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Abstract The article deals with nonlinear thermal instability problem of double-diffusive
convection in a porous medium subjected to temperature/gravity modulation. Three types of
imposed time-periodic boundary temperature (ITBT) are considered. The effect of imposed
time-periodic gravity modulation (ITGM) is also studied in this problem. In the case of ITBT,
the temperature gradient between the walls of the fluid layer consists of a steady part and
a time-dependent periodic part. The temperature of both walls is modulated in this case. In
the problem involving ITGM, the gravity field has two parts: a constant part and an exter-
nally imposed time-periodic part. Using power series expansion in terms of the amplitude of
modulation, which is assumed to be small, the problem has been studied using the Ginzburg–
Landau amplitude equation. The individual effects of temperature and gravity modulation on
heat and mass transports have been investigated in terms of Nusselt number and Sherwood
number, respectively. Further the effects of various parameters on heat and mass transports
have been analyzed and depicted graphically.
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586 P. G. Siddheshwar et al.

List of Variables

Latin Symbols
A Amplitude of streamline perturbation
d Height of the fluid layer
Da Darcy number Da= K

d2

g Acceleration due to gravity
gm(τ ) Modulation in gravity gm(τ ) = ε2δ2Cos(ωτ)
kc Critical wavenumber
Le Lewis number, Le = κT

κS

Nu Nusselt number
p Reduced pressure
Pr Prandtl number, Pr = ν

κT

RaS Solutal Rayleigh number, RaS = βS g	Sd3

νκT

RaT Thermal Rayleigh number, RaT = βT g	T d3

νκT

R0c Critical Rayleigh number
S Solute concentration
	S Solute difference across the fluid layer
Sh Sherwood number
t Time
T Temperature
	T Temperature difference across the fluid layer,
x ,y,z Space Co-ordinates

Greek Symbols
βT Coefficient of thermal expansion
βS Coefficient of solute expansion
δ2 Horizontal wave number k2

c + π2

δ1 Amplitude of temperature modulation
δ2 Amplitude of gravity modulation
ε Perturbation parameter

γ Heat capacity ratio (ρcp)m
(ρcp) f

κT Effective thermal diffusivity in horizontal direction
κS Effective thermal diffusivity in vertical direction
μ Effective dynamic viscosity of the fluid

ν Effective kinematic viscosity,
(
μ
ρ0

)

φ Porosity
�∗ Dimensionless amplitude of solutal perturbation
� Solutal perturbation
ψ Stream function
� Dimensionless amplitude of stream function
ρ Fluid density
τ Slow time τ = ε2t
� Temperature perturbation
�∗ Dimensionless amplitude of temperature perturbation
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An analytical study of nonlinear double-diffusive convection 587

Other Symbol

∇2 ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

Subscripts
b Basic state
c Critical
0 Reference value

Superscripts
′ Perturbed quantity
∗ Dimensionless quantity
st Stationary

1 Introduction

Double-diffusive convection in porous media concerns instability in fluid-saturated porous
media with two diffusing components like temperature and salt contributing to the instabil-
ity in an opposing sense and with the components having unequal diffusivity coefficients.
This problem has wide ranging applications in solidification of binary mixtures, migration
of solutes in water-saturated soils, geophysical systems, electro-chemistry, and the migration
of moisture through air contained in fibrous insulation [Ingham and Pop (1998, 2005); Vafai
(2000, 2005); Nield and Bejan (2006) and Vadasz (2008)]. There are innumerable reported
studies on double-diffusive convection in porous media[Patil and Rudraiah (1980); Griffith
(1981); Chakrabarti and Gupta (1981); Rudraiah et al. (1982); Poulikakos (1986); Rudra-
iah and Malashetty (1986); Murray and Chen (1989); Rudraiah and Siddheshwar (1998);
Kuznetsov and Nield (2008, 2010, 2011); Nield and Kuznetsov (2011), and references
therein].

In most of the studies related to double-diffusive convection, steady temperature gradient
is considered. However, it is not so in many practical problems. There are many situations
of practical importance in which temperature gradient is a function of both space and time.
This temperature gradient can be determined by solving the energy equation with suitable
time-dependent thermal boundary conditions, and can be used as an effective mechanism to
control the convective flow.

The study of Venezian (1969) or the Floquet theory has been extensively followed in
the thermal convection problem in porous media when the boundary temperatures are time-
periodic; Caltagirone (1976); Chhuon and Caltagirone (1979); Antohe and Lage (1996);
Malashetty and Wadi (1999); Malashetty and Basavaraja (2002, 2003); Malashetty et al.
(2006); Malashetty and Swamy (2007); Bhadauria (2007a,b); Bhadauria and Sherani (2008,
2010) and Bhadauria and Suthar (2009). However, there are only few studies available
on the double-diffusive convection problem in porous media with temperature modulation
of the boundaries (Malashetty and Basavaraja (2004); Bhadauria (2007c,d) and Bhadau-
ria and Srivastava (2010)). It is apt to note here that temperature modulation may be
considered in the double-diffusive convection problem with the basic-state solutal concen-
tration being unaffected in a time-periodic way only when the cross-diffusion effects are not
included.
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588 P. G. Siddheshwar et al.

Another problem that leads to variable coefficients in the governing equations of the
thermal and the double-diffusive convection problems in porous media is the one involving
vertical time-periodic vibration of the system. This leads to the appearance of a modified
gravity, collinear with actual gravity, in the form of a time-periodic gravity field perturbation
and is known as gravity modulation or g-jitter in the literature [Malashetty and Padmavathi
(1997); Rees and Pop (2002, 2001, 2003); Govender (2005a,b); Kuznetsov (2005, 2006a,b);
Siddhavaram and Homsy (2006); Strong (2008a,b); Razi et al. (2009); Saravanan and Puru-
sothaman (2009); Saravanan and Arunkumar (2010); Saravanan and Sivakumar (2010, 2011))
and references therein].

The studies thus far reviewed concern linear stability of the thermal or double-diffusive
system in porous media in the absence/presence of temperature/gravity modulations, and
hence address only questions on onset of convection. If one were to consider heat and mass
transports in porous media in the presence of temperature/gravity modulations, then the lin-
ear stability analysis is inadequate and the nonlinear stability analysis becomes inevitable.
There are no reported studies on this aspect of the problem. In the light of the above, we
make a weakly nonlinear analysis of the problem using the Ginzburg–Landau equation and,
in the process, quantify the heat and mass transports in terms of the amplitude governed by
the Ginzburg–Landau equation.

2 Governing Equations

We consider a two-component Newtonian fluid-saturated horizontal porous layer confined
between two free-free boundaries at z = 0 and z = d . The layer is heated and salted
from below. The configuration is as given in Fig. 1a. The fluid saturating the porous layer is
considered to be Boussinesq, and thus the equations governing the flow are given by

∇.−→q = 0, (1)

T
2
(t)

Porous Media

S=S
0
+ΔST

1
(t)

S=S
0

x

y

z

(a) Physical configuration for the temperature modulation problem.

Newtonian liquid

g

z=0

z=d

Vertical vibration
Porous Media

S=S
0
+ΔST=T

0
+ΔT

S=S
0T=T

0

x

y

z

(b) Physical configuration for the gravity modulation problem.

Newtonian liquid

g+g'(t)

z=0

z=d

Fig. 1 a Physical configuration for the temperature modulation problem. b Physical configuration for the
gravity modulation problem
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An analytical study of nonlinear double-diffusive convection 589

1

φ

[
∂
−→q
∂t

+ 1

φ

(−→q .∇) −→q
]

= − 1

ρ0
∇ p + ρ

ρ0
gk̂ − ν

K
−→q + ν∇2−→q , (2)

γ
∂T

∂t
+ (

−→q .∇)T = κT ∇2T, (3)

φ
∂S

∂t
+ (

−→q .∇)S = κS∇2S, (4)

ρ = ρ0[1 − βT (T − T0)+ βS(S − S0)]. (5)

The constants and variables used in the above Eqs. 1–5 have their usual meanings and are
given in the list of variables.

3 Mathematical Formulation for the Temperature Modulation Problem

The externally imposed surface temperature conditions considered in the problem are

T1(t) = T0 + 	T

2

[
1 + ε2δ1Cosωt

]
at z = 0,

T2(t) = T0 − 	T

2

[
1 − ε2δ1Cos (ωt + φ)

]
at z = d. (6)

where δ1 represents the amplitude of modulation and ε is a quantity that indicates smallness
in order of magnitude of modulation. 	T is a small temperature that is modulated upon, ω
is the modulation frequency, and φ is the phase angle.
Since we are not considering cross-diffusion terms, the walls of the liquid layer are assumed
to be maintained at constant solute concentration as defined below

S = S0 +	S at z = 0,

= S0 at z = d. (7)

The basic state of liquid is quiescent and is given by

�qb = 0, p = pb(z, t), T = Tb(z, t), S = Sb(z), ρ = ρb(z, t), (8)

∂Tb

∂t
= κT

∂2Tb

∂z2 , (9)

d2Sb

dz2 = 0, (10)

∂pb

∂z
= −ρbg, (11)

ρb = ρ0 [1 − α (Tb − T0)+ β (Sb − S0)]. (12)

The solution of the Eqs. 9–10, subject to the thermal and solutal boundary conditions (6–7),
is given by

Tb (z, t) = TS (z)+ ε2δ1 Re {T3 (z, t)} , (13)

Sb = S0 +	S
(

1 − z

d

)
, (14)
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590 P. G. Siddheshwar et al.

where

TS (z) = T0 + 	T

2

(
1 − 2z

d

)
, (15)

T3 (z, t) =
[

a (λ) e
λz
d + a (−λ) e

−λz
d

]
e−iωt , (16)

λ2 = −iωd2/κT and a (λ) = 	T

2

eλφ − e−λ

eλ − e−λ . (17)

In the above equations, TS (z) is the steady temperature field, and T3 is the oscillating part of
Tb, while Re stands for the real part.
We assume finite amplitude perturbations on the basic state in the form:

�q = �qb + �q, T = Tb +�′, S = Sb +�′, p = pb + p′, ρ = ρb + ρ′. (18)

Substituting Eq. 18 into Eqs. 1–5, we get the following equations:

∇. �q ′ = 0, (19)

1

φ

⎡
⎣∂

−→
q

′

∂t
+ 1

φ

(−→
q

′
.�

) −→
q

′
⎤
⎦ = − 1

ρ0
�p

′ + (βT�
′ − βS�

′)gk̂ − ν

K

−→
q

′ + ν�2
−→
q

′
, (20)

γ
∂�′

∂t
+

( �q ′.∇
)
�′ + w′ ∂Tb

∂z
= κT ∇2�′, (21)

φ
∂�′

∂t
+

( �q ′.∇
)
�′ + w′ d Sb

dz
= κS∇2�′, (22)

ρ′ = −ρ0
[
βT�

′ − βS�
′]. (23)

We consider only two-dimensional disturbances in our study, and hence the stream function
ψ may be introduced in the form:

u′ = ∂ψ

∂z
, w′ = −∂ψ

∂x
. (24)

We eliminate the pressure term p′ from Eq. 20 and then non-dimensionlize the equations
following scales:

ψ = κT�
∗, (x, y, z) = d

(
x∗, y∗, z∗), � = 	T�∗, � = 	S�∗, t = d2

κT
.

The non-dimensional governing equations now have the form:
(

1

Pr

∂∇2

∂t
+ 1

Da
∇2 − ∇4

)
� + RaT

∂�

∂x
− RaS

∂�

∂x
= 1

Pr

∂(�,∇2�)

∂(x, z)
, (25)

(
∂

∂t
− ∇2

)
�− ∂�

∂x

∂Tb

∂z
= ∂ (�,�)

∂ (x, z)
, (26)

(
∂

∂t
− 1

Le
∇2

)
�+ ∂�

∂x
= ∂ (�,�)

∂ (x, z)
, (27)

where Pr = ν
κT
, RaT = βT g	T d3

νκT
, RaS = βS g	Sd3

νκT
, and Le = κT

κS
.

In the above equations asterisks are dropped for simplicity. The non-dimensional basic tem-
perature Tb(z, t) which appears in the Eq. (26) can be obtained from Eq. (14) as

Tb(z, t) = T0 + (1 − z)+ ε2δ1 F(z, t), (28)

123



An analytical study of nonlinear double-diffusive convection 591

where

F(z, t) = Re
[{

A(λ)eλz + A(−λ)e−λz} e−i�t
]
, (29)

A(λ) = 1

2

(
e−iφ − e−λ)
(
eλ − e−λ) ; λ = (1 − i)

√
�

2
.

To keep the time variation slow, we have rescaled the time t by using the time scale τ = ε2t .
Also the dimensionless form of the concentration gradient obtained from the Eq. 13 has

been used to obtain the Eq. 27. Now, to study the stationary double-diffusive convection, we
write the nonlinear Eqs. 25–27 in the matrix form as given below:

⎡
⎢⎣

ε2

Pr
∂
∂τ

∇2 + 1
Da ∇2 − ∇4 RaT

∂
∂x −RaS

∂
∂x(

1 − F ′δ1ε
2
)
∂
∂x ε2 ∂

∂τ
− ∇2 0

∂
∂x 0 ε2 ∂

∂τ
− 1

Le ∇2

⎤
⎥⎦

⎡
⎣
�

�

�

⎤
⎦ =

⎡
⎢⎢⎣

1
Pr

∂
(
�,∇2�

)
∂(x,z)

∂(�,�)
∂(x,z)
∂(�,�)
∂(x,z)

⎤
⎥⎥⎦. (30)

The boundary condition to solve Eqs. 25–27 are

� = 0 = ∇2�, � = � = 1 on z = 0,

� = 0 = ∇2�, � = � = 0 on z = 1. (31)

4 Weakly Nonlinear Stability Analysis and Heat Transport

We now introduce the following asymptotic expansion in Eq. 30:

RaT = R0c + ε2 R2 + ε4 R4 + . . . , (32)

� = ε�1 + ε2�2 + ε3�3 + . . . , (33)

� = ε�1 + ε2�2 + ε3�3 + . . . , (34)

� = ε�1 + ε2�2 + ε3�3 + . . . , (35)

where R0c is the critical value of the Rayleigh number at which the onset of convection takes
place in the absence of temperature modulation. Substitute Eqs. 32–35 in Eqs. 30–31, we get
the following system at the lowest order:

⎡
⎣

1
Da ∇2 − ∇4 R0

∂
∂x −RS

∂
∂x

∂
∂x −∇2 0
∂
∂x 0 − 1

Le ∇2

⎤
⎦

⎡
⎣
�1

�1

�1

⎤
⎦ =

⎡
⎣

0
0
0

⎤
⎦. (36)

The solution of the lowest order system subject to the boundary conditions (31) is

�1 = Asin (kcx) sin (π z),

�1 = − kc

δ2 Acos (kcx) sin (π z), (37)

�1 = −kc Le

δ2 Acos (kcx) sin (π z),
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592 P. G. Siddheshwar et al.

where δ2 = k2
c +π2. The critical value of the Rayleigh number and the corresponding wave

number for the onset of stationary convection are as given below:

R0c =
(
Da−1 + k2

c + π2
) (

k2
c + π2

)2 + LeRaSk2
c

k2
c

, (38)

kc =
⎡
⎣

√
− 1

4Da
− π2

4
+

√
1 + 10Daπ2 + 9Da2π4

4Da

⎤
⎦ . (39)

At the second order, we have

⎡
⎣

1
Da ∇2 − ∇4 R0

∂
∂x −RaS

∂
∂x

∂
∂x −∇2 0
∂
∂x 0 − 1

Le ∇2

⎤
⎦

⎡
⎣
�2

�2

�2

⎤
⎦ =

⎡
⎣

R21

R22

R23

⎤
⎦ , (40)

where

R21 = 0, (41)

R22 = ∂�1

∂x

∂�1

∂z
− ∂�1

∂z

∂�1

∂x
, (42)

R23 = ∂�1

∂x

∂�1

∂z
− ∂�1

∂z

∂�1

∂x
. (43)

The second-order solution, subject to the boundary condition (31), can be obtained as follows:

�2 = 0, (44a)

�2 = −k2
c A2

8πδ2 sin (2π z), (44b)

�2 = −k2
c Le2 A2

8πδ2 sin (2π z). (44c)

The horizontally averaged Nusselt number, Nu, and Sherwood number, Sh, for the stationary
double-diffusive convection(the mode considered in this problem) are given by

Nu (τ ) =

[
kc
2π

∫ 2π
kc

0 (1 − z +�2) dx

]

z=0[
kc
2π

∫ 2π
kc

0 (1 − z) dx

]

z=0

, (45)

Sh (τ ) =

[
kc
2π

∫ 2π
kc

0 (1 − z +�2) dx

]

z=0[
kc
2π

∫ 2π
kc

0 (1 − z) dx

]

z=0

. (46)
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One must note here that F(z, t) is effective at O(ε2) and affects Nu(τ ) and Sh(τ ) through
A(τ ) as shown later. Substituting Eqs. 44a and b in Eqs. 45 and 46 and simplifying, we get

Nu (τ ) = 1 + k2
c

4δ2 [A (τ )]2 , (47)

Sh (τ ) = 1 + k2
c Le2

4δ2 [A (τ )]2 . (48)

At the third order, we have

⎡
⎣

1
Da ∇2 − ∇4 R0

∂
∂x −RaS

∂
∂x

∂
∂x −∇2 0
∂
∂x 0 − 1

Le ∇2

⎤
⎦

⎡
⎣
�3

�3

�3

⎤
⎦ =

⎡
⎣

R31

R32

R33

⎤
⎦ , (49)

R31 = − 1

Pr

∂

∂τ
(∇2�1)− R

∂�1

∂x
, (50)

R32 = ∂�1

∂x

∂�2

∂z
+ δ2 F (z, t)

∂�1

∂x
− ∂�1

∂τ
, (51)

R33 = ∂�1

∂x

∂�2

∂z
− ∂�1

∂τ
. (52)

Substituting �1,�1,�1,�2, and �2 from Eqs. 38 and 44 into Eqs. (50–52), we get

R31 =
[
δ2

Pr

∂A (τ )

∂τ
− Rk2

c

δ2 A (τ )

]
sin (kcx) sin (π z), (53)

R32 = −k3
c A3 (τ )

4δ2 cos (kcx) sin (π z) cos (2π z)+ δ2 F (z, t) kc (x) A (τ ) cos (kcx) sin (π z)

+ kc

δ2

d A (τ )

dτ
cos (kcx) sin (π z) , (54)

R33 = −k3
c Le2 A3 (τ )

4δ2 cos (kcx) sin (π z) cos (2π z)+ kc Le

δ2

d A (τ )

dτ
cos (kcx) sin (π z).

(55)

Now applying the solvability condition for the existence of the third order solution, we get
the Ginzburg–Landau equation in the form:

[
δ2

Pr
+ R0k2

c

δ4 − RSk2
c Le2

δ4

]
d A (τ )

dτ
= k2

c

δ2 [R2 − 2R0δ2 I ] A (τ )− k4
c

8δ4

[
R0−RS Le3] A3 (τ ).

(56)

where I = ∫ 1
z=0 F (z, τ ) sin2 (π z) dz.

The solution of Eq. (56), subject to the initial condition A(0) = a0, where a0 is a chosen initial
amplitude of convection, can be obtained by using any Runge-Kutta method. In calculations
we may assume R2 = R0, to keep the parameters to the minimum.

We now move on to consider the effect of gravity modulation on double-diffusive con-
vection in the absence of temperature modulation.
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594 P. G. Siddheshwar et al.

5 Mathematical Formulation for the Gravity Modulation Problem

When the physical configuration of the double-diffusive convection problem in porous media
is vibrated time-periodically in the z-direction, then the effective gravity takes the form:

−→g (t) = g0
[
1 + ε2δ2cos (ωt)

]
k̂, (57)

where g0 is the mean gravity, δ2 is the small amplitude of gravity modulation, ω is the
frequency, and t is the time. The physical configuration is given in the Fig. 1b.

The governing equations for the problem are same as Eqs. 1–5 but with −→g given by Eq. 57.
Since the basic temperature in the present case is considered to be steady, it is given by

Tb = 1 − z, (58)

which satisfies the following equations:

d2Tb

dz2 = 0. (59)

Following the analysis as in the previous section, the non-dimensional form of the perturba-
tion equations, on using Eq. (57), take the form:
(

1

Pr

∂

∂t
∇2 + 1

Da
∇2 − ∇4

)
�+RaT (1+gm)

∂�

∂x
−RaS(1+gm)

∂�

∂x
= 1

Pr

∂(�,∇2�)

∂(x, z)
,

(60)(
∂

∂t
− ∇2

)
�+ ∂�

∂x
= ∂ (�,�)

∂ (x, z)
, (61)

(
∂

∂t
− 1

Le
∇2

)
�+ ∂�

∂x
= ∂ (�,�)

∂ (x, z)
, (62)

where gm = ε2δ2cos(ωt) and the parameters are as defined in the previous two sections.
We use the time variation only at slow time scale τ = ε2t , and thus gm(τ ) is taken to be

gm (τ ) = ε2δ2Cos (�τ), where � = ω

ε2 . (63)

Now following the analysis of the previous section, we get the Ginzburg–Landau equation
in the form
[
δ2

Pr
+R0

k2
c

δ4 − k2
c

δ4 Le2 RaS

]
d A

dτ
−

[
R0

(
R2

R0
+δ2cos(�τ)

)
k2

c

δ2 − k2
c

δ2 LeRaSδ2cos(�τ)

]
A

+ k2
c

8δ2 [R0 − RaS Le3]A3 = 0 (64)

The solution of Eq. 64 is obtained in the same way as in the previous section.

6 Results and Discussion

Before embarking on the discussion of the results, we make some comments on the following
aspects of the problem:

1. The need for nonlinear stability analysis,
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In PhaseModulation
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Fig. 2 In-phase modulation: Nu versus τ for different values of a Le, b Pr , c Ras , d Da and e δ1

2. The relation of the problem to a real application, and
3. The selection of all dimensionless parameters utilized in computations.

As mentioned in the last paragraph of the introduction, it is imperative that a nonlinear
study is made if one wants to quantify heat and mass transports which the linear stability
theory is unable to do so.

External regulation of convection is important in the study of double-diffusive convection
in porous media. The objective of this article is to consider two such candidates, namely
temperature/gravity modulations for either enhancing or inhibiting convective heat transport
as is required by a real application.

The parameters that arise in the problem are Pr, Le, RaS, Da, φ, δ1, and δ2, and these
influence the convective heat and mass transports. The first four parameters relate to the fluid
and the structure of the porous medium, and the last three concern the two external mech-
anisms of controlling convection. The medium has high porosity, and hence the Brinkman
Lapwood model is considered for the conservation of the linear momentum. Further, owing
to high porosity the two viscosities with the Darcy and Brinkman terms are taken to be the
same. The values thus considered for Pr and Le are the same as that usually considered for
a clear two component fluid. Positive values of RaS are considered, and in such a case, one
gets positive values of RaT , and these signify the assumption of a situation in which we have
cool fresh water overlying warm salty water. In the absence of cross-diffusion, this situation
is conducive for the appearance of salt-fingers, which arises in a stationary regime of onset
of convection. Owing to the assumption of high porosity medium, the values considered for
Da are 0.01 and 0.1. Because the small amplitude modulations are considered, the values of
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(a) (b)

(d)(c)

(e)

Fig. 3 Out-phase modulation (OPM): Nu versus τ for different values of a Le, b Pr , c Ras , d Da and e δ1

δ1 and δ2 lie between 0 and 0.5. Further, the modulation of the boundary temperature and the
vertical time-periodic fluctuation of gravity are assumed to be of low frequency. At low range
of frequencies, the effect of frequencies on onset of convection as well as on heat transport is
minimal. This assumption is required to ensure that the system does not pick up oscillatory
convective mode at onset due to modulation in a situation that is conductive otherwise to
stationary mode. It is important at this stage to consider the effect of Le, RaS, Da, and δ1 on
the onset of convection. This has been reported by many investigators earlier who found that

1. [RaT c]Le=0 < [RaT c]Le �=0,
2. [RaT c]RaS=0 < [RaT c]RaS �=0,
3. [RaT c]Da=∞ < [RaT c]Da<<1, and
4. [RaT c]δi =0.02 > [RaT c]δi =0.05 > [RaT c]δi =0.08, (i = 1, 2),

for both temperature and gravity modulations.

123



An analytical study of nonlinear double-diffusive convection 597

(a) (b)

(c) (d)

(e)

Fig. 4 Only lower plate temperature modulated: Nu versus τ for different values of a Le, b Pr , c Ras , d Da
and e δ1

For the considered convective mode, Pr has no say on the onset of convection, and Le
has to be greater than unity for stationary onset. The above observations serve as a guideline
for the computations carried out in this article.

We have considered two types of modulation, as follows:

1. Temperature modulation and
2. Gravity modulation

We consider individual effects of these on double-diffusive convection in a porous medium
that arises when heat and salt make opposing contributions and for κT �= κS . Direct mode
is preferred in unmodulated case when κS

κT
< 1, and Hopf mode other wise. We concentrate

on the modulated problem for only the direct mode. The focus in this article is essentially
on the effect of modulation on heat and mass transports. In both the modulated problems
considered, the Ginzburg–Landau equation is non-autonomous. We first discuss the results
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(a) (b)

(d)(c)

Fig. 5 In-phase modulation: Sh versus τ for different values of a Le, b Pr , c Ras , d Da and e δ1

on temperature modulation and then that on gravity modulation.
We consider the following three types of temperature modulation:

1. In-phase modulation (IPM) (φ = 0),
2. Out-of-phase modulation (OPM) (φ = π), and
3. Modulation of only the lower boundary (MOLB) (φ = −i∞).

The effect of each type of modulation on heat and mass transports is shown in Figs. 2,3,4, 5,6,
and 7. Figure 2a–d concerning IPM shows that Nu increases with individual and collective
increases in Lewis number Le, Prandtl number Pr , solutal Rayleigh number RaS , and Darcy
number Da. The Nu versus τ curves start with Nu = 1, signifying the initial conduction
state. As time progresses, the value of Nu increases, thus showing that convective regime is
in place and then finally the curves of Nu level off at long times. This result is seen since the
amplitude of temperature modulation is quite small. The above patterns in the variation of
Pr, Le, and RaS are also seen in the case of OPM (see Fig. 3a–e and MOLB (see Fig. 4a–e
while the patterns of Nu with the variation of Da is opposite(see Fig. 3d and 4d. In the OPM
and MOLB cases, however, the Nu versus τ curves are oscillatory. From these figures, we
find the following general result:

NuI P M < NuM O L P < NuO P M

Figure 3e shows the effect of amplitude of temperature modulation on Nu in the case of
OPM. It is obvious from the figure that

Nu/δ1=0.02 < Nu/δ1=0.05 < Nu/δ1=0.08.
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(a) (b)

(d)(c)

(e)

Fig. 6 Out of phase modulation: Sh versus τ for different values of a Le, b Pr , c Ras , d Da and e δ1

Further from Fig. 4e, we find a similar effect in the case of MOLP also. The various param-
eters’ influence on Nusselt number seem fine when seen together with the results on their
influence on RaT c discussed earlier.

Figures 5a–d,6a–e, and 7a–e depict the fact that Sherwood number variations with
Pr, Le, RaS , and Darcy number Da are similar to what was seen with Nu in Figs. 2a–d,
3a–e, and 4a–e. The results on Sh in Figs. 6e and 7e result in some general results on Sh,
similar to those on Nu. They are

ShI P M < ShM O L P < ShO P M ,

Sh/δ1 = 0.02 < Sh/δ1 = 0.005 < Sh/δ1 = 0.08.

When seen in conjunction with the results on RaT c, the above observation reiterates such a
finding.
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(a) (b)

(c) (d)

(e)

Fig. 7 Only lower plate temperature modulated: Sh versus τ for different values of a Le, b Pr , c Ras , d Da
and e δ1

Now we discuss the results corresponding to gravity modulation. Figs.8a–e and 9a–e
reveal that the variations of Nu and Sh with Pr, Le, RaS , and Da are similar to that of
temperature modulation. Further, we find that the effect of Pr on Nu and Sh is only felt at
short times. The effect of amplitude of gravity modulation δ2 on Nu and Sh is similar to that
of temperature modulation.

7 Conclusions

The effects of temperature and gravity modulations on weak nonlinear double-diffusive con-
vection in a viscous liquid-saturated porous medium are studied using Ginzburg–Landau
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(a) (b)

(d)(c)

(e)

Fig. 8 Gravity modulation: Nu versus τ for different values of a Le, b Pr , c Ras , d Da and e δ2

equation. Onset criteria for double-diffusive convection in both the cases are derived analyt-
ically. The following conclusions are drawn:

1. Effects of increasing δ1, δ2, RaS, Le, Pr and Da are found to increase Nu and Sh, thus
increasing heat and mass transfers in all the three cases.

2. Effect of increasing Da is to decrease the value of Nu for IPM while Nu increases on
increasing Da in the other two cases of temperature modulation.

3. In the case of IPM, the values of Nu and Sh increase steadily for intermediate value of
time t ; however, they become constant when t is large.

4. In the cases of OPM and MOLP, the nature of Nu and Sh remain oscillatory.
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(a) (b)

(d)(c)

(d)

Fig. 9 Gravity modulation: Sh versus τ for different values of a Le, b Pr , c Ras , d Da and e δ2

5. The values of Nu and Sh for MOLP are greater than those in IPM but smaller than those
in OPM. Thus, OPM can be used for enhanced heat transport and IPM for inhibiting
heat transport.

6. The effect of gravity modulation is similar to that of temperature modulation found in
OPM and MOLP cases.
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