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Abstract Convection-enhanced drug delivery is a technique where a therapeutic agent is
infused under positive pressure directly into the brain tissue. For predicting the final con-
centration distribution and optimizing infusion rate and catheter placement, numerical mod-
els can be of great help. However, despite advances in modeling this process, often the
infused agent does not reach the targeted region prescribed in the modeling phase. In this
study, patient-specific brain structure and parameters, obtained from diffusion tensor imag-
ing (DTI), are implemented in a numerical model which describes the flow and transport in
an elastic deformable matrix. To our knowledge, this is the first time that information from
DTI is used in a numerical model which includes both transport of a therapeutic agent and
tissue deformation. Fractional anisotropy (FA) is used to distinguish between gray and white
matter and tortuosity to differentiate between inside and outside the brain tissue. One voxel
in the DT-image is represented by one element of the numerical grid. The DT-images were
in addition used to determine the orientation of the white matter fiber tracts and calibrate
permeability and diffusion coefficients found in the literature. Values chosen for the porosity
and Lamé parameters are also based on those found in the literature. Given realistic literature
values, the calibration of the permeability and diffusion tensors are shown to be successful.
Our result shows that preferential flow occur in direction of the white matter fiber tracts.
The current model assumes linear deformation, corresponding to small porosity changes.
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But, because large porosity changes occur that may adversely affect drug transport, non-lin-
ear deformations should be included in the future.

Keywords Convection-enhanced delivery · Poro-elasticity · Diffusion tensor imaging ·
Brain tissue

1 Introduction

1.1 Motivation

Parkinson, Alzheimer, epilepsy, and malignant brain tumors are all diseases affecting the
central nervous system (CNS). In most cases, these diseases have severe consequences for
the patients and the need for effective treatment is urgent. Although there often exist agents
capable of curing these diseases, most therapeutic agents have proven inefficient when given
orally or intravascularly. This is mainly because of two different effects. First, when one
injects a therapeutic agent intravascularly it gets diluted. Thus, one needs a high dose to
get the required concentration in the targeted region. But, the dose is limited by the drug
concentration that the body as a whole can stand without severe consequences. Second,
the blood–brain barrier (BBB) prevents many macromolecules from entering the interstitial
space, which means that the drugs never reach the targeted region (Groothuis 2000).

Thus, after finding an effective therapeutic agent, the challenge is to get the agent in the
right concentration to the targeted region. To overcome the problems associated with the BBB
and systemic toxicity, therapeutic agents can be introduced directly into the brain tissue. This
can be done by continuously infusing the agent into the brain tissue via catheters, such that a
pressure gradient arises. This technique is called convection-enhanced drug delivery (CED)
since the spreading is dependent on the infusion pressure and not diffusion only (Morrison
et al. 1994). The pressure gradient induces flow and results in a higher concentration of the
drug farther away than in the case of only diffusion-driven delivery (Raghavan et al. 2006;
Morrison et al. 1994).

CED is still on an experimental level and many questions are left open. In particular, it
is difficult to predict spatial distribution and local concentration variations (Raghavan et al.
2006; Groothuis 2000). One reason is that the distribution of the agent is heavily dependent on
factors such as heterogeneities in the brain tissue and local differences in interstitial pressure
due to edema.

Several models describing CED have already been developed and can be divided into
two main categories, based on whether the CNS is described as a rigid or an elastic porous
medium.

1.1.1 Rigid Models

CED was first proposed in the beginning of the 1990s and one of the first mathematical
models was developed by Morrison et al. (1994). This model describes the transport of mac-
romolecules, assuming isotropic and homogeneous brain tissue for the case of high-flow and
low-flow infusion. In the latter case, they only considered diffusion. The model was based on
a model by Baxter and Jain (1989) applied for low-flow infusion. Both of these models were
based on analytical solutions. Later, numerical solutions were obtained for more realistic
cases. For example, Raghavan et al. (2006) and Linninger et al. (2008a,b) all modeled CED
into a human brain, while Sarntinoranont et al. (2003, 2006) and Kim et al. (2009, 2010)
modeled CED into the spinal cord and corpus callosum of a rat. These models all used a
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rigid geometry based on MR-images and both anisotropy and heterogeneities were taken
into account.

1.1.2 Elastic Models

The assumption of rigidity is actually not applicable to brain tissue. So, some models use
the poro-elastic theory developed by Biot (1955) to describe fluid transport in the interstitial
space. Several models treating the brain as an elastic porous medium can be found in the liter-
ature. Basser (1992), Netti et al. (1997), Chen et al. (2002), and Smith and Humphrey (2007)
all used a poro-elastic consolidation model and derived analytical solutions for the pressure
field and velocity distribution during infusion into the center of a spherical tumor. Netti et al.
(1995), Kalyanasundaram et al. (1997), Gillies et al. (2005), and Chen and Sarntinoranont
(2007) used a similar poro-elastic consolidation model, but instead of deriving analytical
solutions, the equations were solved numerically.

The mechanical properties of the brain and spinal cord are known to be non-linear and
strain-rate-dependent (Miller and Chinzei 2002; Cheng and Bilston 2007). To account for
this, Smith and Garcia (2009, 2011) recently developed a hyperelastic model. They con-
sidered two different cases: a constant pressure infusion (Garcia and Smith 2009) and a
constant infusion rate (Smith and Garcia 2009). Later, they included transport of a dissolved
therapeutic agent in the model (Smith and Garcia 2011). This hyperelastic model assumes a
homogeneous and isotropic spherical geometry. Hyperelastic and viscoelastic models with
realistic geometries have been developed to study, e.g., the pathogenesis of hydrocephalus
(Taylor and Miller 2004; Dutta-Roy et al. 2008), but to our knowledge none of these models
describe mass transport or include heterogeneities and anisotropy of the brain tissue.

In order to find a compromise between describing the complex structure of the brain tissue
and taking into account the relevant physical processes, this study shows a workflow from
MRI measurements to a computational model with realistic parameters.

1.2 Outline

The aim of this study is to combine patient-specific parameters and brain structure with a
poro-elastic model. Information about the structures of the tissue is obtained from DTI and
the effect of heterogeneities and anisotropy on the final concentration distribution. To our
knowledge this is the first numerical model using information from DTI which includes both
transport of a therapeutic agent and tissue deformation.

In Sect. 3, CED-induced flow and transport processes are described. Then, the mathemat-
ical model is presented. In Sect. 4, the determination of effective model parameters on the
basis of a MRI-data set is described. Parameters that cannot be obtained from MRI are taken
from the literature. Next simulations are done for the isotropic and homogeneous case and a
comparison between rigid and poro-elastic models is conducted. Finally, the patient-specific
parameters and brain structure are implemented and the effect of the location of the infusion
is investigated. The article is concluded with a summary and a conclusion.

2 The Brain Tissue

Together with the spinal cord, the brain makes up the central nervous system (CNS). Although
this is an extremely complicated system, the tissue mainly consists of two cell types; neurons
and glial cells.
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One can distinguish two different types of brain tissues, namely, white matter and gray
matter. Gray matter has a high density of tightly packed neuron cell bodies, whereas white
matter mainly consists of long axons that form fiber tracts. The outer part of the brain tissue
consists of gray matter, while the inner parts mainly consist of white matter. Furthermore,
the brain is covered by meningeal layers, which separates the brain tissue from the cerebro-
spinal fluid (CSF). CSF fills up both the empty space between the brain and the skull, and
the cavities within the brain, called the ventricles.

The fluid-filled spaces in between the cells in the tissue are referred to as the interstitial
space. The brain tissue is also penetrated by numerous blood vessels, called the vasculature.
The vasculature may act as sink for the therapeutic agent. However that is neglected in this
study, and only spreading of the therapeutic agent in the interstitial space is considered. The
effect of vascular uptake has been studied by, e.g., Smith and Humphrey (2007) and Baish
et al. (1997).

The therapeutic agent can also undergo degradation and adsorption to the cells. These
processes will obviously hinder the spreading of the drug. Morrison et al. (1994) included
linear metabolism and adsorption. These processes were also included, among others, by
Linninger et al. (2008b), but are not considered in this study, as we focus on the effects
deformations, heterogeneities, and anisotropy have on the concentration distribution.

3 Model

3.1 Conceptual Model

A porous medium can be defined as a solid or a structure with interconnected voids, through
which fluids can flow. Although the human body is a highly sophisticated system, the porous
medium assumptions can be used to describe relevant features and processes in the intersti-
tial space accurately (Nicholson 2001). Thus, one may consider the brain as a heterogeneous
porous medium where the neurons and glial cells make up the solid phase filled by the inter-
stitial fluid (Gillies et al. 2005). The interstitial space is highly tortuous and the pore sizes
are of nanoscale. Nevertheless, it makes up 20% of the total volume of the brain (Nicholson
2001). Blood vessels, ventricle walls, and meningeal layers all contribute to the brain’s heter-
ogeneous structure. Moreover, different properties of the gray and white matters lead to both
heterogeneity and anisotropy. Gray matter has a low permeability, but is relatively homo-
geneous and isotropic. On the other hand, white matter has a higher permeability, but is
anisotropic. This anisotropy arises from the fibers formed by the axons in the white matter.
Heterogeneities and anisotropy are important factors for transport processes in the tissue,
and should be taken into account.

3.2 Mathematical Model

In this study, a poro-elastic model with patient-specific parameters and brain structure
obtained from MRI is developed. The model is based on a 1D model developed by Gillies
et al. (2005) and is here extended to 3D. Only the interstitial space and CED-induced transport
processes are considered. For the mathematical model, the following assumptions were made:

• The therapeutic agent is completely soluble in the interstitial fluid.
• The fluid phase and the solid matter are both regarded as incompressible.
• The solid matrix is assumed to behave as an isotropic linear elastic material (small defor-

mations).
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• Changes in density and viscosity of the fluid phase as a result of dissolution of the thera-
peutic agent are neglected.

• The temperature is assumed to be constant.
• Chemical reactions, absorption, and adsorption of infused agents are neglected.
• Gravity force is neglected.

Thus, an equation for isothermal single-phase flow within an elastic matrix is solved for
the fluid phase. To develop the flow equations, the solid matrix is taken into account as a
second phase. The primary variables are the pressure (p) and the displacement (u), and, in
the transport equation, the molar concentration of therapeutic agent (c).

3.2.1 Flow Equations

Both fluid and solid phases are materially incompressible. However, the solid matrix is
assumed to be deformable; i.e, the void space can change as a result of change in fluid
pressure. Assuming the density of the solid and the liquid phase to be constant the mass
balance can be transformed to a volume balance (see, e.g., Helmig 1997):

Solid phase:

∂(1 − φ)

∂t
+ ∇ · ((1 − φ) · vs) = 0 (1)

Fluid phase:

∂φ

∂t
+ ∇ · (φvl) ± �F(x, t) = 0 (2)

Here vs and vl represent the velocities of the solid and fluid phases, respectively. φ is porosity
and �F(x, t) denotes source/sink terms of the fluid phase. Adding Eqs. 1 and 2 yields:

∇ · (φvl + (1 − φ)vs) ± �F(x, t) = 0 (3)

In the case of infinitesimal deformation, the velocity of the solid phase (vs) can be represented
by the partial time derivative of the displacement vector (u):

vs = Du
Dt

= ∂u
∂t

(4)

where D
Dt denotes the material time derivative with respect to the solid phase velocity, which

is approximated by the partial time derivative.
To describe the fluid flow in porous media on the continuum scale, generally the Darcy

equation is applied. The Darcy equation represents a simplified momentum balance of the
fluid phase (Hassanizadeh and Gray 1980). It is valid in the case of creeping flow (Reynolds
number < 1) which can be assumed for brain tissue because of the small pores and flow
velocities. Moreover, Reynolds number < 1 implies that inertial forces can be assumed neg-
ligible (Helmig 1997). For the poro-elastic case, there is an additional transport component
since the displacement of the solid matrix contributes to movement of fluid within its pores.
Thus, the transport velocity is:

vl = − K
φμw

(∇ p − ρlg) + ∂u
∂t

(5)

Here K represents the intrinsic permeability tensor, ρl is the fluid mass density, and μw is
the viscosity of water which is assumed equal to the viscosity of interstitial fluid (ISF). Since
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the fluid source is applied as a point source, the pressure gradient is steep and more important
than gravity. Thus, gravity is assumed to be negligible. Substituting Eq. 5 in 3 and rearranging
yields the final form of the fluid–solid mixture volume balance:

∇ ·
(

∂u
∂t

− K
μw

∇ p

)
= �F(x, t) (6)

To set up a balance of forces in a porous medium, both the fluid and the solid phase have
to be considered. As already mentioned, inertial forces and gravity are neglected. Thus, the
only remaining forces are caused by the fluid pressure and by the stresses in the solid matrix.

∇ (σ − pI) = 0 (7)

Further, the displacement vector (u) can be related to the deformation or strain tensor
field:

e = 1

2

(∇u + ∇Tu
)

(8)

Assuming an isotropic, linear elastic medium, it can be shown that the following linear
stress–strain relation holds (Hassanizadeh and Gray 1980):

σ = 2μe + λ(tre)I (9)

where μ and λ represent Lamé parameters. Substituting (9) and (8) into (7) and rearranging
yields:

∇ · (
μ(∇u + ∇Tu) + λ(∇ · u)I

) − ∇p = 0 (10)

Note that u and p are time-dependent due to Eq. 6. The Lamé parameters are used to charac-
terize the elasticity of a medium and are related to the Poisson ratio (ν) and Young’s Modulus
(E) as follows:

λ = Eν

(1 + ν)(1 − 2ν)
, μ = E

2(1 + ν)
(11)

For small values of μ and λ, deformation may occur even at low infusion pressure. While
high values imply that the medium can be regarded as rigid.

3.2.2 Transport Equation

The transport equation can be derived from the mass balance of the infused therapeutic agent
and results in the following equation:

∂(cφ)

∂t
+ ∇ · (

φvlc − Dpm∇c
) = �T(x, t) (12)

where c (mol/l3) represents the concentration of the therapeutic agent and Dpm is the effective
diffusion tensor of the porous medium which in general is smaller than the diffusion coeffi-
cient of the agent in free water. �T(x, t) (mol/sl3) is a source/sink term for the therapeutic
agent.

3.3 Effective Parameters

In an elastic medium, the structure of the solid phase is time-dependent. This should be taken
into account in the model by relating medium properties to deformation.
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Fig. 1 The porosity is plotted
versus displacement for an initial
porosity of 0.2. For small
deformations it can be seen that
the different formulas do not
make a difference, while for
increasing divergence Eq. 14
results in lower porosity changes
than the equation found in the
literature

3.3.1 Porosity

Even though both fluid and solid phases are regarded as incompressible, their volume frac-
tions can change due to local displacement. For small deformations the following relation
between ∇ · u and the porosity (φ) have been used (Netti et al. 1997):

φ = φ0 + ∇ · u
1 + ∇ · u

(13)

This equation is employed in most poro-elastic models that include porosity changes (Gillies
et al. 2005; Chen and Sarntinoranont 2007; Chen et al. 2002). However, an expression for
the effective porosity can also be derived from the volume balance of the solid phase (Eq. 1)
employing the approximation given in Eq. 4 for small deformation and the initial conditions
φ = φ0 and ∇ · u = 0. The result is:

φ = 1 − (1 − φ0)e
−∇·u (14)

In Fig. 1, porosity is plotted against the divergence of displacement for Eqs. 13 and 14. As
long as the divergence of displacement (∇ ·u) is small the two formulas yield similar results.
Small ∇ · u is a result of gentle pressure gradients or high values of the Lamé parameters.
When the divergence is large, the difference between Eqs. 13 and 14 increases. However, in
the range were the linear elasticity theory holds, the two relations yield similar results and in
this study Eq. 14 has been used.

3.3.2 Permeability

Zhang et al. (2000) showed that, during intra-tumoral infusion, an increase in the infusion
pressure leads to significant changes in the permeability of the tissue. This is related to the
deformation, which causes changes in size and connectivity between pores in the tissue.
Tissue expansion may increase the conductivity and, thus, the permeability of the tissue in
the vicinity of the injection point, whereas compression farther away closes the paths and
may reduce permeability of the tissue (McGuire et al. 2006). Lai and Mow (1980) proposed
the following exponential relationship between the deformation and the permeability:

K = K0eβ∇·u (15)

Here K0 is the initial permeability tensor and β is a material constant. McGuire et al. (2006)
fitted this parameter to results obtained from an experiment performed on both rodent and
human tumor models. A sensitivity analysis was carried out and β was found to vary between
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Table 1 Governing equations and boundary conditions

Volume balance ∇ ·
(

∂u
∂t − K

μw
· ∇ p

)
= �F(x, t)

Displacement ∇ ·
(
μ(∇u + ∇Tu) + λ(∇ · u)I − pI

)
= 0

Transport equation ∂(cφ)
∂t + ∇ ·

([
c
(
− K

μw
· ∇p + φ ∂u

∂t

)
− Dpm∇c

])
= �T(x, t)

Porosity φ = 1 − (1 − φ0)e−∇·u

Permeability K = K0eβ∇·u
Diffusion J = −Dpm∇c

Boundary conditions u = 0 cm on ∂�

p = 400 Pa on ∂�

c = 0 on ∂�

0 and 5. Equation 15 was later employed in a poro-elastic model by Chen and Sarntinoranont
(2007).

3.3.3 Diffusion

The last part of the second term in Eq. 12 represents diffusive flux. Diffusive flux is molecular
transport caused by concentration gradients and can be described by Fick’s 1st law (Nicholson
2001):

J = −Dpm∇c where Dpm = φτD∗ (16)

Dpm is the effective diffusion tensor in a porous medium. Dpm is lower than the anisotropic
aqueous diffusion tensor D∗ obtained from diffusion tensor imaging, since the diffusion of
therapeutic agent is limited to the porespace and since the connections between pores do not
form straight channels. This is represented in Eq. 16 by the porosity (φ) and the tortuosity
(τ ). φ is time-dependent as given in Eq. 14, while τ is kept constant, a reasonable assumption
for a convection dominated problem, since the diffusion is of less importance.The method
of determination of the diffusion tensor (D∗) and τ are explained in Sects. 4.2 and 4.2.3,
respectively.

3.4 Numerical Implementation

The full set of governing equations are presented in Table 1. The equations are discretized
and then implemented in a fully coupled flow and transport model based on a first-order
Euler time discretization in combination with a BOX-discretization in space (Helmig 1997).
The BOX-discretization is a vertex-centered finite volume scheme, which is constructed on a
finite element mesh. It allows the application of unstructured grids by evaluating the gradients
using finite element shape functions. The scheme is locally and, thus, globally mass conser-
vative, since the BOX-discretization is based on finite volumes. The discretized equations
were then implemented in the DuMux framework (Flemisch et al. 2011).

4 Determination of Parameters

To apply the model described above to realistic cases, information about the properties of
the tissue is needed. Since every human is unique, patient-specific parameters must be found
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in vivo. In this article, information from magnetic resonance imaging (MRI) of a patient is
interpreted to determine effective model parameters. From diffusion tensor imaging (DTI),
we use the self-diffusion tensor of water in brain tissue (Ds−d ) to characterize the degree
of heterogeneity and anisotropy. Furthermore, information from the DTI data are used to
delineate geometrical boundaries. For an overview of diffusion-weighted MRI, we refer to
Hagmann et al. (2006).

4.1 Parameters from Literature

In the future, all patient-specific parameters should be obtained non-invasively. Currently,
literature values are needed for initial porosity (φ0), the Lamé parameters (μ and λ), and for
the calibration of K and D described below. Bender and Klose (2009) proposed a method for
determining porosity from MRI that showed promising results. For the elasticity parameters,
more research is still needed, but we believe that elastography will be a useful tool in the
future (see, e.g., Klatt et al. 2007 or Cheng et al. 2008). However, in the scope of this study,
the parameters are based on average values found in the literature (see Smith and Humphrey
2007 for a review). In general, these values have been measured using animal models, and
are not human brain data.

4.2 Diffusion Tensor Imaging (DTI)

In this study, diffusion tensor images (DTI) are obtained from a patient at OVGU-Magdeburg
University Hospital, Germany. Each 3D image represents one of the components of the self-
diffusion tensor of water in the brain tissue (Ds−d ) and consists of 128 · 128 · 65 voxels with
a resolution of 2 mm. All calculations performed in the following are based on this data-set.

Basser et al. (1994b) showed how Ds−d in human tissues can be estimated from spin-echo
experiments using multiple regressions. Later, Basser et al. (1994a) also verified how this
technique can be used to determine the orientation of white matter fiber tracts; the eigen-
vector corresponding to the largest eigenvalue of Ds−d defines the tissue’s fiber tracts axis
(z-axis), while the two remaining perpendicular eigenvectors define the x- and y-axes. Then,
after preprocessing the raw data, Ds−d can be represented voxel wise as a positive definite
symmetric tensor.

A general macroscale transport tensor, e.g., electrical conductivity or diffusion tensor,
can be related to the microstructures of the medium through its statistical moments (Brown
1955; Sen and Torquato 1988). Tuch et al. (2001) demonstrated how this principle can be
used to link Ds−d to the electrical conductivity of biological tissue. Further, they proposed
that the same principle can be used to estimate the diffusion of macromolecules (D∗) within
the tissue and the permeability (K0) of the tissue.

The mathematical model used in this study assumes anisotropic permeability and diffu-
sion tensors, whereas the elastic properties are assumed to be isotropic. Even though the
fiber structure of the white matter suggests anisotropic elastic properties, this issue is still
under debate (Cheng et al. 2008). Odgaard et al. (1997) and Odgaard (1997) showed that
mechanical anisotropy directions are aligned with the directions of the fiber structure in can-
cellous bone. More recently, Cowin and Cardoso (2011) developed a poro-elastic model that
takes anisotropic elasticity into account, with application to cancellous bone. However, it is
still an open question whether the elastic properties of brain tissue align with the fiber tracts
(Cheng et al. 2008). Therefore, we have chosen to model the brain tissue as an isotropic
elastic material.
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Sarntinoranont et al. (2006) calculated K and D* tensors for the spinal cord of a rat
and Linninger et al. (2008a) obtained the same parameters for a human brain. The main
assumption behind this principle is, as Basser et al. (1994b) and Tuch et al. (2001) proposed,
that Ds−d , K and D* share the same set of eigenvectors. In the article by Sarntinoranont
et al. (2006), the eigenvalues in the white matter regions are assumed to be equal in x- and
y- directions, while a significantly higher value is assumed in the z-direction. This is a rea-
sonable assumption for the spinal cord, where the orientation of most of the fiber tracts is in
the z-direction. In the brain tissue, the orientation of the fiber tracts is heavily dependent on
the location. But the eigenvalues can be calibrated to the eigenvalues of the self-diffusion
tensor following a three-step calibration procedure proposed by Linninger et al. (2008a).
Below we describe the calibration of the initial permeability field (K0); exactly the same
principle is used to obtain D*.

4.2.1 Initial Permeability, K0

In the first step, the diffusion tensor (Ds−d ), obtained from DTI, is decomposed into eigen-
vectors (ξ ) and eigenvalues (λiw ) for each voxel:

Ds−d = ξ · � · ξT where � =
⎡
⎣λ1w 0 0

0 λ2w 0
0 0 λ3w

⎤
⎦ . (17)

In the second step, the mean of the eigenvalues (λ̄w) is found and then the eigenvalues are
scaled by λ̄w . The result is multiplied by a typical value of the permeability (K ) obtained
from the literature, to obtain eigenvalues of the initial permeability field:

λ̄w = 1

3
�3

i=1λiw and λiK = K

(
λiw

λ̄w

)
(18)

Finally, in step 3 the initial permeability tensor (K0) is calculated:

K0 = ξ · �K · ξT where �K =
⎡
⎣λ1K 0 0

0 λ2K 0
0 0 λ3K

⎤
⎦ . (19)

As mentioned above, the initial permeability tensor is assumed to have the same eigenvectors
as the diffusion tensor. In Fig. 2, results of the calibration for K0/K are presented to show
the anisotropy of the brain tissue.

The method proposed by Linninger et al. (2008a) requires a reference value for the per-
meability (K). Based on pressure fields measured during CED in clinical trials (Bobo et al.
1994; Prabhu et al. 1998), an average permeability value of K = 1.82 × 10−15 m2 was cal-
culated by Smith and Humphrey (2007). In this study, K = 1.82 × 10−15 m2 is applied
unless otherwise is stated. However, a wide range of permeability values can be found in the
literature; see, e.g., Basser (1992) and Kaczmarek et al. (1997). Moreover, the permeability
in white matter is often assumed to be significantly higher than in gray matter (see Sect. 5).

4.2.2 Diffusion Tensor, D∗

The diffusion tensor (D∗) is obtained in the same manner as the effective permeability (K0).
The only difference is that now the calibration of the eigenvalues is given as:

λiD = D

(
λiw

λ̄w

)
(20)
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Fig. 2 A cross section of the six components of the DTI-dataset after performing the calibration proposed
by Linninger et al. (2008a). Note that the plots represents K0/K and, thus, the anisotropic features of the
tissue. The left column shows the components of the main diagonal of the normalized tensor, while the right
represents the off-diagonals of the symmetric tensor. In the most anisotropic regions Kxx ≈ 7Kyy

Note that D is the free diffusion coefficient of the contrast agent Gd-DTPA in water, which
is equal to D = 3.8 × 10−10 m2/s (Kim et al. 2005). Finally, D∗ becomes:

D∗ = ξ · �D · ξT where �D =
⎡
⎣λ1D 0 0

0 λ2D 0
0 0 λ3D

⎤
⎦ . (21)
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4.2.3 Tortuosity (τ )

The calibration of D∗ takes the anisotropy into account, but not the tortuosity (τ ). τ is calcu-
lated from DTI-data defining tortuosity as the square root of effective diffusion measured in
DTI (Vorisek and Sykova 2009) divided by the free self-diffusion coefficient of water (Dw).
Dw is here taken to be 3.22 × 10−9 m2/s which holds for water at 40◦C (Holz et al. 2000).
The tortuosity is kept constant and its value is based on the trace of Ds−d in the DTI-data

τ =
√

1
3

(
Dxx + Dyy + Dzz

)
Dw

(22)

The diffusion of water in the tissue cannot exclusively be assigned to the extracellular
space. Since water can diffuse through the cells, the diffusion tensor obtained from DTI
overestimates the tortuosity of the medium (Vorisek and Sykova 2009).

4.3 Geometry

From MRI, the anatomy of the brain can be reconstructed. Obviously, this is important since
different brain structures have different transport properties. This reconstruction should delin-
eate white matter and gray matter regions, ventricles and meningeal layers. All these structures
play an important role when modeling the flow and transport processes in the brain. Recon-
struction can be done applying algorithms such as noise filtering, contrast enhancement, and
edge detection to MR-images. From this, a domain corresponding to the shape of the brain
is created. These are rather time-consuming methods. Therefore, in this study a voxel-based
approach was used. This was also done in a study by Kim et al. (2009, 2010). In this approach,
a dimensionless index, called fractional anisotropy (FA), is used to distinguish between white
and gray matters. FA is calculated based on the eigenvalues obtained from DT-images:

FA =
√√√√3

2
·
(
λ1w − λ̄

)2 + (
λ2w − λ̄

)2 + (
λ3w − λ̄

)2

λ2
1w

+ λ2
2w

+ λ2
3w

(23)

where λ̄ is the mean of the eigenvalues defined in Eq. 18. This index was proposed by Basser
and Pierpaoli (1996) and is a measure of the fraction of Ds−d which can be assigned to aniso-
tropic diffusion. For an isotropic medium, FA is 0, while for an axisymmetric anisotropic
medium FA = 1. Since brain tissue is neither axisymmetric nor isotropic, the FA values lie
somewhere between 0 and 1. In this study, voxels with FA > 0.4 are defined as white matter
(Table 2). This is done based on the FA values shown in Fig. 3. Distinguishing between gray
matter and white matter is important since the infused agents spread over larger volumes in
white than in gray matter. For low-resolution MR-images, the probability that the signal from
one voxel only represents one tissue type is pretty low. This leads to another uncertainty in
this parameter. But, in the future, higher resolution images will solve this problem.

Table 2 Based on threshold
values, it is distinguished
between different regions and
tissue types in the brain

FA τ

Gray matter 0–0.4 0.24–0.54
White matter >0.4 0.24–0.54
Ventricle/meninges – <0.24 or >0.54
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Fig. 3 Cross section of the tortuosity calculated using Eq. 22 (left). Fractional anisotropy (FA) calculated
using Eq. 23 (right)

To delineate ventricles, meningeal layers, and bones from the parenchyma, the tortuosity
field (see Sect. 4.2.2) is used. The threshold values applied are given in Table 2. This approach
works well for the ventricles, but again the resolution is too low to successfully delineate the
meningeal layers.

5 Results and Discussion

5.1 Simulations for the Homogenous and Isotropic Case

To test the capability of the model, 3D simulations were performed on a homogenous and
isotropic domain. Dirichlet boundary conditions were imposed, i.e., displacement (u) and
concentration (c) were set to zero and pressure (p) to 400 Pa at the outer boundaries. The
modeled domain was 4 · 4 · 4 cm3 and the gridspacing was 2 mm using a regular cubic grid.
The simulations were performed for 2 h with an initial timestep size of 5 s. A source term
representing a constant infusion rate of 0.3 ml/h (5 µl/min) was assigned to one node in the
center of the domain. This fills up one finite volume box, which can be interpreted as a
catheter with a diameter equal to the grid spacing. Similar infusion rates were used in the
models by Linninger et al. (2008b) (4 µl/min) and Smith and Garcia (2011) (6 µl/min). The
concentration of the therapeutic agent in the infused fluid was set to 10−7 mole of Gd-DTPA
per mole water. The pressure was time-dependent (see Eq. 6), but after approximately 1 h it
reached steady state. Due to mixing of the infused fluid and the ISF it took a few minutes
before the concentration in the interstitial space equaled the concentration in the infused
fluid.

The current model was compared to the linear elastic model by Chen and Sarntinoranont
(2007) and the hyperelastic model by Smith and Garcia (2011), with the same parameter
values as they used in their studies. The current model yields similar results for pressure and
deformation as the model by Chen and Sarntinoranont (2007), but due to different boundary
conditions (assignment of source), the concentration distribution is different. Compared to
the model by Smith and Garcia (2011) the concentration distribution in the interstitial space is
similar, but the displacement and pressures are different, since they used a non-linear elastic
model.
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Table 3 Literature values used
in the simulations (Smith and
Humphrey 2007; Kim et al. 2005;
Nicholson 2001; McGuire et al.
2006; Chen and Sarntinoranont
2007)

Parameter Symbol Value Unit

Permeability K0 1.82 × 10−15 m2

Viscosity of water μw 9.11 × 10−4 Pa s

Molar density of water ρmol 55500 mol/m3

Diffusion coefficient D 3.8 × 10−10 m2/s
Gd-DTPA

Porosity φ0 0.2 –

Tortuosity τ 0.4 –

Young’s Modulus E 5000 Pa

Poisson ratio ν 0.4 –

Material constant β 2 –

In the following, a grid convergence test is presented. Then, the initial permeability,
Young’s modulus and Poisson ratio are varied, this can give an indication of sensitivity in
our results to the range of realistic parameter values (Sect. 5.1.2). Finally, the poro-elastic
model used in this study is compared to the rigid assumption case, to see whether including
elasticity yields significantly different results (Sect. 5.1.3).

5.1.1 Grid Convergence

To check whether the mesh is sufficiently refined a grid convergence test was performed with
three different gridspacings; 2, 2/3, and 2/9 mm. The parameters given in Table 3 were used
and the source term was assigned to a volume of 8 mm3 for all cases. The results can be seen
in Fig. 4. Since the source term was distributed over more nodes when the mesh was refined,
a significantly lower peak pressure in the middle can be seen. However, the peak pressure
values converged with increasing grid resolution, as can be seen in Fig. 4. With respect to the
displacement, the maximum values are highest for the lowest resolution. For the two cases
with the finer meshes, the displacement becomes more distributed and converges to the same
result. Nevertheless, the concentration distribution, which was of major interest in this study,
was similar for all cases.In all the following simulations the gridspacing was 2 mm and one
should have this in mind interpreting the results.

5.1.2 Choice of K Values and Elastic Properties

Even though permeability values for brain tissue can be found in the literature, there is still a
large uncertainty in this parameter. In clinical trials, significantly less spreading of the infused
agent has been observed in gray matter than in white matter (Bobo et al. 1994; Prabhu et al.
1998). To take this into account, Kaczmarek et al. (1997) assumed the permeability of white
matter to be 100 times larger than that of gray matter. Based on this, both Linninger et al.
(2008a) and Sarntinoranont et al. (2003, 2006) used Kwm = 100Kgm in their studies.

We performed simulations for three different K values, K = 1.82 × 10−15 m2, 1.3 ×
10−16 m2, and 1.3 × 10−14 m2 and the effects on the pressure field, the porosity field and
the concentration distribution was investigated. Note that according to Eq. 6 the permeabil-
ity was divided by the viscosity. The results can be seen in Fig. 5 where the three different
permeability values are compared. The time to steady state is significantly larger for low
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Fig. 4 Results from the grid convergence simulations

permeability values than for high values, since low permeability leads to steeper pressure
gradient, higher deformation and a longer consolidation period. However, after 2 h, steady
state is reached even for the low permeability case.

As already mentioned, the value found by Smith and Humphrey (2007) was used as the
reference value for the permeability. This value is based on measured pressure increases, rela-
tive to the intracranial pressure, during CED into white matter of a cat brain (Bobo et al. 1994)
and into gray matter of a rat brain (Prabhu et al. 1998). In the study by Bobo et al. (1994),
the observed pressure increase is approximately 2.4 kPa for an infusion rate of 0.07 ml/h.
Employing permeability values of 1.82 × 10−15 m2, yields maximum pressures that agree
with this; an infusion rate of 0.1 ml/h resulted in a pressure increase of 2.6 kPa (results not
shown). The two other permeability values employed, 1.3 × 10−16 m2 and 1.3 × 10−14 m2,
are also within the range of the values employed in other numerical models (see Sect. 4.2).
However, the lowest permeability value leads to a pressure increase of about 30 kPa in the
infusion center. On the other hand, the highest permeability causes a pressure increase of
only about 1 kPa. Therefore, with the current Young’s moduli values the permeability value
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Fig. 5 Results from simulations with different K values

calculated by Smith and Humphrey (2007) seems most realistic. However, since the brain
tissue is heterogeneous, we can expect similar pressure increases in regions with low perme-
ability if the low permeability zone is small. Similarly, high pressure increases can occur in
high permeability regions if the surroundings have a significantly lower permeability. Thus,
a homogeneous and isotropic model domain is inadequate to describe the pressure fields
observed in clinical trials.

In this study, linear elasticity is assumed and elastic parameters based on Smith and
Humphrey (2007) and Chen and Sarntinoranont (2007) are used. However, in recent nonlin-
ear elastic models (Dutta-Roy et al. 2008; Smith and Garcia 2009, 2011) significantly lower
Young’s moduli (E) based on a study by Miller and Chinzei (2002) have been used. To see
how this affects the results, simulations were conducted with E = 421 (Miller and Chinzei
2002) and ν = 0.35. In Fig. 6, the results from using both set of parameters are compared.
The pressure values are significantly lower using the values from Miller and Chinzei (2002)
than the ones from Smith and Humphrey (2007). This is because the displacement are larger,
which according to Eqs. 14 and 15 lead to increased porosity and permeability changes,

123



Modeling Concentration Distribution 135

Fig. 6 Comparison of the Young’s modulus (E) and Poisson ratio (ν) used in this study and the values from
Miller and Chinzei (2002)

respectively. Note that E = 421 Pa results in such large porosity changes that the choice of
relation between displacement and porosity becomes more important (see Eq. 14). Finally,
the drug spreads to a smaller extent due to larger storage as a result of the increased porosity.
Additionally, the porosity and permeability decrease farther away from the infusion site and
hinders flow.

5.1.3 Rigid Versus Elastic model

As discussed in Sect. 1.1.1, often the assumption has been employed that in models describing
flow and transport during CED, brain tissue deformation is negligible. To test this assumption,
the result from the elastic model were compared to the from a rigid model using the same
parameters, grid spacing, and domain size, as in the previous section. Again, the simulations
were performed for 2 h and the results can be seen in Fig. 7. Comparing the results of the rigid
and the elastic model for K = 1.82 × 10−15 m2 a difference in pressures is observed; this is
due to changes in the permeability. However, with a Young’s modulus of 5000 Pa, there is no
significant difference between the resulting concentration distributions. Only for the lowest
permeability value, K = 1.3 × 10−16 m2, a difference in the distribution could be seen, but
this created unreasliticly high pressure increases. In Fig. 7, the pressure and concentration
distribution after 15 min and 2 h are shown for K = 1.3 × 10−16 m2. Due to permeability
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Fig. 7 Comparison of pressure and concentration distribution for a rigid and an elastic model. In the elastic
model lower pressure increases and less spreading of the therapeutic agent are observed

Fig. 8 T2 weighted MR-image of the same patient as the DT-images described in Sect. 4.2. The cross section
that can be seen to the right is through the line that can be seen from the left image. The different compartments
are shown. Note that white matter appears darker than gray matter

changes, the elastic model produces a significantly lower pressure than the rigid model and,
as expected, less spreading of the therapeutic agent is observed. Note that using the Young’s
modulus from Miller and Chinzei (2002), the difference would be significant also for the
permeability value of 1.82×10−15 m2 (see Fig. 6). Therefore, we conclude that it is important
to take deformations into account in numerical models describing CED.

5.2 Implementation of Patient-Specific Parameters and Brain Structure

One of the main aims of this study is to investigate effects of anisotropy and heterogeneities
on the final concentration distribution of therapeutic agents in brain tissue. As explained
in Sect. 4.3, FA was used to distinguish between gray and white matters and the tortuos-
ity was used to delineate the ventricles, meningeal layers, and bones from the brain tissue
(see Fig. 8). Since the resolution of the DTI is quite low and only the transport within the
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parenchyma was considered, the meningeal layer, ventricles, and bones were lumped together.
Thus, we only distinguished between inside and outside the brain tissue and a low perme-
ability was assigned to elements outside the parenchyma to mimic a no-flow boundary con-
dition. The calibrated diffusion tensor and permeability tensors were used to account for
heterogeneities and anisotropy of the tissue. These parameters were all read from a file and
assigned element wise, where the voxel size in the DT-images equaled the size of the grid
cells, i.e., 2 × 2 × 2 mm3. The parameter values taken from the literature were the same
as given in Table 3, unless otherwise specified. Due to computational limits, simulation of
the whole brain was not possible; instead a smaller volume of interest (VOI) were studied.
All simulations were performed for 12 h with an infusion rate of 0.3 ml/h, and the infusion
concentration was, as in the previous section, set to 10−7 mole of Gd-DTPA per mole water.
In the plots, the normalized concentration is displayed; i.e., the actual concentration divided
by the concentration of the agent in the infused fluid.

As in Sect. 5.1, we employ Dirichlet boundary conditions (see Table 1). Which means that
the displacement is forced to zero at the boundary of the VOI. Moreover, we cannot run long
simulations since the drug will reach the boundary of the domain after a certain period of
time.

The permeability value needed in the calibration procedure of Linninger et al. (2008a)
for white matter was set to 1.82 × 10−15 m2 (Smith and Humphrey 2007). To capture the
resistance to the flow in gray matter regions, a reference K of one order of magnitude lower
was assigned to it. Finally, outside the brain tissue, a K value of three orders of magnitude
lower than for gray matter was assigned. Darcy’s law is not applicable for these regions since
they represent free flow regions. However, since the meningeal layers and the boundaries to
the ventricles are not resolved and it is assumed that the therapeutic agent cannot freely pass
these boundaries, a low permeability was assigned to the entire region and Darcy’s law was
applied. For the porosity, it was also distinguished between gray and white matter and inside
and outside the brain tissue.

5.2.1 Spreading in 3D

A VOI was chosen as shown in Fig. 9 (1). The size of the domain was 6.0 × 9.6 × 5.4 cm3,
with 38 840 nodes. The results can be seen in Fig. 9. Note that the porosity field is shown in
the background and that white matter appears black since it has lowest porosity. The isolines
show the pressure field, divergence of the displacement, and the normalized concentration
distribution, in Fig. 9 (2), (3), and (4), respectively. The divergence of the displacement is
shown since both the porosity changes and the permeability changes will follow the same
distribution pattern. Comparing the results with the isotropic case, the magnitudes of the
primary variables are similar, but the distributions are significantly different. The results
clearly show preferential flow in the white matter regions and it follows the pattern of the
fiber tracts (see Sect. 4.2). Moreover, the location of the infusion is chosen in a region where
the diffusion component in z-direction is large. This can clearly be seen as the agent spreads
most in z-direction.

5.2.2 Effect of Different Permeability Fields

For the simulations described here, a different VOI was chosen to investigate how the loca-
tion of the infusion affects the concentration distribution. This VOI represented the whole
cross section in the xy-plane and 1.6 cm in z-direction, which translates to a domain of
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Fig. 9 Plots showing the results after 12 h of infusion at a rate of 3 ml/h based on the the DTI data set from
OVGU-Magdeburg University Hospital. (1) Cross sections showing the modelled domain. (2) Pressure fields.
(3) Divergence of the displacement, which is shown since both the porosity changes and the permeability
changes will follow the same distribution pattern. (4) Concentration distribution. Note, that agent spreads
most in z-direction
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Table 4 Different permeability values (m2) assigned to the different regions

Calibration Outside Gray matter White matter

Case 1 No 1.3 × 10−19 1.82 × 10−15 1.82 × 10−15

Case 2 Yes 1.3 × 10−19 1.82 × 10−15 1.82 × 10−15

Case 3 Yes 1.3 × 10−19 1.3 × 10−16 1.82 × 10−15

Case 4 Yes 1.3 × 10−13 1.3 × 10−16 1.82 × 10−15

14 × 16.2 × 1.6 cm3 with 45 360 nodes. In the following, four different cases with different
permeability fields (given in Table 4) are compared. The source term, i.e., the location of
the infusion, was set at three different locations in the xy-plane (see Fig. 10). In Case 1,
all parameters were initially kept constant, apart from a lower permeability value assigned
to the regions defined to be outside the brain tissue. As no calibration of the permeability
and diffusion coefficient was done, the brain tissue was assumed to be homogeneous and
isotropic. In Case 2, the calibration was performed, but K was set to be equal for gray and
white matters. In the two latter cases Kwm = 10Kgm. Thus, Case 3 was identical with the
simulation done in the previous section, while in Case 4 the permeability outside the brain
tissue was set to be three orders of magnitude higher than for the gray matter.

As can be seen in Fig. 10, the results of Case 1 show that the agent spreads spherically
from the injection point apart from in the vicinity of the ventricles. For Case 2, the effect
of the anisotropy and heterogeneities as a result of the calibration procedure can be seen.
However, in Case 3, the preferential patterns are more evident since K of white matter is
one order of magnitude higher than that of gray matter. If results from clinical trials, which
indicate similar permeability for gray and white matters, are valid, then the question arises
whether Case 2 is sufficient to describe the flow pattern seen during CED. The reason for
the resistance to the flow in gray matter is still an open question, but may be related to dif-
ference in elastic properties of the media. It could be that there are stronger permeability
changes in gray matter than in white matter. If gray matter has a significantly lower Young’s
modulus than white matter lower pressures and less spreading could be explained by larger
deformations in gray matter. Another explanation could be that the coefficient β needed in
non-linear equation for the permeability change (Eq. 15) is significantly different for gray
and white matters. Implementing this, the model may reproduce similar pressure elevation
in both regions, even though the permeability and Lamé parameters are in the same order of
magnitude. But, this does not explain the physical reason for the observed flow resistance.

In Case 4, the assumption that macromolecules are hindered from entering the CSF was
tested. If macromolecules are free to pass the meningeal layers a much larger leakage to CSF
will be observed. This is done by assigning a high permeability to the regions defined outside
the brain and shows a significant leakage to CSF if the injection was done in the vicinity of
the ventricles.

6 Summary and Conclusion

The purpose of this study is to show the workflow from MRI measurements to a computational
model with realistic parameters. Patient-specific anatomy and parameters were implemented
in a numerical model, which describes flow and transport in an elastic deformable matrix.
Information about the anatomy, heterogeneities, and anisotropy of the tissue was obtained
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Fig. 10 Distribution of normalized concentration for the four different cases: Case 1: isotropic. Case 2: K0
equal for both gray and white matter. Case 3: K0 10 times higher in the white matter regions than in the gray
matter regions. Case 4: a high permeability is assigned to the areas outside the brain tissue

from DTI. FA was used to distinguish between gray and white matters and tortuosity to
differentiate between inside and outside the brain tissue. Moreover, the DT-images were
used to determine the orientation of the white matter fiber tracts and calibrate the perme-
ability and diffusion tensors. The resolution of the DT-images used here was 2 mm. This
is too low to resolve the meningeal layers. To be able to successfully delineate these geo-
metrical boundaries, DT-images with higher resolution will be needed. As can be seen in
Sect. 5.1.1, the resolution of the mesh affects all results and a mesh with a finer resolution
would yield a better estimation of both pressure and displacement. However, the current
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results are qualitatively valuable and demonstrates that, for the concentration distribution to
be affected by deformation, the Lamé parameters and/or the permeability must be low. Com-
paring a rigid model to the poro-elastic model showed the importance of including elasticity
in numerical models describing flow and transport during CED. Furthermore, it demonstrated
the importance of reliable parameter values. Finally, the parameters obtained from the DT-
images were implemented and the effects of anisotropy and heterogeneity were studied. The
calibration was shown to be successful and resulted in preferential flow in the direction of the
white matter fiber tracts. The next step will be to include non-linear deformation (Smith and
Garcia 2011) and to perform simulations with a finer mesh based on DTI data with higher
resolution.
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