the saturation profiles for free spontaneous imbibition. We measure a cap-
illary number Ca ≈ 1.5×10−4, which agrees with Ca ≈ 10−6 obtained by Dong et al. (1998)
and Meleán et al. (2003) since they used systems approximately 100 times longer. A water
front is visible, where piston-like displacement is dominating and snap-off is suppressed. We
also observe a precursor front in the water layers shown in Fig. 8c.

For CA = 10 in Fig. 9, the flowrate is so fast that there is insufficient time for the water
layers to swell significantly before the water front has passed. This is forced imbibition, and
snap-off is totally suppressed.
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(a)
(b)

(c)

Fig. 8 Free spontaneous imbibition at CA = 1 (Ca ≈ 1.5 × 10−4) with Swi = 15%. Water is injected from
the left. (a) Snapshot of oil (red) and water (blue) in the network for Sw = 35%. b Time evolution of the water
saturation profile. c Time evolution of the radius of curvature profile. The legends show the average network
water saturation Sw

The saturation profiles are in qualitative agreement with experiments of Dong et al. (1998)
and Meleán et al. (2003). From CA = 0.1 to CA = 10, there is a transition from uniform
change of saturation across the whole network, where snap-off is the dominant displacement
mechanism, to a steep front where frontal displacement is dominant. From low to high values
of CA, there is also a decrease in the overall thickness of the water layers, due to insufficient
time to swell.

Increasing CA is also accompanied with less trapped oil, and a decrease in the residual oil
saturation Sor (Tzimas et al. 1997; Constantinides and Payatakes 2000). Table 1 gives the Sor

for the different capillary numbers. For CA = 0.1 the obtained Sor = 60% is in agreement
with the quasi-static result at Sor(QS) = 62%.

4.3 Resistivity Index

Resistivity measurements are used to determine water saturation in hydrocarbon formations.
The interpretation of resistivity measurements is usually based on Archie’s law, which relates
a resistivity index IR with Sw by

IR(Sw) = RSw < 100%

RSw = 100%
= S−n

w , (35)

where n is the saturation exponent. Experiments by Wei and Lile (1990) and Sweeney and
Jennings (1960) have shown that Archie’s law is valid only in strongly water-wet rocks. The
value of the saturation exponent is close to 2 for such rocks.
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(a)
(b)

(c)

Fig. 9 Forced imbibition at CA = 10 (Ca = 1.5 × 10−3) with Swi = 15%. Water is injected from the
left. a Snapshot of oil (red) and water (blue) in the network for Sw = 35%. b Time evolution of the water
saturation profile. c Time evolution of the radius of curvature profile. The legends show the average network
water saturation Sw

Table 1 Residual oil saturation,
Sor, and the time to reach Sor,
tSor , for different values of CA

CA Sor(%) tSor (s)

0.1 60 8

1 39 2

10 27 0.7

Hysteresis in the resistivity index is often observed (Longeron et al. 1989; Knight 1991).
A possible explaination could be that for displacement at low capillary numbers in strongly
water-wet rocks, drainage is dominated by piston-like displacement, and imbibition is domi-
nated by snap-off. Snap-off causes trapping of oil clusters, which gives a lower water satura-
tion compared to drainage for a given capillary pressure or resistivity index. Hence, hysteresis
is observed.

To calculate the resistivity, we assume that the oil phase is insulating, and that the electrical
conductance of a water element is given by

ge = Aσw

l
, (36)

where A is the cross-sectional area, σw is the water resistivity, and l is the length of the
element. Water elements within a tube are coupled in series to get an effective conductance
for each tube. The resistivity of the network is calculated between the inlet and outlet by
applying a voltage drop across the network. We use Kirchhoff’s law to evaluate the voltages
in the nodes. From the voltages, the total current and resistivity can be found.
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Fig. 10 Comparison of Pc for
our model with a quasi-static
model (Bakke and Øren 1997).
The data points are obtained
when the change in the saturation
drops below a given threshold

We mimic an experimental drainage–imbibition cycle where the dynamic capillary pres-
sure is given by the applied pressure drop, �P = Pc, across the network. Initially the
network is completely filled with water. Oil is injected by incrementing �P when the change
in the saturation drops below a given threshold. This gives a fluctuating capillary number at
Ca ≈ 10−5 before breakthrough. We name this the “equilibrium” process. Fig. 10 compares
“equilibrium” capillary pressure for our model with a quasi-static model. Due to a finite
threshold, the dynamic capillary pressure �P is larger than Pc of the quasi-static model for
drainage (Hassanizadeh and Gray 1993). As Swi is approached, the difference increases due
to decreasing hydraulic conductance of the water phase. As the threshold goes to zero, the
dynamic capillary pressure will approach the static capillary pressure. The drawback is that
the computational cost increases.

The “equilibrium” drainage process is stopped at Swi = 15%, and a subsequent imbibition
displacement is performed by decrementing �P . Water initially imbibes by CSI at CA ≈ 0.1.
As the applied pressure continues to drop, FSI and finally, FI is performed. The quasi-static
model reaches Sor when all the remaining oil is disconnected from the outlet. In the dynamic
model, mobilization of disconnected clusters is possible as the applied pressure becomes
negative, and Sor = 38% is reached.

Figure 11a shows the profiles of the radius of curvature rw for the “equilibrium” process.
As �P increases, and smaller pores are invaded, rw will decrease. In Fig. 11b a constant
flowrate at Ca = 5.0 × 10−4 is used. �P is now initially high, and increasing. This renders
rw initially low and decreasing.

The resistivity index for drainage is shown in Fig. 12a. The saturation exponent is around
1.6 for the “equilibrium” displacement, but we see that the resistivity index tends to curve
toward the saturation axis. This kind of “non-Archie” behavior is experimentally observed
(Worthington and Pallatt 1992; Moss et al. 1999), and can be explained by the increasing
amount of electric current in the water layers as Sw decreases. If water is only residing in water
layers, and the connectivity of the layers is preserved, the resistivity index yields IR = 1/Sw.
Hence, the saturation exponent approaches 1.

Another observation is that the saturation exponent is increasing with increasing capillary
number, in agreement with experiments on core plugs (Jing et al. 1993; Maas et al. 2000)
and sandpacks (Aggelopoulos et al. 2005). For drainage at constant flowrate, the resistivity
index will approach the “equilibrium” result after breakthrough. Then the displacement will
eventually stop, and further increase of the flowrate is needed to mobilize the remaining
water.
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(a) (b)

Fig. 11 Time evolution of the profile of rw in primary drainage. The network is initially filled with water,
and the oil is injected from the right. Tubes completely filled with water correspond to rw = 0. The legends
show the water saturation Sw. a Drainage by the “equilibrium” process (Ca ≈ 10−5). b constant flowrate at
Ca = 5.0 × 10−4

(a) (b)

Fig. 12 a Log–log plot of the resistivity index for primary drainage at different capillary numbers. b Log–log
plot of the resistivity index for drainage–imbibition cycles at different capillary numbers. The fitting model of
Eq. 37 is indicated by the dashed line

The resistivity index for drainage–imbibition cycles is plotted in Fig. 12b. We find a
significant hysteresis loop. Some experiments show hysteresis in the resistivity index between
drainage and imbibition cycles in water-wet sandstones (Longeron et al. 1989; Knight 1991).
However, some authors also report no significant hysteresis (Moss et al. 1999; Han et al.
2007). The shape of the curve for the “equilibrium” imbibition is bending slightly upward,
while for FSI and FI the curve is bending downward. This behavior is attributed to the
suppressed swelling of the water layers, and the sharp front in imbibition at large capillary
numbers. If we assume a constant saturation on each side of the front with Sor behind the
front, and Swi ahead of the front, then the resistivity index can be expressed by the linear
relation

IR(Sw) = ISor + (1 − Sor − Sw)(ISwi − ISor )

1 − Sor − Swi
, (37)

where ISor and ISwi are the resistivity indices at Sor and Swi, respectively. This relation is
fitted to the FI result in Fig. 12b.
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Fig. 13 Imbibition rate for free
spontaneous imbibition for
different Swi. The solid lines
indicate the Washburn law
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4.4 Free Spontaneous Imbibition Rate

Washburn (1921) provided an early analysis of the free spontaneous imbibition process.
He considered water displacing air in a horizontal cylindrical capillary tube. By assuming
Poiseuille flow, and that the viscosity of air is negligible, the Washburn law yields

x =
√

γ r cos θ

2μ

√
t, (38)

where x is the distance penetrated by the liquid, r is the radius, and μ is the viscosity of the
liquid. In the case of viscosity matching, then a linear relation between penetration length
and time is found

x = γ r cos θ

4μl
t, (39)

where l is the total length of the tube. These equations explain the basic competition between
capillary forces and viscous resistance in a single capillary tube. However, in a porous medium
they can be invalidated by many factors. For example, they assume cylindrical tubes with no
water layers; furthermore, they assume free supply of water, and thereby predicts that wide
tubes are filled faster than narrow tubes. In porous media, however, the narrowest throats
are filled first. This may be explained by a limited supply of water to large pores (Chatzis
and Dullien 1983; Sorbie et al. 1995). Despite the complicating factors for imbibition in
porous media, Washburn behavior is often observed in experiments (Akin et al. 2000; Li et
al. 2003; Fisher and Morrow 2005), even when the viscosity of the onwetting phase can not
be neglected.

We have conducted free spontaneous imbibition simulation with the dynamic model for
different values of Swi. The results are plotted in Fig. 13. It seems that the model follows the
Washburn law in an intermediate domain where the front is not influenced by end effects.
Note that we have used Sw instead of the penetration length x in Eq. 38. This is valid as long
as the residual saturation behind the water front is constant with distance from inlet.

5 Conclusion

A fully dynamic model for two-phase immiscible flow in a network has been developed.
It can be used as a unified model for drainage, imbibition and steady-state displacement.
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In this work, the model has been used on a reconstructed network of a sandpack to reproduce
important characteristics at strongly water-wet conditions. For imbibition, we see a sharp-
ening of the water front for increasing capillary numbers, and the saturation profiles are
comparable with experimental data from sandpacks for a wide range of capillary numbers.
We also simulate drainage–imbibition cycles at different capillary numbers. We find a satura-
tion exponent and hysteresis in the resistivity index that is typically observed in experiments.
The imbibition rate for free spontaneous imbibition is found to partially follow the Washburn
law.

These preliminary results suggest that the model can mimic experimental setups and
reproduce petrophysical parameters at different capillary numbers. In future work, we will
focus on measuring electrical resistivity in steady-state displacement.
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