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Abstract We present results from a systematic study of relative permeability functions
derived from two-phase lattice Boltzmann (LB) simulations on X-ray microtomography pore
space images of Bentheimer and Berea sandstone. The simulations mimic both unsteady-
and steady-state experiments for measuring relative permeability. For steady-state flow, we
reproduce drainage and imbibition relative permeability curves that are in good agreement
with available experimental steady-state data. Relative permeabilities from unsteady-state
displacements are derived by explicit calculations using the Johnson, Bossler and Naumann
method with input from simulated production and pressure profiles. We find that the nonw-
etting phase relative permeability for drainage is over-predicted compared to the steady-state
data. This is due to transient dynamic effects causing viscous instabilities. Thus, the calcu-
lated unsteady-state relative permeabilities for the drainage is fundamentally different from
the steady-state situation where transient effects have vanished. These effects have a larger
impact on the invading nonwetting fluid than the defending wetting fluid. Unsteady-state imbi-
bition relative permeabilities are comparable to the steady-state ones. However, the appear-
ance of a piston-like front disguises most of the displacement and data can only be determined
for a restricted range of saturations. Relative permeabilities derived from unsteady-state dis-
placements exhibit clear rate effects, and residual saturations depend strongly on the capillary
number. We conclude that the LB method can provide a versatile tool to compute multiphase
flow properties from pore space images and to explore the effects of imposed flow and fluid
conditions on these properties. Also, dynamic effects are properly captured by the method,
giving the opportunity to examine differences between steady and unsteady-state setups.
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488 T. Ramstad et al.

1 Introduction

Accurate estimates of relative permeability functions are necessary input to reservoir mod-
els to reliably predict fluid movement and to design and optimize oil recovery processes.
Just like absolute permeability, relative permeability can vary considerably throughout the
reservoir depending on the local pore structure, interactions between the fluids and rock–
fluid interactions. Traditionally, relative permeabilities are determined experimentally using
different measurement methods (e.g. unsteady-state, steady-state and centrifuge). These mea-
surements are often time consuming and difficult to interpret and to perform, especially under
reservoir conditions. As a result, data are often scarce and there is no easy way to account
for the variation of relative permeability and residual saturations in the field due to different
flow conditions, pore structures and/or wettability trends.

An alternative approach to derive transport properties of rocks, and thus enrich and aug-
ment experimental measurements, is to numerically simulate fluid transport on images of the
rock microstructure. This has been made possible by significant improvements in imaging
(e.g. Arns et al. 2002) and modeling (e.g. Øren and Bakke 2002) of rock microstructures and
by the rapid increase in computational power. The approach has been successfully applied to
predict static rock properties (Øren and Bakke 2002; Knackstedt et al. 2004; Jin et al. 2004).
The extension to multiphase flow is commonly done using network modeling techniques. The
predictive capabilities of network models have improved greatly with recent developments in
extracting topological and geometrical equivalent pore networks from microstructure images
(Lindquist et al. 1996; Øren and Bakke 2003; Jiang et al. 2007), and predictive results have
been demonstrated for a number of different rocks (e.g. Øren et al. 1998, 2006; Valvatne and
Blunt 2004).

Although network models have many favorable features (e.g. computational speed, infinite
resolution, sharp interfaces), a number of limitations still exist. In particular, it is challenging
to extract topologically and geometrically equivalent pore networks that are representative
for certain classes of rocks. Another issue that arises in connection with simulations of multi-
phase flow in porous media is to accurately capture dynamic effects (Idowu and Blunt 2010),
such as mobilization and flow of discontinuous phases (Ramstad and Hansen 2006). A way
to approach these challenges is to simulate the dynamics of multiphase flow directly on rock
microstructure images. However, this is a difficult task since most continuum-based compu-
tational fluid dynamics techniques cannot directly combine large and small scale physical
behavior. Obviously, local pore level effects like capillary barriers strongly affect multiphase
flow in porous media.

The lattice Boltzmann (LB) method is a computational technique that account for many of
the difficulties mentioned above. The general LB method is a mesoscopic model—between
microscopic and macroscopic. Although it has limitations related to finite resolution and
relies upon a simplified collision and propagation scheme of fluid distributions, it is able to
correctly reproduce macroscopic behavior and at the same time capturing local microscopic
effects. The kinetic approach enables the LB method to automatically maintain fluid inter-
faces that do not need to be tracked. In comparison, direct continuum equation solvers for
multiphase flow like the level set (Sussman et al. 1994) and the phase-field (Badalassi et al.
2003) methods rely on auxiliary algorithms to track and handle the fluid interfaces in addition
to solving the macroscopic flow equations. An extensive review of these and other numerical
techniques for multiphase flow can be found in Tryggvason et al. (2007).

In addition, many properties related to fluid–solid and fluid–fluid interactions can be imple-
mented in a straight forward manner in the LB method without having to include complicated
kernels. These features make the LB model uniquely suited to simulate fluid flow directly
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on rock microstructure images. This has been demonstrated in several studies of both single
phase flow (e.g. Jin et al. 2004; Succi et al. 1989) and multiphase flow in porous media (Pan
et al. 2004; Schaap et al. 2007). However, few studies have focused on verifying LB-com-
puted multiphase flow functions such as relative permeability for realistic rocks (Martys and
Chen 1996; Ramstad et al. 2010).

Verification of computed relative permeability functions by direct comparisons with mea-
sured data are complicated by a number of factors. First of all, computations are performed
on images that are orders of magnitude less than the experimental sample. Uncertainties
about sample heterogeneities thus always exist. Next, in real rocks there is no easy way to
a priori determine wettability or contact angle distribution at the pore level. Wettability, of
course, strongly affects all measured multiphase flow functions. Finally, it is well known
that experimentally determined relative permeabilities depend on the measurement method.
For example, the unsteady-state displacement method is an indirect method because relative
permeabilities are calculated, not measured. To compare measured and predicted relative per-
meabilities, the LB simulations should mimic the applied measurement method, including
experimentally imposed boundary conditions (e.g. flowrate and applied pressure drop).

In this article, we report the ongoing development of LB simulations aimed at reproducing
the unsteady and steady-state methods for measuring relative permeability. We first provide a
brief description of the underlying dynamics of our LB method of choice. Next, we describe
the implementation of the different setups and boundary conditions used to mimic the differ-
ent measurement methods. Finally, we report drainage and imbibition relative permeabilities
derived from LB simulations of unsteady and steady-state displacements. The simulations
are performed on pore space images of water-wet Bentheimer and Berea sandstone. The
computed relative permeabilities are compared with available experimental data.

2 LB Method

The general LB model is a spatially discrete approach to fluid dynamics. It involves relaxing
a set of fluid particle distributions fi (x, t) towards an equilibrium Boltzmann distribution
f eq
i . The dynamics is governed by moving and colliding particle distributions on a lattice.

The fluid distributions are located in space on lattice nodes x at time t , and they can propagate
to neighboring nodes through fixed directional links i . In this process, they collide with other
fluid distributions and are subsequently redistributed according to a collision step. Reviews
of the LB method can be found in textbooks (e.g. Rothmann and Zaleski 1997; Succi 2001;
Sukop and Thorne 2006).

Even though the LB interaction scheme is highly simplified and contains very limited
degrees of freedom, the method is able to capture microscopic effects and at the same time
produce numerical solutions to macroscopic hydrodynamics. Local fluid density ρ and veloc-
ity u at position x can be derived from the distributions

ρ =
∑

i

fi (x, t), (1)

ρu =
∑

i

fi (x, t)ci , (2)

where ci is the directional velocity vector for a single distribution. Macroscopic quantities like
overall fluid velocity, density and pressure can be derived from these relations by summing
up over the entire lattice.
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The results in this article are obtained on a three-dimensional lattice with 18 velocity
vectors and rest distribution i = 0 with c0 = (0, 0, 0). This lattice type is named D3Q19.
The form of the pseudo-equilibrium distribution f eq

i (x, t) for the D3Q19 lattice is defined
as

f eq
i = wiρ

[
1 + 3ci · u + 3

2

(
3(ci · u)2 − u2)

]
, (3)

where the factor wi is a weight factor relating to the particular directional link i , and ρ and
u are defined in Eqs. 1 and 2. For the D3Q19 model, the weights are

wi =
⎧
⎨

⎩

1
3 , for i = 0 ,
1

18 , for i = 1, . . . , 6,
1

36 , for i = 7, . . . , 18.

(4)

With these quantities defined, the local propagation and collision process can be summarized
as follows:

fi (x + ci , t + 1) − fi (x, t) = �i j

(
f j − f eq

j

)
, (5)

where the timestep is set to one. The static scattering matrix � governs the relaxation of the
distribution. � is symmetric, but can attain quite complex forms. However, it is customary
to diagonalize � and to simplify even further by exchanging all the diagonal elements with
one single relaxation parameter ω so that the relaxation process takes the form

fi (x + ci , t + 1) − fi (x, t) = −ω
[

fi (x, t) − f eq
i (x, t)

]
, (6)

where ω = 1/τ and τ is the relaxation time towards equilibrium. This approximation is
called the Bhatnagar–Gross–Krook (BGK) LB method (Bhatnagar et al. 1954). Kinematic
viscosity is related to the relaxation parameter as

ν = 1

6

(
2 − ω

ω

)
. (7)

The local fluid pressure is calculated according to an ideal gas assumption P = c2
s ρ, where

the speed of sound for the D3Q19 lattice is cs = √
1/3.

The LB model itself produces results that are associated with the lattice. In order to com-
pare the output to physical systems, it has to be converted from lattice units to physical
units. This rescaling is done by the use of some fundamental scaling quantities characteristic
for the physical system, i.e. length, lp, fluid density, ρp and time, tp. The two quantities, lp
and ρp, are determined directly by the lattice resolution and the fluid properties. The time
scale, tp, has to be set, following a dimensional analysis, so that the other fluid properties are
consistent (Ramstad et al. 2010; Schaap et al. 2007). For example, the physical kinematic
viscosity will relate to the lattice value as νphys = ν(l2

p/tp), and the physical pressure as

Pphys = P(ρpl2
p/t2

p ).

2.1 Multiphase Flow

For multiphase flow, the fluid phases have to be treated separately. However, they co-exist
on the same grid and the mass and momentum conservation of Eqs. 1 and 2 apply to the
collective behavior of the phases α

fi (x, t) =
∑

α

f α
i (x, t). (8)
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Immiscible fluid–fluid interaction relates to surface tension and subsequent phase
separation. Several different models have been proposed to incorporate this effect (Gun-
stensen et al. 1991; Shan and Chen 1993; Swift et al. 1995). Which model to incorporate
depends on the specific system under investigation. Whichever model is chosen, it has to
obey the Laplace law for a curved surface.

In all models, the pressure difference between the phases is obtained by adding a local
force perturbation to the fluid distributions. The major differences arise when the fluids are
to be separated. Latva-Kokko and Rothmann (2005) presented a method that builds on the
colour gradient separation by Gunstensen et al. (1991). It “de-mixes” the fluids according to
a colour gradient

g =
∑

i

ci

∑

j

(
f α1

j (x + ci ) − f α2
j (x + ci )

)
, (9)

where j runs over the nearest neighbors. The strength of the interaction is governed by an
extra local force that is proportional to the surface tension, σ (Rothmann and Zaleski 1997).
Other separation methods, like the popular one developed by Shan and Chen (1993), use a
phase difference potential to include a force that automatically separates the fluids. This is
a more physical approach since it includes a pseudo-potential. The drawback is that surface
tension cannot be linearly controlled by a single tuning parameter, A ∝ σ .

Fluid–solid interaction is easily maintained by fixing the colour gradient close to the solid
so that the fluid phases feel different attraction and repulsion by the walls. The wetting angle
can thus be accurately defined within the resolution of the grid. Since we are dealing with
completely immiscible fluids in this article, we implement the colour gradient method for
fluid–fluid and fluid–solid interaction.

In the recent years, several versions of the LB method have been used to address chal-
lenges in connection with multiphase flow simulations. Particularly, the multiple relaxation
time (MRT) scheme (d’Humières et al. 2002; Ahrenholz et al. 2008)—that basically utilizes
the entire scattering matrix in Eq. 5—has been applied to address anomalous behaviour of
solid interface placement. This can be a problem for the BGK single relaxation time algo-
rithm, and can affect the calculation of absolute quantities like single-phase permeability
(Pan et al. 2006). In addition, the MRT algorithm has also been reported to give enhanced
stability when treating very low viscosities (Lallemand and Luo 2000). On the other hand,
the MRT algorithm is more time consuming and contains an increased number of control
parameters.

Another issue is how to address large density contrasts. Some studies argue that the colour
gradient method cannot handle such situations and that phase potential algorithms have to be
used instead (e.g. Inamuro et al. 2004). However, for the fluid pairs examined in this study,
with the focus on relative quantities, the BGK algorithm and the colour gradient method
seem adequate.

3 Relative Permeability

The relative permeability kr enters into the phenomenological description of multiphase flow
in porous media in terms of an extension of Darcy’s law. The generalized Darcy’s equation
for creeping flow is written as

vα = −kr,α(Sα)k

μα

∇ Pα, (10)
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where α refers to the fluid phase, and Sα is the saturation. For two-phase flow, the fluid
phases are categorized as either wetting or nonwetting fluid and α =w, nw. The term vα is
the volumetric fluid velocity of phase α, also referred to as the Darcy velocity

vα = Qα

A
n, (11)

where Qα is the flowrate of phase α, and A is the cross section of the sample with the unit
vector n in the flow direction. We calculate vα by averaging the local velocities from Eq. 2
over the entire pore space,

vα = φ

〈
∑

x

ρα

ρ
u

〉
, (12)

where φ is the porosity of the sample.
The validity of the relative permeability concept hinges on several fundamental issues

(Marle 1981; Avraam and Payatakes 1999). If the flow is dominated by capillary forces, it is
assumed that the different phases flow in separate channels and that the fluids are hydrody-
namically decoupled. Under such conditions, Eq. 10 is strictly valid. For a given displacement
process, relative permeability then depends only on pore structure, wettability and phase sat-
urations. This changes if viscous effects become important. Increased viscous pressure drop
can lead to viscous coupling and mobilization of trapped fluids. The balance between cap-
illary and viscous forces is given by the dimensionless capillary number normally defined
as

Ca = μ(Qtot/A)

σ
, (13)

where Qtot refers to the total flowrate of both phases, μ is the effective viscosity and σ

is the surface tension. For low capillary numbers, typically Ca < 10−6, capillary forces
dominate and the assumption of decoupled phases is correct. However, if viscous effects
start to influence the fluid transport, typically at Ca > 10−5, relative permeabilities change
and eventually shift towards a linear dependency with saturation in the near miscible region
(Bardon and Longeron 1980).

There are two main experimental setups for measuring relative permeability: unsteady-
state and steady-state. Extensive reviews of these methods can be found in Honarpour et al.
(1986). We intend to transfer both setups to our LB simulations on rock microstructure images.
In that context, several challenges arise in the implementation of boundary conditions and
how we record the transport and transform it into relative permeability relations.

3.1 Steady-State

In a steady-state experiment, both fluids are injected simultaneously at constant and known
flowrates. Steady-state is assumed when the fractional flow upstream is equal to that down-
stream and/or the pressure drop across the sample is constant. The stationarity of Eq. 10
is then fulfilled and relative permeability can be measured directly. However, care must be
exercised to minimize capillary end effects.

To mimic steady-state experiments, we distribute fluid phases in the model according to a
target saturation. Flow at a given Ca is then commenced. We impose periodic boundary con-
ditions and allow both fluids to enter and exit the model. Phase saturations are thus constant
during the simulations. We apply the same body force to each phase, thus the global pressure
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drop is the same for both phases. This eliminates capillary end effects since no gradients in
capillary pressure exist.

The two phases flow until the relative permeabilities and the pressure drop have converged
within a criterion ε < 10−5. For a finite model, there will be local invasion bursts that disturb
a monotonic convergence; therefore, the convergence is based on a least square analysis of
the long-term drift in the data, less sensitive to short-term fluctuations. When the system has
converged and steady-state flow is established, we obtain the two-phase kr,α as

kr,α = vα(Sw)

v0

�P0

�P(Sw)
, (14)

with single-phase quantities labeled sub-zero. Equation 14 assumes that the single phase
relative permeability kr,0 = 1. To reproduce hysteretic relative permeability curves, new
phase saturations are established by injecting fluid into the model according to the direc-
tion of the saturation change (i.e. decreasing or increasing Sw) and the previous steady-state
fluid configuration. This ensures that saturation and fractional flow change according to the
experimental flow history.

3.2 Unsteady-State

The unsteady-state method is basically a displacement process. It is widely used because it
is fast and qualitatively resembles the flooding process in the field. However, it is an indirect
method. Relative permeabilities are calculated, not measured. Typically, the Johnson, Bossler
and Naumann (JBN) method (Johnson et al. 1959) or its variants are used to calculate relative
permeabilities from measured production data and pressure drop. This method is based on
the assumptions that the flow velocity is high enough—thereby making capillary end effects
negligible and that the flow velocity is constant. The phases should in addition behave as
immiscible and incompressible fluids comprising a stable displacement.

To set up our unsteady-state simulations, we use periodic external boundary conditions.
Both fluids can exit the model, but only the displacing fluid can enter the model. This makes
the velocity field continuous during the displacement and enhances the stability of the simu-
lations. The pressure field is controlled by a body force that is applied equally to both phases.
The body force is regulated to keep a constant total mean velocity and thus constant capillary
number (Ramstad et al. 2010). The effluent composition and pressure drop across the model
are continuously monitored. The setup of the boundary conditions is depicted in Fig. 1.

4 Results and Discussion

Digitized rock microstructure images were acquired from X-ray tomography (MCT) of Bent-
heimer and Berea sandstone. These rocks are well-sorted and homogeneous, and consist
mainly of quartz and feldspar. Minor amounts of authigenic clay are present in both rocks.
Grid and computed petrophysical data for the images are given in Table 1. The samples are
water-wet and we have chosen a uniform contact angle of θ = 35◦ which is consistent with
oil–water contact angles in water-wet rocks. The fluid properties used in the LB simulations
are summarized in Table 2.

The MCT images are segmented into solid and void space only, and clay associated
porosity, that contributes to the “irreducible” wetting saturation Swi, is thus not captured.
The experimental Swi measured by the porous plate method for the Bentheimer samples is
Swi = 0.05 (Øren et al. 1998), while the experimental Swi for the Berea samples is estimated
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Fig. 1 X-ray microtomography image of the Bentheimer sample with snapshots of nonwetting fluid config-
urations (red) for hence periodic boundary conditions (left) and single phase injection (right). The size of the
sample is approximately 8 mm3

Table 1 Grid properties of the samples and the simulation types for which they are used

Rocktype Size (Lx × L y × Lz ) Resolution (µm) kabs (mD) Porosity

Bentheimer 256 × 256 × 256 6.67 1,910 0.219

Berea 256 × 256 × 256 5.345 1,243 0.193

Table 2 Fluid parameters for the LB simulations and the experiments

Quantity Symbol Simulations Experiments Unit

Berea/Bentheimer Berea Bentheimer

Density nonwetting fluid ρnw 900 n/a 760 kg/m3

Density wetting fluid ρw 900 n/a 1020 kg/m3

Viscosity nonwetting fluid μnw 1.23 × 10−3 1.39 × 10−3 1.4 × 10−3 Pa s

Viscosity wetting fluid μw 1.23 × 10−3 1.05 × 10−3 1.06 × 10−3 Pa s

Surface tension σ 25 × 10−3 n/a 35 × 10−3 N/m

to Swi = 0.2 based on the experimental steady-state primary drainage data with reported
end-point wetting saturations: Sw = 0.244 and Sw = 0.28 (Oak et al. 1990). To be consistent
when comparing measured and predicted relative permeabilities for the Berea sample, we
normalize experimental Sw to account for the “drainable” pore volume (PV) only (Dullien
1992), i.e.

Sw = S∗
w − Swi

1 − Swi
, (15)

where S∗
w is the total saturation of the wetting fluid.

The Berea sample used in the experiment had an absolute permeability of 1000 mD, and
the experiment was repeated on the same sample to produce the data sets. On the other hand,
three different Bentheimer samples with absolute permeabilities 2820 mD with a porosity
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Fig. 2 Steady-state simulation results for the Bentheimer sample (left column) and the Berea sample (right
column). a and b Show the drainage cycle while c and d show the imbibition cycle. All results are compared
to several experimental data sets with the same flow conditions. This is to illustrate that the scattering of
experimental data is taken into account

of φ = 0.241, 2840 mD with a porosity of φ = 0.232 and 2930 mD with a porosity of
φ = 0.237 were used and the experiments were carried out once. The petrophysical data for
the Bentheimer samples are reasonably close, and all the three experimental data are reported.
The grid and petrophysical data for the images are given in Table 1. In the following sec-
tions, we compare steady-state experimental data with both steady-state and unsteady-state
simulations due to unavailability of relevant unsteady-state data.

4.1 Steady-State

Figure 2 summarizes the results from the steady-state LB simulations on the Bentheimer
and Berea images. The results are compared with the experimental steady-state data (Øren
et al. 1998; Oak et al. 1990), and the simulations were done at similar flow conditions and
comparable fluid properties as stated in Tables 2 and 3. Hence, the choice of setup gives a
good basis for direct comparison between the simulated and experimental data.

The agreement for both kr,w and kr,nw is fair to good for the entire range of saturations,
both for drainage and imbibition, and the simulated residual nonwetting phase saturation is
similar to the experimental one. There is a slight over-prediction of kr,w, but this is most likely
caused by resolution effects to the wetting films making them thicker and more conductive
than what would be the case in a real sample.

Calculation times for given hardware requirements are tabulated in Table 3. We have
observed from the simulations that lowering the capillary number causes more fluctuations
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Table 3 Runtimes and hardware requirements for the steady-state simulations

Rocktype Simulation type Capillary number (Ca) CPUs Time (h)

Bentheimer Drainage 2.0 × 10−6 40 ≈21

Bentheimer Imbibition 2.0 × 10−6 40 ≈21

Berea Drainage 1.0 × 10−6 40 ≈30

Berea Imbibition 1.0 × 10−6 40 ≈30

The CPUs are HP Xeon 2.66 Ghz quad-core processors

to the data, and thus convergence takes longer than for higher capillary numbers. However,
the LB method is in general a computationally heavy method, and a single simulation has to
be run in parallel on multiple computer processors (CPUs) when treating large systems.

4.2 Unsteady-state Drainage

In order to estimate the relative permeability from the JBN method, it has to be assumed that
capillary pressure effects are negligible compared with viscous effects. The assumption is
clearly violated at low capillary numbers similar to those shown in Table 3. Hence, for the
purpose of measuring the relative permeability, we have run our unsteady-state simulations
at higher Ca.

Figure 3 shows a qualitative comparison between high and low flowrate unsteady-state
drainage simulations, with both snapshots of a momentary fluid configuration and the asso-
ciated saturation profile of the invading fluid. For the low flowrate case (Fig. 3, right) with
Ca = 5.0 × 10−6, it is assumed that the capillary forces are dominant. The snapshot shows
a fingering front that can be categorized as capillary fingering. This kind of displacement
produces a front stabilized by the capillary forces, and the first breakthrough does not occur
until Snw ≈ 0.5.

In the case of the high flowrate displacement carried out at Ca = 1.0 × 10−4 (Fig. 3,
left), the viscous forces are prevalent. As a result, the stabilizing capillary forces are less pro-
nounced, and the initial displacement is not stable. A visible fingering front of the injected
fluid penetrates the system at Snw ≈ 0.3. The associated saturation profile shows that there
is a gradual displacement of the wetting fluid towards the outlet rather than a compact dis-
placement. Qualitatively, this shows that viscous instabilities affect the displacement at high
flowrates, and such effects may impact the calculations of the relative permeability.

Through the remaining section, we focus on the high Ca = 1.0 × 10−4 case where vis-
cous forces dominate. Its production of the defending wetting fluid is shown in Fig. 4. After
breakthrough of the main nonwetting front, the pressure declines slowly before it relaxes.
This is mainly due to slow drainage of wetting fluid through high resistance flow paths (i.e.
wetting films). We assume that the wetting phase is continuous throughout the model with a
well-defined pressure drop over the model.

Figure 5 shows relative permeabilities derived by the JBN method using the simulated
production and pressure profiles. We note that the endpoint Sw is greater than that for the
steady-state results. This is due to capillary end effects. Even though the flow is categorized
as viscous dominated, narrow pores exhibit relatively larger capillary barriers which require a
large viscous pressure drop to be invaded. The nonwetting fluid flows only when the viscous
pressure gradient exceeds the capillary pressure gradient. In the final state, both gradients are
balanced. Lower endpoint Sw values can of course be reached by increasing the Ca of the
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Fig. 4 Produced volume and pressure drop for drainage simulations in the Bentheimer sample with Ca =
1.0 × 10−4. The breakthrough of the nonwetting phase is not very distinct, and there is not a clear peak in the
pressure profile at breakthrough

displacement similar to that of centrifuge setups which is commonly used for that purpose.
However, such a displacement behaviour does not resemble the flooding process in the field.

A more profound observation from our results is that the derived kr,nw is much larger than
the steady-state data, especially at high Sw. This discrepancy can be partly explained by the
high flowrate (Ca = 1.0 × 10−4) that for the initial displacement makes the capillary forces
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Fig. 5 Relative permeabilities for the drainage simulation derived from JBN post-processing. a is for the
Bentheimer sample and b for the Berea sample. The simulations are compared to steady-state drainage data
for the respective rocktypes with similar absolute permeability

negligible. It is well established that relative permeability curves will tend towards straight
lines for high capillary numbers and near miscible flow as mentioned earlier in Sect. 3.

However, the capillary forces are not totally negligible in our simulations. Hence, the
over-prediction of kr,nw compared to steady-state data can not be explained by differences in
flowrates alone. This is clearly shown by the fact that the wetting phase kr,w curve is much
closer to the steady-state one. For the invading phase, it is obvious that transient viscous
instabilities determine the flow conditions and the fluid configurations. These transient insta-
bilities and the local potentials linked to the movement of interfaces will add extra driving
forces to the flow and consequently enhance the flux of the invading fluid. As a consequence,
the relative permeability for unsteady-state needs to take dynamic effects into consideration
and is not only a function of the saturation (Joekar-Niasar and Hassanizadeh 2011).

Closer to the saturation endpoint, it is assumed that most of the transients have vanished,
and the unsteady-state data are closer to the steady-state ones. The fluid configurations for
the high and low Ca-cases will become more similar as can be seen partly from the late
saturation profiles in Fig. 3. It is also evident that the last points of the kr,nw curve in Fig. 5
agree with the steady-state ones. Thus, it is obvious that the unsteady-state measurements of
relative permeability have fundamental differences compared to steady-state when transient
effects are present.

The JBN-derived kr,w compares reasonably well with the steady-state data. The wetting
phase relative permeability is largely unaffected by the viscous transients because the wetting
phase flows in films where the only driving force is the viscous pressure gradient. Hence, the
flowrate response can be determined from Darcy’s law in Eq. 10.

4.3 Unsteady-state Imbibition

Next, we inject wetting fluid into the samples to displace nonwetting fluid—imbibition. The
invading wetting fronts are depicted in Fig. 6, and leave ganglia of trapped nonwetting fluid
behind. For the high flowrate Ca = 5.0 × 10−5, we observe a piston-like displacement,
while the displacement front for Ca = 5.0 × 10−6 is not that well-defined. The cause of the
difference is a relative increase in the transport of wetting fluid through films along the wetted
surfaces for lower flowrates (Idowu and Blunt 2010). It is also evident from our simulations
that much of the displacement at Ca = 5.0×10−6 is spontaneous and governed by capillary
forces. Hence, as stated in Sect. 4.2, the assumption on which the JBN analysis is based is
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Fig. 6 Snapshots of the fluid configurations for imbibition at global saturation Sw = 0.4 (top) with associated
local saturation profiles (bottom) for two different flowrates in the Bentheimer sample. The wetting fluid is
displayed with a colour palette with red as the largest concentration towards blue as the least concentration.
The pore space is black. The left picture shows an imbibition process at Ca ≈ 5.0 × 10−5. The right picture
shows an imbibition process at Ca ≈ 5.0 × 10−6
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Fig. 7 The left figure shows the produced volume as a function of injected fluid in PV during imbibition in
the Bentheimer sample at Ca = 5.0 × 10−5. The right figure shows the pressure drop over the model for the
same capillary number

violated, and we are not able to extract relative permeability data for capillary regimes of
Ca < 10−5.

Figure 7 shows the nonwetting phase production and corresponding pressure drop as a
function of injected PV. Compared to the drainage results, we observe a sharper change in the
production profile and a well-defined peak in the global pressure drop. Before the peak there
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Fig. 8 Plots of relative permeability for imbibition at different Ca. a Shows result for the Bentheimer sample
while b is for the Berea sample. The results are compared to steady-state imbibition experiments

is an almost linear increase in pressure. This corresponds to a linear increase in cumulative
nonwetting phase production before breakthrough.

Figure 7 also shows that the effluent profile has the appearance of a piston-like displace-
ment with little production after breakthrough, as expected for water-wet systems. This limits
the applicability of the JBN method to derive relative permeability curves since most of the
displacement is disguised. This is demonstrated in Fig. 8 which shows that relative permeabil-
ities can only be derived for a limited saturation range, which is a limitation of unsteady-state
techniques in general.

Changes in the flowrate have significant effects on the residual nonwetting phase satura-
tion, as shown in Fig. 8. In an experimental setting this is categorized as a “bump rate”, and is
used to determine residual saturations. In our simulations, we also observe clear rate effects
in the nonwetting phase relative permeability curves. For the wetting phase, the bump rate
only extends the saturation range, but the relative permeability data follow the same curve
path.

4.4 Methodology Comparison

In the two previous sections, we have compared our unsteady-state simulated relative perme-
ability data with the available steady-state data and pointed out similarities and discrepancies.
A pertinent question to ask is: Under what conditions are the results of the two methods com-
parable?

Several studies in the literature report that there often are agreements between relative
permeabilities obtained from either technique within the uncertainties of experimental mea-
surements (Dullien 1992). However, others report systematic discrepancies (e.g. Craig 1971;
Eleri et al. 1995) especially for certain rock types, flow regimes and wetting conditions.

In general, the steady-state technique is most representative for the situation deep inside a
reservoir, where boundary effects are negligible. In such a flow situation, the distribution of
phases will be uniform and capillary equilibrium prevail without transient effects (Honarpour
et al. 1986). In addition, relative permeabilities can be measured directly using steady-state
techniques. Hence, it is less dependent upon assumptions compared to the indirect calcula-
tions of relative permeability curves from the unsteady-state method (Mohanty and Miller
1991).

In Fig. 8, we observe that the imbibition relative permeability for the wetting phase, kr,w,
shares the same curve path as the steady-state experimental data, while the kr,nw tends to be
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Fig. 9 Relative permeability for
steady-state drainage in the
Bentheimer sample with various
viscosity contrasts M for
Ca = 2.0 × 10−6
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comparable for Ca = 1.0 × 10−5 for the Bentheimer sample and Ca = 2.0 × 10−5 for the
Berea sample. It has been stated previously that the steady-state experiments were carried
out at Ca ≈ 2.0 × 10−6, but that at this low Ca, JBN assumptions are violated. Hence, we
can not compute relative permeabilities using the JBN method. If it was possible to calculate
relative permeabilities at this low capillary number, it is probable that the kr,nw following the
predicted trend would match the steady-state data better.

The drainage relative permeabilities for the wetting phase shown in Fig. 5 also show a
good match with the steady experimental data. However, our simulation results show that
the kr,nw obtained from the unsteady-state simulations are fundamentally different from the
steady-state results. Transient effects and nonuniform fluid configurations affect the esti-
mated relative permeabilities. Similar results have been presented in previous studies, e.g. in
Joekar-Niasar and Hassanizadeh (2011).

4.5 Viscosity Contrast

We have focused on the special case of fluids with equal viscosity in this study, but this is
indeed only valid for a limited number of applications. To check the dynamic effects of various
viscosity contrasts, we have run both steady-state and unsteady-state to directly compare vis-
cosity contrasts with the equal viscosity setup. In this context, we define viscosity contrast as

M = μnw

μw
. (16)

From previous studies (Dullien 1992), it is found that for completely capillary-dominated
displacements, i.e. low Ca, the viscous properties of the fluids have little impact on the rela-
tive permeabilities. The explanation for this is that the fluid configurations will be determined
by capillary effects alone. If viscous forces and apparent viscous coupling have to be taken
into consideration, the picture changes.

In Fig. 9, steady-state drainage simulations with Ca = 2.0 × 10−6 with various viscosity
ratios are displayed. The relative permeabilities are calculated from Eq. 10, but with the effec-
tive viscosity μ = (1 − Sw)μnw + Swμw rather than the individual phase viscosities. Within
the expected uncertainty of these simulations, the results are similar, suggesting that the vis-
cosity ratios have no effect on the relative permeabilities. However, close to the end-points,
we observe a slight systematic shift in the different kr,nw.

Viscosity contrasts can have impacts on the invasion patterns for unsteady-state setups, but
for imbibition processes a small viscosity contrast has little effect on the qualitative saturation
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Fig. 10 The left figure shows saturation profiles for imbibition with viscosity contrast M = 10 and M = 1
with Ca = 5.0 × 10−5. The corresponding relative permeabilities are shown in the right figure

profile as shown in Fig. 10. However, we observe a higher residual nonwetting saturation
for M = 10 compared to the equal viscosity case. This is categorized as an unfavourable
viscosity ratio.

5 Conclusion

We have applied a LB method to systematically obtain relative permeability functions from
digitized microstructure images of Bentheimer and Berea sandstone under water-wet condi-
tions. We demonstrate that the LB method can reproduce drainage and imbibition relative
permeabilities obtained by different experimental measurement methods and imposed flow
conditions.

All computed results are compared to available steady-state experimental data. The quali-
tative and quantitative behavior of the LB simulations are fully comparable to the experimental
data for steady-state setups, and this provides as a good benchmark for further extensions of
the simulations.

We find that the JBN-derived nonwetting phase relative permeability for unsteady-state
drainage simulations is over-predicted compared to the steady-state results. This is due to
transient viscous instabilities that violate the assumptions of the generalized Darcy’s law for
two-phase flow. From this, we conclude that transient effects create fundamental differences
between steady and unsteady-state measurements of relative permeabilities for drainage. The
wetting, defending fluid is less affected and is comparable to the experimental steady-state
data.

Unsteady-state imbibition simulations show the expected qualitative behaviour for both
wetting and nonwetting fluids. We demonstrate that for unsteady-state displacements, resid-
ual saturations depend strongly on the capillary number.

Finally, we have discussed the dynamic effects of viscosity contrasts and how these affect
the measured and calculated relative permeabilities from steady and unsteady-state simula-
tions. We observe that the viscosity contrasts have little impact on the mid saturation range
of the relative permeabilities, but may affect the end-point properties to a certain degree at
low Ca.

The results obtained will eventually bring this study to be a part of a larger study that
will systematically evaluate the capability of the LB method to predict multiphase flow
functions for a wide range of fluid properties. Further, this will be applied towards geological
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sequestration of CO2. So far, the results are encouraging, and the LB method has shown
predictive capabilities and the ability to account for viscous effects.
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