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Abstract The unsteady mixed convection boundary-layer flow near the two-dimensional
stagnation point on a vertical permeable surface embedded in a fluid-saturated porous medium
with suction and a temperature slip effect is studied numerically. Similarity equations are
obtained through the application of a similarity transformation technique. The shooting
method is used to solve these similarity equations for different values of the mixed convec-
tion, wall mass suction, the unsteadiness and the slip parameters. Results show that multiple
solutions exist for certain ranges of these parameters. Some limiting forms are then dis-
cussed, namely strong suction, the free convection limit, the situation when there is a large
temperature slip and when the time dependence dominates.

Keywords Porous medium · Unsteady · Mixed convection · Suction ·
Numerical results

1 Introduction

The transport of heat through a porous medium is an active field of research as it plays a
crucial role in many diverse applications. Considerable work has been reported on the flow,
heat and mass transfer in Darcian porous media and has been the subject of various studies
because of the increasing need for a better understanding of the associated transport processes.
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2 A. M. Rohni et al.

This interest stems from the numerous practical applications which can be modelled or can
be approximated as transport through porous media such as packed beds, high performance
insulation for buildings, chemical catalytic reactors, grain storage, migration of moisture
through the air contained in fibrous insulations, heat exchange between soil and atmosphere,
heat storage beds and beds of fossil fuels such as oil shale and coal, salt leaching in soils, solar
power collectors, electrochemical processes, insulation of nuclear reactors, regenerative heat
exchangers and geothermal energy systems and many other areas. Literature concerning flow
in porous media is abundant. Representative studies in this area may be found in the recent
books by Nield and Bejan (2006), Pop and Ingham (2001), Ingham and Pop (2005), Vafai
(2005, 2010) and Vadasz (2008).

Steady mixed convection boundary-layer flow past inclined or vertical flat surfaces placed
in a porous medium has been investigated by Cheng (1977), Merkin (1980, 1985) and Aly
et al. (2003). Cheng (1977) obtained similarity solutions for the situation where the free
stream velocity and the surface temperature distribution vary according to the same power
function of the distance along the surface. Numerical and asymptotic solutions have been
given for both aiding flows, where the flow is directed vertically upwards, and opposing
flows, where the flow is directed vertically downwards, i.e. where the buoyancy and inertia
forces act in the same direction (aiding) or in the opposite direction (opposing). For opposing
flows, the numerical solution breaks down at a finite (negative) value of the mixed convection
parameter. Hence, the boundary layer may separate from the surface, giving rise to rather
unusual heat transfer characteristics. It appears that the separation in mixed convection flow
in porous media was first discussed by Merkin (1980, 1985), who examined the effect of
opposing buoyancy forces on the boundary-layer flow on a semi-infinite vertical flat surface
at a constant temperature in a uniform free stream. Aly et al. (2003) assumed that both the
temperature of the surface and the fluid velocity at the edge of the boundary layer vary as xm ,
where x is the distance from the leading edge of the plate and m is a preassigned constant
so that a similarity solution can be obtained. Finally, we mention that Harris et al. (2009)
have studied the steady mixed convection boundary-layer flow near the stagnation point on
a vertical surface in a porous medium with slip using the Brinkman model.

In general, the unsteady Navier–Stokes equations can be solved only by using numerical
integrations of the partial differential equations. However, if we restrict the motion to a spec-
ified family of time dependence, exact similarity solutions can be obtained as was shown
originally by Yang (1958) and Birkhoff (1960). The form for the outer flow given by the
relation ue(t, x) = ax/(1 − γ t) used here and referred to as ‘hyperbolic time variation’ by
Yang (1958), has been also used by many researchers (for example, Wang 1990; Andersson
et al. 2000; Ali and Magyari 2007; Tie-Gang et al. 2009). Nazar et al. (2004) have studied
the unsteady mixed convection stagnation point flow on a vertical surface in a fluid-saturated
porous medium. The main concern of their work centred on the time-dependent behaviour
in the neighbourhood of the stagnation point on the vertical flat surface using the Keller-box
method. The variation of the skin friction or shear stress parameter as a function of the mixed
convection parameter λ reveals dual solutions in the parameter range λc < λ < −1, with
λc being the critical value of λ, where the boundary-layer solution breaks down. In a more
recent paper, Merrill et al. (2006) have further studied Nazar’s et al. (2004) boundary-value
problem by a detailed mathematical and numerical analysis. They have proved the existence
of a solution to the governing boundary-value problem for all λ > −1 and presented numer-
ical evidence that a second solution exists for λ > −1, thus giving dual solutions for all
λ > λc. It has been also proved that, if λ < −2.9136, no solution to the boundary-value
problem exists. Finally, a stability analysis has been performed by Merrill et al. (2006) to
show that solutions on the upper branch are linearly stable, while those on the lower branch
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Unsteady mixed convection boundary-layer flow 3

are unstable. We also mention to this end the papers by Harris et al. (1996, 2002) on the
transient boundary-layer flow past a vertical semi-infinite flat plate embedded in a porous
medium.

Our interest in the present paper is to study the unsteady mixed convection boundary-layer
flow near the two-dimensional stagnation point on a vertical permeable surface embedded in
a fluid-saturated porous medium with suction and a temperature slip effect which we reduce
to similarity form. The shooting method is used to solve the resulting similarity or ordinary
differential equations for different values of the mixed convection, wall mass suction, the
unsteadiness and the slip parameters.These results show that multiple solutions exist for a
certain range of these parameters. We then go on to discuss some limiting forms, namely
strong suction indicating the possibility of reversed flow, the free convection limit with nature
of this limit being dependent on whether there is a temperature slip or not, the situation when
there is a large temperature slip and when the time dependence dominates. In these latter two
cases, it is the outer flow which is the dominant feature. We start by deriving our model.

2 Equations

We consider the unsteady mixed convection boundary-layer flow near the stagnation point
on a heated permeable vertical surface embedded in a saturated porous medium, as shown in
Fig. 1, where the x and y axes are measured along the surface and normal to it, respectively.
The surface coincides with the plane y = 0 and the flow takes place in the region y ≥ 0. The
velocity of the flow far from the surface is ue(t, x), where t is time. It is assumed that the
temperature of the surface is Tw(t, x) and that the ambient fluid is at the constant temperature
T∞, where Tw(t, x) > T∞ for an assisting flow, while Tw(t, x) < T∞ for an opposing flow,
respectively. The forms of ue(t, x) and Tw(t, x) will be defined below. Under the assump-
tions of Darcy’s law and the Boussinesq approximation, the basic unsteady boundary-layer
equations of the problem under consideration are seen in Nield and Bejan (2006)

∂u

∂x
+ ∂v

∂y
= 0 (1)

u = ue + gKβ

ν
(T − T∞) (2)

σ
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= αm

∂2T

∂y2 (3)

x

y

( , )eu t x

( , )wT t x T∞<
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Fig. 1 A schematic representation of our model for a assisting flow and b opposing flow
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where u and v are the velocity components in the x and y directions, T is the fluid temper-
ature, K is the permeability of the porous medium, g is the acceleration due to gravity, ν is
the kinematic viscosity of the convecting fluid, αm is the effective thermal diffusivity and σ
is the heat capacity ratio of the fluid-filled porous medium to that of the fluid. In order to
eliminate σ from Eq. 3, we take t = t/σ . We assume that Eqs. 1–3 are subject to the initial
and boundary conditions that

u = v = 0, T = T∞ at t = 0, (for all x, y)

v = vw(t), T = Tw + N1
∂T

∂y
at y = 0 (t > 0) (4)

u → ue, T → T∞ as y → ∞ (t > 0)

where vw(t) < 0 is the suction velocity. We assume that ue(t, x), Tw(t, x) and N1(t) have
the form

ue(t, x) = ax

1 − γ t
, Tw(t, x) = T∞ + T0

x

1 − γ t
, N1 = N0(1 − γ t)1/2 (5)

so that the system (1–4) can be reduced to similarity form. Here N0 is the initial value of
the thermal slip factor and T0 is the characteristic temperature, both assumed constant, for
a heated surface (assisting flow) T0 > 0 and T0 < 0 for a cooled surface (opposing flow),
respectively. In addition, a > 0 and γ are constants. The form of the temperature slip factor
N1(t) has been recently proposed by Mukhopadhyay and Andersson (2009).

We look for a similarity solution of Eqs. 1–3 in the following form:

ψ =
√

aαm

1 − γ t
x f (η), θ = T − T∞

Tw − T∞
, η = y

√
a

αm(1 − γ t)
(6)

where ψ is the stream function (defined in the usual way as u = ψy and v = −ψx ). Thus,
we have

u = ax

1 − γ t
f ′(η), v = −

√
aαm

1 − γ t
f (η) (7)

where primes denote differentiation with respect to η. We note here that, in general, primes
denote differentiation with respect to function argument. Hence from (7), we take

vw(t) = −s

√
aαm

1 − γ t
(8)

where s > 0 is the constant suction parameter, again to ensure a similarity form.
Substituting (6) into Eqs. 2 and 3, we obtain

f ′ = 1 + λθ (9)

θ ′′ + f θ ′ − f ′θ − A
(
θ + η

2
θ ′) = 0 (10)

subject to the boundary conditions that

f (0) = s, θ(0) = 1 +�θ ′(0), θ → 0, f ′ → 1 as η → ∞ (11)

The dimensionless parameters A, λ and � are the flow unsteadiness, mixed convection and
thermal slip parameters, respectively, which are defined as

A = γ

a
, λ = Rax

Pex
= gβK T0

νa
, � = N0

(
a

αm

)1/2

(12)
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where Rax = gKβ(Tw − T∞) x

αmν
is the local Rayleigh number for a porous medium and

Pex = ue x

αm
is the local Péclet number. For the present situation, we assume that A ≤ 0,

i.e. γ ≤ 0 (see Fang et al. 2009) to ensure that a singularity does not arise in the forms for
ψ, θ, η in (6) at a finite time. It is worth mentioning that λ > 0 corresponds to assisting flow
(heated surface), λ < 0 to opposing flow (cooled surface) and λ = 0 to forced convection
flow (T0 = 0).

Equations 9 and 10 can be combined to give the single equation

f ′′′ + f f ′′ + f ′(1 − f ′)− A
(

f ′ − 1 + η

2
f ′′) = 0 (13)

with boundary conditions (11) becoming

f (0) = s, f ′(0) = 1 + λ+� f ′′(0), f ′ → 1 as η → ∞ (14)

We note that, when A = � = s = 0, Eq. 13 with the corresponding boundary conditions
(14) reduces to the steady-state equation 25 in the paper by Harris et al. (2009) and also for
the same case it reduces to Eq. 21 in the paper by Nazar et al. (2004).

The quantities of physical interest in this problem are the skin friction coefficient Cf and
the local Nusselt number Nux , which are defined as

Cf = τw

ρu2
e
, Nux = x qw

k(Tw − T∞)
(15)

where τw = μ

(
∂u

∂y

)
y=0

is the skin friction or shear stress at the surface and qw =

−k

(
∂T

∂y

)
y=0

is the heat flux from the surface, where μ is the dynamic viscosity and k

is the thermal conductivity of the fluid. Using (6), (7) and (14), we find that

τw = μ

(
a

1 − γ t

)3/2 x

α
1/2
m

f ′′(0), qw = − kT0x

(1 − γ t)3/2

(
a

αm

)1/2

θ ′(0) (16)

3 Results

Numerical solutions to the governing ordinary differential equation (13) subject to the bound-
ary conditions (14) were obtained using a standard shooting method. Results are reported for
values of the mixed convection parameter λ, both positive and negative, the suction parameter
s ≥ 0, the unsteadiness parameter A ≤ 0 and the temperature slip parameter �.

In Fig. 2, we plot f ′′(0) and −θ ′(0) against λ for s = 0,� = 0 and A = 0, corresponding
to no temperature slip and steady flow. In this case, we find a critical value λc � −1.4174 of
λ in agreement with the results of Nazar et al. (2004) and Merrill et al. (2006), thus giving
confidence in our numerical approach. The forced convection, λ = 0, solution is simply
f = η+ s, giving f ′′(0) = 0 as can be seen in Fig. 2a. For λc ≤ λ < 0, f ′′(0) > 0 whereas
for λ > 0, f ′′(0) < 0 decreasing as λ is increased on the upper solution branch. θ ′(0) < 0
on the upper solution branch, though θ ′(0) > 0 on the lower solution branch indicating a
temperature overshoot.

For λ = 0, Eq. 10 gives

θ ′′ +
(

2 + |A|
2

η + s

)
θ ′ − (1 − |A|)θ = 0 (17)
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Fig. 2 Plots of a f ′′(0) and b −θ ′(0) against the mixed convection parameter λ for s = 0, � = 0 (no
temperature slip), A = 0 (steady flow) obtained from the numerical solution of (13, 14). The disruption in
f ′′(0) in the numerical solutions as they pass through λ = 0 is indicated by ◦

still subject to (11). Equation 17 can be solved in terms of confluent hypergeometric and
gamma functions (Slater 1960) as, on restricting attention to the case s = 0 and noting that
A ≤ 0,

θ = A0e−(2+|A|)η2/4 U

(
4 − |A|

2(2 + |A|) ;
1

2
; 2 + |A|

4
η2

)
(|A| 	= 4) (18)

where

A−1
0 = √

π

⎛
⎝ 1

�
(

3
2+|A|

) + �(2 + |A|)1/2
�

(
4−|A|

2(2+|A|)
)

⎞
⎠
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Fig. 3 Plots of a f ′′(0) and b −θ ′(0) against the mixed convection parameter λ for s = 0, A = 0 (steady
flow) and � = 0, 0.5, 1.0, 3.0 obtained from the numerical solution of (13, 14). The disruption in f ′′(0) in
the numerical solutions as they pass through λ = 0 is indicated by ◦

giving

θ ′(0) = − A0
√
π(2 + |A|)1/2

�
(

4−|A|
2(2+|A|)

) (|A| 	= 4) (19)

When |A| = 4, Eq. 17 and boundary condition (11) give, still with s = 0,

θ = exp(−3η2/2), θ ′(0) = 0

For A = � = 0, expression (19) gives θ ′(0) = −√
π/2 in agreement with the value shown

in Fig. 2b.
In Fig. 3, we assess the effect of increasing the temperature slip parameter �, again for

s = 0 and steady flow (A = 0). As in Fig. 2, in all cases f ′′(0) > 0 when λc ≤ λ < 0 and
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Fig. 4 Plots of a f ′′(0) and b −θ ′(0) against the mixed convection parameter λ for� = 0.1, A = −0.5 and
s = 0.0, 0.5, 1.0 obtained from the numerical solution of (13, 14). The disruption in f ′′(0) in the numerical
solutions as they pass through λ = 0 is indicated by ◦

f ′′(0) < 0 when λ > 0 decreasing as λ is increased. Also θ ′(0) < 0 on the upper solution
branch for all λ also decreasing, though slightly less rapidly, as λ is increased. However, the
main effect of the slip parameter � is to decrease the value of λc, thus increasing the range
of λ where there are dual solutions in the opposing flow case.

The effect of the suction parameter s is seen in Fig. 4 where we give f ′′(0) and −θ ′(0)
plotted against λ for an unsteady flow with A = −0.5 and with a temperature slip, having
� = 0.1. This figure clearly shows that the effect of having fluid withdrawal through the
surface is to decrease the critical value λc, again giving a greater range of negative λ for solu-
tions in the opposing flow case. As seen previously on the upper solution branch, f ′′(0) > 0
for λ < 0 and f ′′(0) < 0 for λ > 0 decreasing as λ is increased. Also, θ ′(0) < 0 on the
upper solution branch.
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Fig. 5 Plots of a f ′′(0) and b −θ ′(0) against the mixed convection parameter λ for s = 0.5, and � = 0.1
and A = 0.0, −0.5, −1.0 obtained from the numerical solution of (13, 14). The disruption in f ′′(0) in the
numerical solutions as they pass through λ = 0 is indicated by ◦

The influence of the unsteadiness parameter A is seen in Fig. 5 where we plot f ′′(0) and
−θ ′(0) against λ for s = 0.5 and � = 0.1. Again we see that, on the upper solution branch,
f ′′(0) changes sign at λ = 0 and that θ ′(0) < 0. However, the main effect of increasing
the unsteadiness parameter is to decrease the critical value λc, thus reducing the range of
solutions in the opposing flow case.

Finally, we comment on the nature of the solutions on the lower branch as they pass through
λ = 0. Clearly, when λ = 0 there is only one solution f = η + s giving f ′′(0) = 0, the
value on the upper branch. Thus, the numerical solutions on the lower branch are disrupted
at λ = 0, though the values of f ′′(0) appear to pass through this point smoothly, as was
seen by Merrill et al. (2006) and not ending in a singularity, as seen by Merkin (1985). We
indicate this disruption point at λ = 0 in the numerical solutions by ◦ in the plots of f ′′(0),
Figs. 2a, 3a, 4a, 5a. This non-existence of a lower branch solution at λ = 0 is more clearly
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10 A. M. Rohni et al.

seen in the plots of θ ′(0), Figs. 2b, 3b, 4b, 5b, where |θ ′(0)| appears to become infinite as
|λ| → 0.

We now consider some limiting forms for large values of a given parameter, starting with
the case when there is strong fluid withdrawal through the surface.

4 Some limiting forms

4.1 Strong suction

To obtain a solution to (13, 14) valid for s � 1, we put

f = s + s−1 F, ζ = s η (20)

Equations 13, 14 then become

F ′′′ + (1 + s−2 F)F ′′ + s−2(F ′ − F ′2)+ s−2 |A|
(

F ′ − 1 + ζ

2
F ′′

)
= 0 (21)

F(0) = 0, � F ′′(0) = s−1 [
F ′(0)− (1 + λ)

]
, F ′ → 1 as ζ → ∞ (22)

where primes now denote differentiation with respect to ζ .
When �, and the other parameters, are of O(1), we look for a solution by expanding

F(ζ ; s) = ζ + s−1 F1 + · · · (23)

giving

F ′′′
1 + F ′′

1 = 0, F1(0) = 0, �F ′′
1 (0) = −λ, F ′

1 → 0 as ζ → ∞ (24)

The required solution is

F1 = λ

�
(1 − e−ζ ), so that F ′′

1 (0) = − λ

�
and θ = e−ζ

�
s−1 (25)

so that(
d2 f

dη2

)
η=0

∼ − λ

�
+ · · · ,

(
dθ

dη

)
η=0

∼ − 1

�
+ · · · ,

(
d f

dη

)
η=0

∼ 1 + λ

�
s−1 + · · ·

as s → ∞
(26)

Expression (25) shows that the effect of strong suction is to give an O(s−1) perturbation
to the free stream and to reduce the overall temperature to O(s−1). When � > 0, the skin
friction approaches a constant (negative) value for large s.

Expression (26) also shows that, if� is sufficiently small, we can get reversed flow when
λ < 0 in this limit. To examine this case further, we now assume that� is small, of O(s−1),
by putting � = α s−1, with α of O(1). The leading-order problem is again Eq. 24 but now
subject to

α F ′′
1 (0) = F ′

1(0)− (1 + λ), F ′
1 → 1 as ζ → ∞ (27)

This gives

F ′
1 = 1 + λ

1 + α
e−ζ , F1 = ζ + λ

1 + α
(1 − e−ζ ) (28)
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Unsteady mixed convection boundary-layer flow 11

Expression (28) gives F ′
1(0) = 1 + λ/(1 + α), thus giving reversed flow in the opposing

flow case if λ < −(1 + α) or λ < −(1 +� s) when � is small.

4.2 Free convection limit

There are two cases to consider in the limit of large λ, namely � > 0 and � = 0. For the
first case, we apply the transformation

f = λ1/3 G, ξ = λ1/3 η (29)

This results in

G ′′′ + G G ′′ − G ′2 + λ−2/3 G ′ + |A|λ−2/3
(

G ′ + ξ

2
G ′′

)
− |A|λ−4/3 = 0 (30)

now subject to

G(0) = λ−1/3 s, �G ′′(0) = −1 + λ−1/3 G ′(0)− λ−1, G ′ → λ−2/3 as ξ → ∞(31)

where primes now denote differentiation with respect to ξ . The leading-order problem in an
expansion in λ−1/3 has the solution, on the assumption that both s and |A| are of O(1),

G(ξ) = �−1/3 (1 − e−ξ/�1/3
) (32)

hence

f ′′(0) ∼ − λ

�
+ · · · , θ ′(0) → −�−1 as λ → ∞ (33)

Expression (33) indicates that there will be a problem as � → 0 and to deal with the
� = 0 case, we put

f = λ1/2 G, ξ = λ1/2 η (34)

The leading-order problem is the same as that given in (30) though now subject to G
′
(0) = 1.

The solution is G = (1 − e−ξ ), giving

f ′′(0) ∼ −λ3/2 + · · · , θ ′(0) ∼ −λ1/2 + · · · as λ → ∞ (35)

The difference in behaviour of f ′′(0) and θ ′(0) for large λ depending on whether� 	= 0,
with expression (33) giving f ′′(0) decreasing linearly with λ and θ ′(0) approaching a con-
stant value, or � = 0, where expression (35) gives f ′′(0) of O(λ3/2) and θ ′(0) large of
O(λ1/2) can be seen in Fig. 3.

4.3 Large temperature slip

To obtain a solution valid for large � we put, on assuming that s = 0,

f = η +�−1 H (36)

and leave η unscaled. This then gives

H ′′′ +
(

1 + |A|
2

)
η H ′′ − (1 − |A|)H ′ +�−1 (H H ′′ − H ′2) = 0 (37)

where primes again denote differentiation with respect to η. The leading-order problem for
H ′ is in effect to forced convection problem (18) though now subject to

H ′′(0) = −λ, H ′ → 0 as η → ∞ (38)
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The solution to (37, 38) can be expressed in terms of confluent hypergeometric functions
Slater (1960) as

H ′ =
λ�

(
4−|A|

2(2+|A|)
)

(2 + |A|)1/2 √
π

e−(2+|A|)η2/4 U

(
4 − |A|

2(2 + |A|) ;
1

2
; (2 + |A|)η2

4

)
(39)

We note that, for steady flow, A = 0, expression (39) gives

H ′ = λ√
2π

⎛
⎝e−η2/2 − η

∞∫
η

e−t2/2 dt

⎞
⎠ (40)

From (36, 38) f ′′(0) ∼ − λ

�
+· · · for large� and, for steady flow, expression (40) shows

that f ′(0) ∼ 1+ λ√
2π

�−1 +· · ·. Both these expressions show that the main effect of having

a large temperature slip is for the flow to be dominated by the outer flow with buoyancy and
the unsteadiness giving only a perturbation to this state.

4.4 Solution for large |A|

This case, from (12), corresponds to the highly time-dependent situation and to obtain a
solution of (13, 14) valid for large |A|, we put

f = η + |A|−1 h, Y = |A|1/2 η (41)

Equation 13 becomes

h′′′ + Y

2
h′′ + h′ + |A|−1 (Y h′′ − h′)+ |A|−3/2(h h′′ − h′2) = 0 (42)

now subject to the boundary conditions, again on restricting attention to the case with s = 0,

h(0) = 0, �h′′(0) = −λ+ |A|−1/2 h′(0), h′ → 0 as Y → ∞ (43)

Here primes denote differentiation with respect to Y . The solution to the leading-order prob-
lem for h0 in an expansion in inverse powers of |A| is

h′
0 = − λ

�
Y e−Y 2/4, h0 = −2λ

�
(1 − e−Y 2/4) (44)

From (41, 44), we then have

f ′′(0) ∼ − λ

�
+ · · · , θ ′(0) ∼ − 1

�
· · · as |A| → ∞ (45)

The transformation for η in (41) and the form for θ ′(0) in (45) are consistent with (18, 19)
in the limit of |A| → ∞.

Transformation (41) gives Y = y/(αmt)1/2 for large |γ |, being the usual independent
variable for time-dependent growth through diffusion. This, together with the form for f
in (41), indicates that the effect of unsteadiness is for the boundary layer to grow through
diffusion from the outer flow already established at t = 0. Expressions (45) show that the
effect of having a temperature slip is for both f ′′(0) and θ ′(0) to approach constant values
as |A| increases.
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5 Conclusions

We have studied the problem of the unsteady mixed convection boundary-layer flow near
a two-dimensional stagnation point on a vertical permeable surface embedded in a porous
medium with suction and with temperature slip effects. Using an appropriate similarity trans-
formation, the governing boundary-layer equations were transformed into a set of nonlinear
ordinary differential equations which we then solved numerically using a shooting method
with the aid of shootlib function from Maple software. We show that the present results are
in a good agreement with previously published results in the literature. The results for the
skin friction f ′′(0) and the Nusselt number −θ ′(0) are graphically presented and the effects
of the temperature slip parameter�, the suction parameter s and the unsteadiness parameter
A on both f ′′(0) and θ ′(0) are discussed for both assisting and opposing flow regimes. Dual
solutions were found to exist in assisting flow. For opposing flow, dual solutions exist only up
to a critical point with no solution existing beyond this point. It was found that increasing the
temperature slip parameter� and the suction parameter s increased the range of existence of
a solution, whereas increasing the unsteadiness parameter A decreased the range of solution
existence.

We also considered some limiting asymptotic forms for strong suction, s � 1, the free
convection limit, λ → ∞ and large temperature slip,� � 1 and unsteadiness, |A| � 1. For
strong suction, we found that there was a difference in the nature of the solution depending
on whether� was of O(1) or small, see expressions (26) and (28). We found the possibility
of reversed flow when � was small. The nature of the free convection limit also depended
on whether � > 0 or � = 0, see transformations (29) and (34) with both f ′′(0) and θ ′(0)
having different asymptotic forms in each case, noting that f ′′(0) and θ ′(0) approach con-
stant limits as λ → ∞ if � > 0, whereas they continue to grow as λ is increased if � = 0.
For both strong temperature slip and unsteadiness, the solution is a perturbation to the basic
outer flow. For large |A|, the boundary layer grows through diffusion at a rate proportional
to (αm t)1/2 from the initial state.

Acknowledgements AMR and SA gratefully acknowledge the financial supports received in the form of
research grants: Research University Grant (1001/PMATHS/811166) from Universiti Sains Malaysia and
FRGS from the Ministry of Higher Education, Malaysia. The authors also wish to thank the referees for their
helpful comments and suggestions.

References

Ali, M.E., Magyari, E.: Unsteady fluid and heat flow induced by a submerged stretching surface while its
steady motion is slowed down gradually. Int. J. Heat Mass Transf. 50, 188–195 (2007)

Aly, E.H., Elliott, L., Ingham, D.B.: Mixed convection boundary-layer flow over a vertical surface embedded
in a porous medium. Eur. J. Mech. B 22, 529–543 (2003)

Andersson, H.I., Aarseth, J.B., Dandapat, B.S.: Heat transfer in a liquid film on an unsteady stretching sur-
face. Int. J. Heat Mass Transf. 43, 69–74 (2000)

Birkhoff, G.: Hydrodynamics, a Study in Fact and Similitude, Revised edn. Princeton University Press,
Princeton (1960)

Cheng, P.: Similarity solutions for mixed convection from horizontal impermeable surfaces in saturated porous
media. Int. J. Heat Mass Transf. 20, 893–898 (1977)

Fang, T.-G., Zhang, J., Yao, S.-S.: Viscous flow over an unsteady shrinking sheet with mass transfer. Chin.
Phys. Lett. 26, 014703-1–014703-4 (2009)

Harris, S.D., Ingham, D.B., Pop, I.: Transient free convection on a vertical plate subjected to a change in
surface heat flux in porous media. Fluid Dynamics Res. 18, 313–324 (1996)

123



14 A. M. Rohni et al.

Harris, S.D., Ingham, D.B., Pop, I.: Thermal capacity effect on transient free convection adjacent to a vertical
surface in a porous medium. Transp. Porous Media 46, 1–18 (2002)

Harris, S.D., Ingham, D.B., Pop, I.: Mixed convection boundary-layer flow near the stagnation point on a ver-
tical surface in a porous medium: Brinkman model with slip. Transp. Porous Media 77, 267–285 (2009)

Ingham, D.B., Pop, I. (eds.): Transport Phenomena in Porous Media III. Elsevier, Oxford (2005)
Merkin, J.H.: Mixed convection boundary layer flow on a vertical surface in a saturated porous medium. J.

Eng. Math. 14, 301–313 (1980)
Merkin, J.H.: On dual solutions occurring in mixed convection in a porous medium. J. Eng. Math. 20, 171–179

(1985)
Merrill, K., Beauchesne, M., Previte, J., Paullet, J., Weidman, P.: Final steady flow near a stagnation point on

a vertical surface in a porous medium. Int. J. Heat Mass Transf. 49, 4681–4686 (2006)
Mukhopadhyay, S., Andersson, H.: Effects of slip and heat transfer analysis of flow over an unsteady stretching

surface. Heat Mass Transf. 45, 1447–1452 (2009)
Nazar, R., Amin, N., Pop, I.: Unsteady mixed convection boundary layer flow near the stagnation point on a

vertical surface in a porous medium. Int. J. Heat Mass Transfer 47, 2681–2688 (2004)
Nield, D.A., Bejan, A.: Convection in Porous Media, 3rd edn. Springer, New York (2006)
Pop, I., Ingham, D.B.: Convective Heat Transfer: Mathematical and Computational Modeling of Viscous

Fluids and Porous Media. Pergamon Press, Oxford (2001)
Slater, L.J.: Confluent hypergeometric functions. Cambridge University Press, Cambridge (1960)
Tie-Gang, F., Ji, Z., Shan-Shan, Y.: Viscous flow over an unsteady shrinking sheet with mass transfer. Chin.

Phys. Let. 26, 014703-1–014703-4 (2009)
Vadasz, P. (ed.): Emerging Topics in Heat and Mass Transfer in Porous Media. Springer, Berlin (2008)
Vafai, K. (ed.): Handbook of Porous Media, 2nd edn. Taylor & Francis, New York (2005)
Vafai, K.: Porous Media: Applications in Biological Systems and Biotechnology. CRC Press, Tokyo (2010)
Wang, C.Y.: Liquid film on an unsteady stretching surface. Q. Appl. Math. 48, 601–610 (1990)
Yang, K.T.: Unsteady laminar boundary layers in an incompressible stagnation flow, Trans. ASME J. Appl.

Mech. 25, 421–427 (1958)

123


	Unsteady mixed convection boundary-layer flow  with suction and temperature slip effects near  the stagnation point on a vertical permeable surface embedded in a porous medium
	Abstract
	1 Introduction
	2 Equations
	3 Results
	4 Some limiting forms
	4.1 Strong suction
	4.2 Free convection limit
	4.3 Large temperature slip
	4.4 Solution for large |A|

	5 Conclusions
	Acknowledgements
	References


