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Abstract The injection of supercritical CO2 through wells into deep brine reservoirs is a
topic of interest for geologic carbon sequestration. The injected CO2 is predominantly immis-
cible with the brine and its low density relative to brine leads to strong buoyancy effects. The
displacement of brine by CO2 in general is a multidimensional, complex nonlinear problem
that requires numerical methods to solve. The approximations of vertical equilibrium and
complete gravity segregation (sharp interface) have been introduced to reduce the complexity
and dimensionality of the problem. Furthermore, for the radial displacement process consid-
ered here, the problem can be formulated in terms of a similarity variable that reduces spatial
and temporal dependencies to a single variable. However, the resulting ordinary differential
equation is still nonlinear and exact solutions are not available. The existing analytical solu-
tions are approximations limited to certain parameter ranges that become inaccurate over a
large portion of the parameter space. Here, I use a matched boundary extrapolation method
to provide much greater accuracy for analytical/semi-analytical approximations over the full
parameter range.

Keywords CO2 sequestration · Vertical equilibrium · Gravity segregation ·
Analytical solution

1 Introduction

The connection identified between atmospheric emissions of CO2 and global climate change
has led to intensive investigations of ways to reduce the build-up of CO2 in the atmosphere.
One mitigation strategy is called geologic carbon sequestration, where CO2 is injected into
permeable geologic formations to prevent CO2 emissions from entering the atmosphere. The
two main types of target formations are depleted (or depleting) oil reservoirs and deep saline
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aquifers. This article focuses on processes associated with CO2 injection into deep saline
aquifers.

Typically, CO2 is injected into receiving formations through wells sufficiently deep (gen-
erally 800 m is sufficient) such that the CO2 is in a supercritical state. Brine and CO2 may
be approximated as immiscible phases although there is a small degree of solubility of CO2

in brine and water in CO2 (IPCC 2005). Given sufficient time, on the order of hundreds of
years (IPCC 2005), the mutual solubility can have a significant effect; however, for shorter
times the solubility effect is small. For supercritical conditions, CO2 is much denser than air
but still less dense than formation brine and has a lower viscosity than brine. The buoyancy
of the CO2 relative to brine leads to a tendency for the CO2 to override the brine along the
caprock sealing the aquifer.

The immiscible displacement problem for flow from a well has been investigated using
both analytical and numerical methods (Nordbotten et al. 2005; Nordbotten and Celia 2006;
Dentz and Tartakovsky 2009a; Liu et al. 2010). Nordbotten et al. (2005) used an energy mini-
mization approach to determine the displacement profile for cases having negligible buoyancy
effects and significant buoyancy effects. The results are given in terms of an analytical rela-
tionship for the case in which buoyancy is negligible and a semi-analytical relationship for
when buoyancy is important. However, the validity of the energy minimization approach
was later questioned by Nordbotten and Celia (2006) and Dentz and Tartakovsky (2009a).
Nordbotten and Celia (2006) analyzed the CO2 injection problem using vertical equilibrium,
sharp interface approximations, and recast the problem in terms of a similarity variable. The
similarity transformation reduces the partial differential equation governing the displacement
profile to an ordinary differential equation. An analytical solution was found for the case with
negligible buoyancy. The case in which buoyancy is important required numerical solutions
of the nonlinear ordinary differential equation.

Dentz and Tartakovsky (2009a) developed an approximate analytical solution for CO2

injection through a well. This solution was obtained using the hypothesis that the volumetric
flow rates for CO2 and brine are proportional to the depth of the aquifer occupied by each
phase at a given radius from the well. However, the validity of this hypothesis, including
the effects of parameter variations on the suitability of the approximate solution, was not
investigated.

Liu et al. (2010) investigated the CO2 well-injection problem using the sharp interface
approximation but without the vertical equilibrium approximation. Numerical solution of the
governing equations was required. Results were compared with solutions using the similar-
ity model of Nordbotten and Celia (2006). In general, the two methods were in reasonable
agreement, with the largest discrepancies occurring along the top of the aquifer where CO2

penetration is the greatest.
Here, I present and analyze the problem of injection/release of CO2 from a well into a

confined saline aquifer. The problem is limited to cases in which the aquifer may be approx-
imated as horizontal and where other flow effects, such as regional groundwater flow, are
small such that the displacement pattern is radially symmetric around the well. The gov-
erning equation is developed using the vertical equilibrium approximation which assumes
a static pressure distribution; therefore, the resulting flow field is approximated as entirely
horizontal. An assumption of complete gravity segregation is also used, which posits that
only one phase is flowing at any location. This assumption allows for the development of
the governing equation in terms of the free interface height. The theoretical basis for both of
these approximations is discussed in detail by Yortsos (1995) for a linear flow system. Further
analysis is provided here regarding the application of these approximations to a radial flow
system. Compressibility effects are not included in this analysis; however, Vilarrasa et al.
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(2010) discuss compressibility effects for the CO2 well-injection problem and provide an
approximate method by which to correct for compressibility effects in models that assume
incompressibility. The governing equation may be expressed in terms of a similarity variable,
as described by Nordbotten and Celia (2006), for the case of a constant rate injection into
an initially undisturbed aquifer. This reduces the partial differential equation expressed in
terms of radial distance and time to an ordinary differential equation expressed in terms of a
Boltzmann-type similarity variable.

The transformed equation is a nonlinear two-point boundary value problem. New approx-
imate analytical and semi-analytical solutions are obtained through a matched boundary
extrapolation (MBE) method. The MBE method involves developing approximate solutions
expected to be accurate at the system boundaries. These boundary solutions are then extrapo-
lated to an interior point where they are matched and constrained to ensure mass balance. The
MBE solutions are investigated over a wide range of dimensionless parameters associated
with the problem and compared with solutions of other investigators.

2 The Vertical Equilibrium and Gravity Segregation Approximations

A dimensional analysis for displacement of brine by CO2 in a radial flow system is developed
here to evaluate the conditions under which vertical equilibrium and gravity segregation may
be expected to be reasonable approximations. This is similar to the analysis presented by
Yortsos (1995) for a linear flow system, but addresses the differences inherent to a radial
flow system.

Fluids and rock are treated as incompressible relative to the displacement of brine by CO2,
such that the divergence of the total flow field is approximately zero. The reservoir bound-
aries are horizontal, and there is no regional flow; flow is entirely a result of CO2 entering
the formation from the well. The system is assumed to be homogeneous and horizontally
isotropic; anisotropy in permeability is included for the vertical direction.

The evaluation requires scaling the equations for incompressibility and Darcy’s law for
each phase, as given in Eqs. 1 through 3:

1

r

∂

∂r
{r (unr (r, z, t) + uwr (r, z, t))} + ∂

∂z
(unz (r, z, t) + uwz (r, z, t)) = 0, (1)

un (r, z, t) = −krw (Sw (r, z, t))

μn

{
kh

∂pn

∂r
(r, z, t) R + kz

(
∂pn

∂z
(r, z, t) + ρng

)
κ

}
,

(2)

uw (r, z, t) = −krw (Sw (r, z, t))

μw

{
kh

∂pw

∂r
(r, z, t) R + kz

(
∂pw

∂z
(r, z, t) + ρwg

)
κ

}
.

(3)

The fluid fluxes of CO2 and brine are un and uw, respectively, where bolding indicates a
vector quantity. The subscript “n” refers to CO2 as a non-wetting phase and “w“ refers to
brine as the wetting phase. The saturation of brine is denoted by sw, which is the volumetric
fraction of pore space occupied by brine. The CO2 and brine fluid pressures are pn and
pw, respectively. The horizontal and vertical permeabilities are kh and kz , respectively. The
relative permeabilities for CO2 and brine are given by krn (Sw) and krw (sw) , which are
homogeneous and isotropic. The CO2 and brine phase viscosities are μn and μw, respec-
tively, and their respective densities are ρn and ρw. The gravitational acceleration is g, the
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Fig. 1 Definition diagram for CO2 flow from a well into a saline aquifer

radial unit vector is R, and the unit vector in the vertical direction is κ . The radial and vertical
coordinates are r and z, respectively, as shown in Fig. 1.

An auxillary relationship for capillary pressure is:

pc (Sw) = pn − pw, (4)

where pc is the capillary pressure.
Equations 1 through 4 may be used in a dimensional analysis to help understand what

is meant by the vertical equilibrium and gravity segregation approximations. The analysis
proceeds by developing dimensional groups representative of the various quantities in Eqs. 1
through 4, so that these equations may be put into a dimensionless form. Length scales for the
vertical and radial directions are denoted by H and L (t), respectively. The aquifer thickness
is given by H ; however, unlike the problem analyzed by Yortsos (1995), there is no unique
length scale for the radial direction. Both the saturation and pressure fields expand radially in
proportion to the square root of time (Nordbotten and Celia 2006). Therefore, L (t) is taken
to be proportional to the square root of time, consistent with the evolution of the system.

There is no unique scaling for the flux terms un and uw because of the overall decrease
in flux with radial distance from the well. However, the flow rate per unit depth for CO2 and
brine, qn and qw, defined as

qn (r, z, t) = 2πrun (r, z, t) , (5)

qw (r, z, t) = 2πruw (r, z, t) , (6)

can be scaled. The scaling variable for flow rate per unit depth, qs, is given by

qs = Qwell

H
. (7)

To scale the pressure, consider the single-phase relationship for CO2 flow from a well at a
rate Qwell

Qwell = −2πr H
kh

μn

∂p

∂r
, (8)
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which leads to the following definition of the pressure scale, ps :

ps = μn Qwell

2πkh H
. (9)

Finally, define the capillary pressure scale, pcs, as

pcs = σcos (θ)√
kh
φ

, (10)

which is the Leverrett J-function normalization (Bear 1972) for capillary pressure, where σ

is the CO2-brine surface tension, θ is the contact angle between the CO2-brine interface and
the rock surface as measured through the brine, and φ is the rock porosity.

2.1 Evaluation of Vertical Equilibrium

Using the definitions (5) and (6) in (1) gives

Qwell

2π L2 Hr̂

∂
(
q̂nr + q̂wr

)
∂ r̂

+ Qwell

2π L H2r̂

∂
(
q̂nz + q̂wz

)
∂ ẑ

= 0, (11)

where the flow rates per unit depth are scaled using (7), which gives the dimensionless vari-
ables q̂n = 2πr H

Qwell
un and q̂w = 2πr H

Qwell
uw. The radial and vertical coordinates are scaled by L

and H , respectively, which gives the dimensionless variables r̂ = r
L ; ẑ = z

H .
Let the total flow rate per unit depth be q̂ = q̂n + q̂w. Equation 11 then becomes,

ε
∂ q̂r

∂ r̂
+ ∂ q̂z

∂ ẑ
= 0, (12)

where ε = H
L . Using the scaling variables the radial component of (2) becomes

q̂nr = −krwr̂
∂ p̂n

∂ r̂
, (13)

where the dimensionless CO2 pressure is p̂n = 2πkh H
μn Qwell

pn. Scaling the vertical component
of (2) gives

ε

δ
q̂nz = −krnr̂

(
∂ p̂n

∂ ẑ
+ ε

2πρngH Lkh

μn Qwell

)
, (14)

where δ = kv

kh
. Similarly, for the horizontal and vertical components of brine flow in (3),

q̂wr = −krw
μn

μw
r̂
∂ p̂w

∂ r̂
, (15)

ε

δ
q̂wz = −krwr̂

(
μn

μw

∂ p̂w

∂ ẑ
+ ε

2πρwgH Lkh

μw Qwell

)
. (16)

Taking the sum of the flow rates per unit depth for CO2 and brine gives the total flow rates
per unit depth in the radial and vertical directions

q̂r = −krn (Sw) r̂
∂ p̂n

∂ r̂
− krw (Sw)

μn

μw
r̂
∂ p̂w

∂ r̂
, (17)

ε

δ
q̂z = −krnr̂

(
∂ p̂n

∂ ẑ
+ ε

2πρngH Lkh

μn Qwell

)
− krwr̂

(
μn

μw

∂ p̂w

∂ ẑ
+ ε

2πρwgH Lkh

μw Qwell

)
. (18)
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As the parameter ε → 0, (12) indicates that that magnitude of q̂z must be proportional to ε.
Otherwise, the incompressibility condition cannot be met. Therefore, q̂z = εŵz, where ŵz

is of the same order as q̂r Substituting this into (18) gives

ε2

δ
ŵz = −krnr̂

(
∂ p̂n

∂ ẑ
+ ε

2πρngH Lkh

μn Qwell

)
− krwr̂

(
μn

μw

∂ p̂w

∂ ẑ
+ ε

2πρwgH Lkh

μw Qwell

)
. (19)

When ε2

δ
→ 0, (19) requires that the terms in parentheses multiplying the relative perme-

ability terms must go to zero because the relative permeabilities are independent parameter
functions. Each of these terms is zero when the vertical pressure gradient equals the static
gradient. A static vertical pressure gradient within each phase is the definition of vertical

equilibrium. Yortsos (1995) found the same parameter requirement, ε2

δ
→ 0, for vertical

equilibrium in linear flow. Because the radial length scale, L (t), increases with time, ε → 0
as t → ∞. Therefore, the CO2—brine displacement process will always tend to a vertical
equilibrium condition after a sufficiently long time. Nordbotten and Celia (2006) reached
a similar conclusion concerning the applicability of vertical equilibrium as a function of time.

2.2 Evaluation of Gravity Segregation and Capillary Effects

The approximations that capillary forces are negligible and that the fluids are gravity-
segregated can be evaluated from (17) and (19). Starting with (19) for vertical flow, rearrange
terms to isolate the capillary pressure and buoyancy effects:

ε2

δ
ŵz = −

(
krn + krw

μn

μw

)
r̂

(
∂ p̂n

∂ ẑ
+ ε

2πρngH Lkh

μn Qwell

)

+krwr̂

(
μn

μw

∂
(

p̂n − p̂w
)

∂ ẑ
− ε

2π (ρw − ρn) gH Lkh

μw Qwell

)
. (20)

Using (14) to eliminate the second term in parentheses on the right-hand side of (20) gives:

ε2

δ
ŵz =

(
krn + krw

krn

μn

μw

)
ε

δ
q̂nz

+krwr̂

(
μn

μw

∂
(

p̂n − p̂w

)
∂ ẑ

− ε
2π (ρw − ρn) gH Lkh

μw Qwell

)
. (21)

Using (4), (9), and (10) in (21) gives:

ε2

δ
ŵz =

(
krn + krw

krn

μn

μw

)
ε

δ
q̂nz

+krwr̂

⎛
⎝ 2πkh H

μw Qwell

σcos (θ)√
kh
φ

∂ p̂c

∂ ẑ
− ε

2π (ρw − ρn) gH Lkh

μw Qwell

⎞
⎠ . (22)

Rearranging terms in (22) and solving for q̂nz :

q̂nz = εŵz

(
krn/μn

krn/μn + krw/μw

)

−2πδ
(ρw − ρn) gH Lkhkrw

μw Qwell
r̂

( krn
μn

krn
μn

+ krw
μw

)(
1

B

∂ p̂c

∂ ẑ
− 1

)
, (23)
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where

B = (ρw − ρn) gH

σcos (θ)

√
kh

φ
(24)

is the Bond number (Nordbotten and Dahle 2010). The Bond number is a standard scaling
relationship for evaluating the relative significance of capillary and gravitational forces. From
(23) capillary pressure effects are negligible if the term multiplying the capillary pressure
gradient is small compared with the buoyancy term, i.e., if B � 1. However, unlike vertical
equilibrium, the relative strength of capillarity to gravity affecting the vertical movement of
fluid does not diminish with increasing time.

If capillarity is negligible relative to gravity effects then (23) becomes

q̂nz = ε

[
ŵz

(
krn/μn

krn/μn + krw/μw

)

+r̂

(
krwkrn/μn

krn/μn + krw/μw

)
δ

ε2

(
2π (ρw − ρn) gH2kh

μw Qwell

)]
. (25)

Now ε2

δ
→ 0 is the condition that leads to vertical equilibrium. The dimensionless grouping

2π(ρw−ρn)gH2kh
μw Qwell

represents the relative strength of buoyancy and viscous forces. If
2π(ρw−ρn)gH2kh

μw Qwell
∼ O (1) , buoyancy is not negligible and the last term on the right hand side

of (25) diverges as δ
ε2 → ∞. This term cannot be balanced by other terms in the equation,

which are of smaller order. The only way to balance Eq. 25 when 2π(ρw−ρn)gH2kh
μw Qwell

∼ O (1)

is for krw (Sw) krn (Sw) = 0.
This is the condition of flow segregation, i.e., only one phase is flowing at a given location

and time. Yortsos (1995) found a similar requirement for gravity segregation in linear flow.
However, for radial flow, the condition favoring gravity segregation becomes stronger with
time because L → ∞ (and ∈→ 0) and as t → ∞.

If capillarity is not negligible with respect to buoyancy, then (23) indicates that gravity
segregation will be weakened, because the opposing effects of buoyancy and capillarity help
to balance the equation.

For radial motion, start with (17), rearrange terms to isolate capillary pressure effects and
use (14) to eliminate the CO2 pressure gradient/gravity term, to give

q̂r =
(

1 + krw

krn

μn

μw

)
q̂nr + krw

μn

μw
r̂
∂
(

p̂n − p̂w
)

∂ r̂
, (26)

and using (4), (9), and (10) in (26) and solving for q̂nr gives

q̂nr =
(

krn/μn

krn/μn + krw/μw

)
q̂r +

(
krwkrn/μn

krn/μn + krw/μw

)
2πσcos (θ)

√
φkh H

μw Qwell
r̂
∂ p̂c

∂ r̂
.

(27)

The term containing the capillary pressure is multiplied by krw (Sw) krn (Sw) , which is zero
for a condition of gravity segregation. Therefore capillary effects in the radial direction are
negligible under a condition of gravity segregation.
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3 Governing Equation for Radial Displacement of Brine by CO2

Now that the conditions for vertical equilibrium and gravity segregation have been estab-
lished, the equation for the displacement of brine by CO2 injected from a well can be derived
by writing material balance equations using these approximations. The development of the
governing equation follows that of Nordbotten and Celia (2006), but for completeness is
included here. As shown in Fig. 1, if considering material balance over a small element,

2πrφ (1 − Swr )
∂h

∂t
(r, t) = −∂ Qn

∂r
(r, t) , (28)

2πrφ (1 − Swr )
∂h

∂t
(r, t) = ∂ Qw

∂r
(r, t) , (29)

where h is the depth of flow of CO2, φ is the porosity, Swr is the residual saturation of brine
following displacement by CO2 and Qn and Qw are the radial flow rates of CO2 and brine,
respectively.

Darcy’s law for horizontal, radial flow in each phase is:

Qn (r, t) = −2πrh
knr

μn

∂pn

∂r
(r, t) , (30)

Qw (r, t) = −2πr (H − h)
kw

μw

∂pw

∂r
(r, t) , (31)

where pn is the CO2 pressure at the top of the reservoir, pw is the brine pressure at the base
of the reservoir, knr is the horizontal permeability to CO2 at residual brine saturation, and kw

is the horizontal saturated permeability of brine. As a result of complete gravity segregation,
all mobile brine has been displaced by CO2 in the region with mobile CO2. However, a
residual, immobile brine saturation that cannot be displaced by CO2 remains such that the
CO2 permeability in this region is the permeability to CO2 at residual brine saturation. The
region with mobile brine is ahead of the CO2 displacement front and is completely saturated
with brine; therefore, the brine permeability in this region is equal to the saturated brine
permeability.

Using vertical static equilibrium, the CO2 pressure at the top of the reservoir, pnw, can be
expressed in terms of the pressure of the brine at the base of the reservoir, pw:

pn = pw − ρwg (H − h) − ρngh = pw + 
ρgh − ρwgH. (32)

The sum of the flow rates in (30) and (31) gives the well flow rate, Qwell:

Qwell = −2πrh
knr

μn

∂pn

∂r
− 2πr (H − h)

kw

μw

∂pw

∂r
. (33)

Using (32) for pn in (33) gives

Qwell = −2πrh
knr

μn

(
∂pw

∂r
+ 
ρg

∂h

∂r

)
− 2πr (H − h)

kw

μw

∂pw

∂r
. (34)

Rearranging (34) to solve for the pressure gradient, substituting into (31) and then using the
resulting expression for Qw in (29), gives

∂h

∂t
= 1

2πrφ (1 − Swr )

∂

∂r

{
2πrh (H − h) kw

μw

knr
μn


ρg ∂h
∂r + (H − h) kw

μw
Qwell

h knr
μn

+ (H − h) kw
μw

}
. (35)
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Define the following dimensionless variables, ω = h
H , η = r

H and, τ = Qwellt
2πφ(1−Swr )H3 . Using

these in (35) gives

∂ω

∂τ
= 1

η

∂

∂η

{
�λω (1 − ω) η ∂ω

∂η
+ (1 − ω)

(λ − 1) ω + 1

}
, (36)

where

λ = μw

kw

knr

μn

� = 2π
ρgH2kw

Qwellμw
. (37)

The mobility ratio for CO2 and brine is λ and � is a dimensionless gravity number that
represents the relative strength of buoyancy and viscous forces. Introducing the Boltzmann

similarity transformation χ = η2

2τ
into (36) leads to the following ordinary differential equa-

tion:

− χ
dω

dχ
= d

dχ

[
2�λω (1 − ω) χ

(λ − 1) ω + 1

dω

dχ
+ 1 − ω

(λ − 1) ω + 1

]
. (38)

As shown in Fig. 1, the interface spans the entire aquifer thickness because CO2 is injected
uniformly across the aquifer. As a result, the boundary conditions are specified at ω = 0 and
ω = 1. However, these values of ω occur at unknown values of the similarity variable, χ .
Therefore, the boundary values of χ must be determined as part of the solution, as discussed
in the following sections.

The similarity transformation requires a constant flow rate from the well so that � does
not depend on time. The transformation also requires that the initial conditions are uniform,
i.e., ω (η, 0) = 0. Equation (38) describes a CO2-brine displacement in terms of the dimen-
sionless CO2 depth of flow, ω, as a function of the similarity variable, χ , and two parameters,
the mobility ratio and gravity number. The approximations and idealizations used to develop
(38) have provided a significant simplification of the general two-phase flow problem that
involves four unknowns (CO2, brine pressures, and saturations) as functions of three spatial
variables and time.

An important constraint is the balance between the total CO2 injected and the volume of
CO2 present in the reservoir at any given time, which is given by

Qwellt = φ (1 − Swr ) π

H∫
0

r2 (h, t) dh. (39)

Note that for a given point in time, h only depends on r ; therefore, this relationship can be
inverted to express r as a function of h at any point in time.

Given the constant-density approximation for CO2, this is equivalent to a total mass con-
straint on CO2 in the reservoir. Recasting (39) in terms of the dimensionless variables gives
the following total CO2 mass condition:

1∫
0

χdω = 1. (40)
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4 Matched Boundary Extrapolation Solutions

There is no known general analytical solution to Eq. 38. In this section two approximate
analytical solutions are developed using matched boundary extrapolations. As shown by
Nordbotten and Celia (2006), as � → 0,

χ = λ

{1 + (λ − 1) ω}2 , (41)

For 0 ≤ ω ≤ 1. The condition � → 0 leads to a first-order nonlinear wave equation for ω in
terms of τ and η2, which can be seen from Eq. 36. For � > 1, however, nonlinear diffusion
effects become important and solutions are more difficult to determine.

To investigate solutions for other ranges of � and λ, integrate (38) from χ to χm , where
χm = χ (0):

dln (χ)

dω
= 2�λω (ω − 1)

{(λ − 1) ω + 1} ∫ ω

0 χdω − λω
. (42)

The general approach is to use two asymptotic approximations for the integral term in (42)
that are valid for ω → 0 and ω → 1, i.e., at the system boundaries. These approximations
will be referred to as boundary solutions for the upper domain (ω → 0) and lower domain
(ω → 1). The approximations need to be simple enough such that (42) can be solved ana-
lytically. These two boundary solutions are then extrapolated to a point in the interior where
they are matched.

First consider the form of the integral in (42) that is consistent with the result in (41). This
may be constructed by inserting (41) for χ in (42), except in the integral term. The result is

ω∫
0

χdω = λω

(λ − 1) ω + 1

[
�

(λ − 1)
{(λ − 1) ω + 1} (1 − ω) + 1

]
. (43)

Equation 43 reduces to 41 if the first term in the square bracket is small compared with 1,
i.e., if �

λ−1 	 1 as ω → 0. Therefore, (41) provides a good approximation for the upper
domain solution under these conditions as ω → 0 even if � is not small. The solution for
conditions where �

λ−1 	 1 and λ � 1 are identified as MBE 1. For the purposes of the
matched boundary extrapolations, (41) is generalized to the following form:

χ = χm

{1 + (λ − 1) ω}2 . (44)

This allows for flexibility in the solution relative to the total mass condition.
When �

λ−1 is not small relative to 1, (44) is not applicable; nor is it applicable for λ ≤ 1.
To extend the range of analytical approximations, consider a first-order approximation to the
integral in (42) for small ω, i.e.,

ω∫
0

χdω ≈ χmω, (45)

where χm is the unknown maximum value of χ at the top boundary, ω = 0. Higher-order
approximations to the integral in (45) were investigated but the net benefit did not seem to
warrant the increased complexity in the analytical solution. Solutions using this approxima-
tion for the integral, for conditions when �

λ−1 � 1 and/or λ is small, are identified as MBE
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2. More precise limits defining the applicable domains for MBE 1 and MBE 2 are discussed
later.

Substituting (45) for the integral in (42) gives

dln (χ)

dω
= 2�λω (ω − 1)

{λω + (1 − ω)}χmω − λω
. (46)

Solving (46) to first order as ω → 0 gives

χ = χmexp

(
− 2�λω

χm − λ

)
. (47)

Equations 44 and 47 represent boundary solutions for the upper domain for different ranges
of the parameters � and λ. Equation 44 is based on a higher-order approximation to the
integral in (42) as compared with (47), but is only valid for small ω if �

λ−1 	 1 and λ � 1.
Equation 47 will be used as the upper domain boundary solution for the other parameter
ranges of � and λ.

For the lower domain, where ω → 1, the integral in (42) is approximated as 1. Thus,
the total mass of the CO2 is approximated as lying entirely within the upper domain with
respect to the integral approximation. This means that the variation in the integral in the
lower domain is small and its effects on the profile can be neglected; it does not mean that the
resultant solution for χ is zero in the lower domain. With this approximation, Eq. 42 leads
to the following result:

χ = χ0exp
(−�λω2) , (48)

Where χ0, is an undetermined constant.

4.1 MBE 1 Solution

To produce a global solution, the upper and lower domain boundary solutions are matched at
an interior point, ωp in terms of the value of χ and the slope of the function, dχ

dω
. The MBE 1

solution is obtained using (44) and (48). To match these solutions at an interior point, equate
the derivative of ln (χ) for each of (44) and (48) and solve for ωp:

ωp = 1

2 (λ − 1)

⎧⎨
⎩
√

1 + 4
(λ − 1)2

�λ
− 1

⎫⎬
⎭ . (49)

The solution is also required to be continuous at the match point. This is ensured by equating
values of χ in (44) and (48) at ω = ωp and solving for χ0:

χ0 =
χmexp

(
�λω2

p

)
{
1 + (λ − 1) ωp

}2 . (50)

The total mass condition in (40) is used to determine χm by integrating (44) from ω = 0 to
ω = ωp and by integrating (48) using (50) from ω = ωp to ω = 1:

ωp∫
0

χm

{1 + (λ − 1) ω}2 dω +
1∫

ωp

χmexp
(
�λω2

p

)
exp

(−�λω2
)

{
1 + (λ − 1) ωp

}2 dω = 1. (51)
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This results in the following for χm :

χm =
⎡
⎣{

ωp

1 + (λ − 1) ωp

}

+
√

π

2
√

�λ

exp
(
�λω2

p

)
{
1 + (λ − 1) ωp

}2

{
erf

(√
�λ

)
− erf

(√
�λωp

)}⎤⎦
−1

. (52)

If ωp > 1, then the upper domain solution applies over the entire domain and

χm = λ. (53)

If ωp < 0, then the lower domain solution applies over the entire domain and

χm = 2
√

�λλ2

√
πerf

(√
�λ

) . (54)

The first matched boundary extrapolation solution, or MBE 1, is given by Eq. 44 for the
upper domain and (48) for the lower domain. The value of χ0 in (48) is given by (50) and
the value of χm in both (44) and (50) is given by (52), (53), or (54), depending on the value
of ωp . The upper domain applies to values of ω from 0 to the match point, ωp , and for the
lower domain, from ωp to 1, where ωp is given by (49).

4.2 MBE 2 Solution

The same procedure is applied to match the upper domain solution (47) with the lower domain
solution (48). Equating the derivative of ln (χ) for each at the match point, ωp gives

ωp = 1

χm − λ
. (55)

To ensure continuity of the upper and lower domain solutions at the match point, equate
values of χ in (47) and (48) at the match point and solve for χ0:

χ0 = χmexp

{
− �λ

(χm − λ)2

}
. (56)

Finally, the total mass constraint is used to determine χm . Integrating (47) from ω = 0 to
ω = ωp and by integrating (48) using (56) from ω = ωp to ω = 1 gives

χm

1
χm −λ∫
0

exp

(−2�λω

χm − λ

)
dω + χmexp

{
− �λ

(χm − λ)2

} 1∫
1

χm −λ

exp
(−�λω2) dω = 1.

(57)

Simplifying Eq. 57 gives

χm

(
χm − λ

2�λ

){
1 − exp

( −2�λ

(χm − λ)2

)}

+χm

( √
π

2
√

�λ

)
exp

{
− �λ

(χm − λ)2

}{
erf

(√
�λ

)
− erf

( √
�λ

χm − λ

)}
= 1. (58)
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Table 1 Summary of solution
domains

λ ≤ 2 λ > 2

�/ (λ − 1) ≤ 1/15 MBE 2 MBE 1

1/5 ≤ �/ (λ − 1) MBE 2 MBE 2

1/15 < �/ (λ − 1) < 1/5 MBE 2 Transition (weighted average
of MBE 1 and MBE 2)

Although Eq. 58 must be evaluated numerically to determine χm , finding the root of this
transcendental equation is a much simpler numerical problem than solving the second-order
nonlinear differential equation given by Eq. 38. In some cases, ωp can be greater than 1,
meaning that the upper domain solution is used for the entire domain. For these cases, (58)
becomes

χm

(
χm − λ

2�λ

){
1 − exp

( −2�λ

(χm − λ)

)}
= 1. (59)

The second matched boundary extrapolation solution, or MBE 2, is given by Eq. 47 for the
upper domain and (48) for the lower domain. The value of χ0 in (48) is given by (56) and
the value of χm in both (47) and (56) is given by (58) or (59), depending on the value of ωp .
The upper domain is used for values of ω from 0 to the match point, ωp , and for the lower
domain, from ωp to 1, where ωp is given by (55).

4.3 MBE 1 and MBE 2 Solution Domains and Transition

MBE 2 is found to be applicable for all cases with λ ≤ 2. For λ > 2, comparisons of the
MBE solutions with numerical solutions of Eq. 41 show that the applicability of MBE 1 and
MBE 2 transitions near �

λ−1 = 1
10 . For �

λ−1 ≤ 1
15 and λ > 2, MBE 1 is applicable. For

1
5 ≤ �

λ−1 and λ > 2, MBE 2 is applicable. For the transition zone 1
15 < �

λ−1 < 1
5 , a weighted

average solution, χ , is used to provide a smooth transition:

χ = λ − 1 − 5�

10�
χ1 + 15� − λ + 1

10�
χ2, (60)

where χ1 is the MBE 1 solution and χ2 is the MBE 2 solution. A transition between λ ≤ 2
and λ > 2 is not needed because the transition is smooth except for conditions in which

�
λ−1 ≤ 1

15 . At the transition point, λ = 2, occurs for small values of �, � ≤ 1
15 . For this

range of the parameters, differences between the MBE 1 and MBE 2 solutions are not large.
A summary of the solution domains is given in Table 1.

5 Comparison of Results

The results of the match boundary expansions are compared in this section with the numerical
solution of Eq. 42 as well as other approximate solutions documented by Nordbotten and
Celia (2006) and Dentz and Tartakovsky (2009a). The comparison is performed over a range
of mobility ratios, λ, from 0.1 to 100 and gravity numbers, �, also from 0.1 to 100. The
range of mobility ratios covers conditions in which the injected fluid is less mobile than the
resident fluid in the reservoir (λ < 1) to cases where the injected fluid is more mobile than
the resident fluid (λ > 1). Typically, CO2 injected into a brine reservoir falls in the latter
category for mobility ratios. The range of gravity numbers covers conditions where viscous
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Fig. 2 Comparison of solutions for λ = 0.1; �: a 0.1, b 1, c 10, d 100

forces are dominant relative to buoyancy forces � < 1 to cases where buoyancy forces are
dominant � > 1. Because � depends on the injection rate, aquifer permeability and aquifer
thickness, it is possible for CO2 injection to fall under different flow regimes with respect to
�. The suite of MBE solutions are used over the entire parameter space, but Nordbotten and
Celia (2006) and Dentz and Tartakovsky (2009a) solutions only apply over a portion of the
parameter space.

The numerical solution is obtained using Eq. 42. An initial value of χm is estimated and
then the solution may be computed using explicit stepping in ω. Then, the mass balance
condition, Eq. 40, is checked and χm is adjusted with the goal of bringing the mass balance
condition closer to 1 in the next iteration. The solution can become unstable if χm is too small,
generating an erratic profile of χ as a function of ω. In these cases, stability is restored by
taking the next estimate of χm closer to a previous value of χm that generated a stable profile.

The Nordbotten and Celia (2006) solution for � < 1 is given by Eq. 41. The Dentz and
Tartakovsky (2009a) solution applies for buoyancy-dominated cases (Dentz and Tartakovsky
2009b), which implies � > 1. The use of this solution is further restricted to cases with
λ > 1 as investigated by Dentz and Tartakovsky (2009a). Expressed in the notation of this
article, the Dentz and Tartakovsky (2009a) solution is

χ =
(

2�λ

λ − 1

){
exp

(
2�λ

λ − 1

)
− 1

}−1

exp

{
2�λ (1 − ω)

λ − 1

}
. (61)

Cases with λ = 0.1 are shown in Fig. 2. The mobility of CO2 is always less than that of brine,
such that λ = 0.1 is not expected for CO2-brine displacements. However, such conditions
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Fig. 3 Comparison of solutions for λ = 1; �: a 0.1, b 1, c 10, d, e 100

are expected for brine displacing CO2, as would occur if a water-alternating-gas injection
process were used (Juanes et al. 2006). The solutions are plotted using the dimensionless
variable (2χ)1/2 which is proportional to the radial distance from the well and 1−ω, which is
proportional to the vertical distance from the base of the reservoir. The Nordbotten and Celia
(2006) solution, which applies for the case with � = 0.1, results in a piston-like displacement
for λ ≤ 1. MBE 2 is applicable for this value of λ.

Cases with λ = 1 are shown in Fig. 3. As for λ = 0.1, the Nordbotten and Celia (2006)
solution, which applies for the case with � = 0.1, results in a piston-like displacement. MBE
2 is applicable for this value of λ. The case � = 100 is also shown in Fig. 3e on a logarithmic
scale because of the poor resolution for 1 − ω < 0.6 in Fig. 3d.
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Fig. 4 Comparison of solutions for λ = 10; �: a 0.1, b 1, c, e 10, d, f 100

Cases with λ = 10 are shown in Fig. 4. The solution proposed by Nordbotten and Celia
(2006) applies here for � = 0.1, and the solution proposed by Dentz and Tartakovsky (2009a)
is applicable to cases with � = 10 and � = 100. As expected, the Nordbotten and Celia
(2006) solution is found to be more accurate for smaller values of the gravity number; the
Dentz and Tartakovsky (2009a) solution becomes more accurate for higher gravity num-
ber conditions, consistent with the findings reported by Vilarrasa et al. (2010). The MBE
1 solution applies for the � = 0.1 case and is found to be nearly identical to the Nordbotten
and Celia (2006) solution. The � = 1 case falls into the transition zone between MBE 1 and
MBE 2 solutions where the weighted average solution is used. MBE 2 solutions apply for
� = 10 and 100, which are also shown against a logarithmic scale in Fig. 4e, f.
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Fig. 5 Comparison of solutions for λ = 100; �: a, e 0.1, b, f 1, c, g 10, d, h 100
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Cases with λ = 100 are shown in Fig. 5. As for λ = 10, the solution proposed by
Nordbotten and Celia (2006) applies here for � = 0.1 and the solution proposed by Dentz
and Tartakovsky (2009a) is applicable for cases with � = 10 and � = 100. The MBE 1 and
Nordbotten and Celia (2006) solutions are nearly identical for � = 0.1 when 1 − ω > 0.5.
For the case with � = 1, the MBE 1 solution applies because λ − 1 is larger than 15�. The
MBE average solution applies for � = 10, while the MBE 2 solution applies for � = 100.
Logarithmic plots are provided for all of these cases in Fig. 5e through h, respectively. It
should be noted that cases with small values of � and large values of λ lead to greater sensi-
tivity to the value of χ at ω = 0, which impacts the development of the numerical solution.
For the extreme case � = 0.1 and λ = 100 the solution required a value of χm that was
correct to more than 30 significant digits to obtain the converged numerical solution profile
shown in Fig. 5a, e.

In general, the MBE suite of solutions is found to be in close quantitative agreement with
the numerical solution over the entire parameter space.

6 Summary and Conclusions

A dimensional analysis of the governing equations has shown that for radial injection or
release of CO2 from a well into a saline reservoir, a CO2—brine displacement process
will always tend to a vertical equilibrium/gravity segregation condition after a sufficiently
long time. Vertical equilibrium tends to occur when the displacement distance is large rel-
ative to the aquifer thickness but is inhibited by a low vertical-to-horizontal permeabil-
ity ratio. However, because the displacement distance increases with time, vertical equilib-
rium will tend to be a better approximation with increasing time. Gravity segregation will
occur when buoyancy dominates viscous forces and capillary forces. As for vertical equilib-
rium, this approximation becomes better with increasing time, provided that capillary forces
are small relative to buoyancy forces. Capillary forces may be neglected relative to buoy-
ancy forces for sufficiently large values of the dimensionless Bond number. The strength
of capillary forces relative to buoyancy forces does not, however, diminish with increasing
time.

Approximate analytical/semi-analytical solutions were developed for radial displace-
ment of brine by CO2 entering a homogeneous, horizontal aquifer from a fully penetrating
well. The process was approximated using vertical equilibrium, complete gravity segre-
gation, and incompressibility. Solutions that represent CO2—brine interface behavior near
the upper and lower reservoir boundaries were extrapolated to an interior point where the
solutions were matched and constrained using overall CO2 mass balance to produce global
approximations. Two solutions were derived based on different boundary solutions for the
upper domain, which apply for different ranges of the gravity number and mobility ratio.
The combined set of solutions significantly extends the range and improves the accuracy
of existing analytical approximations for describing radial CO2—brine displacement pro-
cesses.
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