
Transp Porous Med (2012) 91:261–279
DOI 10.1007/s11242-011-9843-5

Radiation Effects on Mixed Convection over a Wedge
Embedded in a Porous Medium Filled with a Nanofluid

Ali J. Chamkha · S. Abbasbandy · A. M. Rashad ·
K. Vajravelu

Received: 29 April 2011 / Accepted: 25 August 2011 / Published online: 16 September 2011
© Springer Science+Business Media B.V. 2011

Abstract The problem of steady, laminar, mixed convection boundary-layer flow over an
isothermal vertical wedge embedded in a porous medium saturated with a nanofluid is stud-
ied, in the presence of thermal radiation. The model used for the nanofluid incorporates the
effects of Brownian motion and thermophoresis with Rosseland diffusion approximation. The
wedge surface is maintained at a constant temperature and a constant nanoparticle volume
fraction. The resulting governing equations are non-dimensionalized and transformed into
a non-similar form and then solved by Keller box method. A comparison is made with the
available results in the literature, and our results are in very good agreement with the known
results. A parametric study of the physical parameters is made, and a representative set of
numerical results for the velocity, temperature, and volume fraction, the local Nusselt and
Sherwood numbers are presented graphically. The salient features of the results are analyzed
and discussed.
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1 Introduction

Fluid flow and heat transfer in porous media received considerable interest during the last
several decades. This is primarily because of the numerous applications of flow through
porous medium, such as storage of radioactive nuclear waste, transpiration cooling, separa-
tion processes in chemical industries, filtration, transport processes in aquifers, groundwater
pollution, geothermal extraction and fiber insulation. Theories and experiments of thermal
convection in porous media and state-of-the-art reviews with special emphasis on practical
applications are presented in the recent books by Nield and Bejan (2006), Pop and Ingham
(2001), Ingham and Pop (2002), Bejan et al. (2004) and Vafai (2005).

Nanofluid is envisioned to describe a fluid, in which nanometer-sized particles are sus-
pended, in convectional heat transfer of basic fluids. Convectional heat transfer fluids, includ-
ing oil, water and ethylene glycol mixture, are poor heat transfer fluids, since the thermal
conductivity of these fluids plays important role on the heat transfer coefficient between the
heat transfer medium and the heat transfer surface. Therefore, numerous methods are pro-
posed to improve the thermal conductivity of these fluids by suspending nano/micro-sized
particle materials in liquids. Recently, several numerical studies on the modeling of natural
convection heat transfer in nanofluids are published. The term nanofluid refers to these kinds
of fluids by suspending nanoscale particles in the base fluid, and the idea is introduced by
Choi (1995). Duangthongsuk and Wongwises (2008) studied the influence of thermophysical
properties of nanofluids on the convective heat transfer and summarized various models used
in the literature for predicting the thermophysical properties of nanofluids. The problem of
the thermal instability in a porous medium layer saturated by a nanofluid was investigated
by Nield and Kuznetsov (2009). Abu-Nada and Oztop (2009) studied the effects of incli-
nation angle on natural convection in enclosures filled with Cu-water nanofluid. Nield and
Kuznetsov (2009) suggested natural convective boundary-layer flow of a nanofluid past a
vertical plate. Chamkha et al. (2011) studied the mixed convection MHD flow of a nanofluid
past a stretching permeable surface in the presence of Brownian motion and thermophore-
sis effects. Also, Chamkha et al. (2011) analyzed the natural convection flow past a sphere
embedded in a porous medium saturated by a nanofluid. Gorla et al. (2011a,b) studied the
steady boundary-layer flow of a nanofluid on a stretching circular cylinder in a stagnant free
stream. Furthermore, Gorla et al. (2011a,b) analyzed the problems of mixed convection past
a vertical wedge embedded in a porous medium saturated by a nanofluid and the heat transfer
in the boundary layer on a stretching circular cylinder in a nanofluid, respectively.

However, the thermal radiation effect on mixed convection heat transfer in porous media
is very important in high-temperature processes and space technology and has many impor-
tant applications such as space technology, and processes involving high temperatures such
as geothermal engineering, the sensible heat storage bed, the nuclear reactor cooling system
and underground nuclear wastes disposal. Yih (1999, 2001) studied radiation effect on mixed
convection over an isothermal wedge/cone in porous media. Bakier (2001) presented an anal-
ysis of the thermal radiation effect on stationary mixed convection from vertical surfaces in
saturated porous media. Kumari and Nath (2004) studied the radiation effect on the non-
Darcy mixed convection flow over a non-isothermal horizontal surface in a porous medium.
Chamkha and Ben-Nakhi (2008) studied the mixed convection–radiation interaction along
a permeable surface immersed in a porous medium. The problem of hydromagnetic heat
transfer by mixed convection from melting of a vertical plate in a liquid-saturated porous
medium, taking into account the effects of thermal radiation, was investigated by Bakier
et al. (2009). Also, the study of convection heat transfer from a cone/wedge is of special
interest and has wide range of practical applications. Mainly, these types of heat transfer
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problems deal with the design of spacecrafts, nuclear reactors, solar power collectors, power
transformers, steam generators and others. Many investigations (Pop et al. 2003; Takhar
et al. 2004; Alam et al. 2007; Vajravelu and Nayfeh 1992) have developed similarity and
non-similarity solutions for natural convection flows over a vertical cone/wedge in steady
state.

Motivated by these studies, the problem of steady, laminar, mixed convection boundary-
layer flow over an isothermal vertical wedge embedded in a porous medium saturated with a
nanofluid, in the presence of thermal radiation, is studied. The model used for the nanofluid
incorporates the effects of Brownian motion and thermophoresis with Rosseland diffusion
approximation. The resulting governing equations are non-dimensionalized and transformed
into a non-similar form and then solved by Keller box method. A comparison is made with
the available results in the literature, and the salient features of the new results are analyzed
and discussed.

2 Problem Formulation

Consider the problem of the radiation effect on mixed convection boundary-layer flow of
optically dense viscous incompressible nanofluid over an isothermal wedge embedded in
a saturated porous medium. The model used for the nanofluid incorporates the effects of
Brownian motion and thermophoresis. The uniform wall temperature of the wedge Tw and
uniform nanoparticle volume fraction Cw are higher than the ambient temperature T∞ and
ambient nanoparticle volume fraction C∞, respectively. The flow over the wedge is assumed
to be two-dimensional, laminar, steady and incompressible (see Fig. 1 for the flow model and
the physical coordinate system). The porous medium is assumed to be uniform and isotropic
and is in local thermal equilibrium with the fluid. All fluid properties are assumed to be
constant. Under the Boussinesq and the Rosseland diffusion approximations, the governing
equations based on the Darcy law proposed by Hsieh et al. (1993) and Yih (2001) can be
written as

∂u

∂x
+ ∂v

∂y
= 0, (1)

∂u

∂y
= (1 − C∞) ρ f ∞βgK

μ

∂T

∂y
−

(
ρp − ρ f ∞

)
gK

μ

∂C

∂y
, (2)

Fig. 1 Flow model and
coordinate system
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u
∂T

∂x
+ v

∂T

∂y
= αe

∂2T

∂y2 + τ

[

DB
∂C

∂y

∂T

∂y
+

(
DT

T∞

) (
∂T

∂y

)2
]

+ 16σ

3(ar + σs)(cpρ) f
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u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2 +
(

DT

T∞

)
∂2T

∂y2 , (4)

where x and y denote the vertical and horizontal directions, respectively. u, v, T and C are the
x and y components of velocity, temperature and nanoparticle volume fraction, respectively.
K , β, DB and DT are the permeability of the porous medium, volumetric expansion coeffi-
cient of fluid, the Brownian diffusion coefficient and thermophoretic diffusion coefficient,
respectively.μ, ρ f and ρp are the fluid viscosity, fluid density and the nanoparticle mass den-
sity, respectively. g, σ, σs and ar are the acceleration due to gravity, the Stefan–Boltzmann
constant, scattering coefficient and the Rosseland mean extinction coefficient, respectively.
αe = k/(ρc) f and τ = (ρc)p/(ρc) f are the thermal diffusivity of porous medium and
the ratio of heat capacities, respectively. k, (ρc) f and (ρc)p are thermal conductivity, heat
capacity of the fluid and the effective heat capacity of nanoparticle material, respectively.
The last term on the right side of the energy Eq. 3 is the thermal radiation heat flux and is
approximated using the Roseland diffusion equation.

The appropriate boundary conditions suggested by the physics of the problem are

y = 0 : v(x, 0) = 0, T = Tw, C = Cw, (5a)

y → ∞ : u = U∞, T = T∞, C = C∞, (5b)

where Tw and Cw are the wall temperature and wall nanoparticle volume fraction, respec-
tively. U∞, T∞ and C∞ are the free stream velocity, temperature and nanoparticle volume
fraction, respectively. It is convenient to transform the governing equations into a non-similar
dimensionless form that can be studied as an initial-value problem. This can be done by intro-
ducing the stream function: u = ∂ψ/∂y, v = −∂ψ/∂x and using

η = y

x

(
Pe1/2

x

)
χ−1, χ =

(

1 +
(

Rax

Pex

)1/2
)−1

ψ = αe

(
Pe1/2

x

)
χ−1 f (χ, η), θ = T − T∞

Tw − T∞
,

φ = C − C∞
Cw − C∞

, λ = ϕ

π − ϕ
, U∞ = Bxλ, Pex = U∞x/αe,

Rax = {
(1 − C∞) ρ f ∞g βT K (Tw − T∞) x/μαe

}
, (6)

where Pex and Rax are the local Peclet and modified Rayleigh numbers, respectively. The
parameters a, ϕ and λ are the free stream velocity constant, half-wedge angle and the free
stream velocity exponent, respectively. Using the expressions in (6), we can write Eqs. 1–5 as

f ′′ = (1 − χ)2
(
θ ′ − N rφ′) , (7)
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θ ′′ + 1

2
(1 + λχ) f θ ′ + Nbφ′θ ′ + N tθ ′2 + 4Rd

3

{
θ ′ [(H − 1) θ + 1]3}′

= λ

2
χ(1 − χ)

(
f ′ ∂θ
∂χ

− θ ′ ∂ f

∂χ

)
, (8)

φ′′ + Le

2
(1 + λχ) f φ′ + N t

Nb
θ ′′ = Le

2
λχ(1 − χ)

(
f ′ ∂φ
∂χ

− φ′ ∂ f

∂χ

)
, (9)

(1 + λχ) f (χ, 0)− λχ(1 − χ)
∂ f

∂χ
(χ, 0) = 0, θ(χ, 0) = 1, φ(χ, 0) = 1, (10a)

f ′(χ,∞) = χ2, θ(χ,∞) = 0, φ(χ,∞) = 0, (10b)

where Le = αe
DB
, N r = (ρp−ρ f ∞)(Cw−C∞)

(1−C∞)ρ f ∞β(Tw−T∞) , Nb = ε(ρc)p DB(Cw−C∞)
(ρc) f αe

,

N t = ε(ρc)p DT (Tw − T∞)
(ρc) f αeT∞

, Rd = 4σT 3∞/ [k (ar + σs)] , H = Tw/T∞, (11)

are the Lewis number, buoyancy ratio, Brownian motion parameter, thermophoresis parame-
ter, mixed convection parameter, conduction–radiation parameter and the surface temperature
excess ratio, respectively. It should be noted that χ = 0 (Pex = 0) corresponds to pure free
convection while χ = 1(Rax = 0) corresponds to pure forced convection. The entire regime
of mixed convection corresponds to the values of χ between 0 and 1.

Of special significance for this problem are the local Nusselt and Sherwood numbers.
These physical quantities can be defined as

Nux

Ra1/2
x + Pe1/2

x

= −θ ′(χ, 0)

(
1 + 4Rd H3

3

)
, (12)

Shx

Ra1/2
x + Pe1/2

x

= −ϕ′(χ, 0). (13)

Table 1 Comparison of values of −θ ′(ξ, 0) for various values of λ and χ in the absence of nanoparticles
volume fraction, Brownian motion and thermophoresis effects (N r = Nb = N t = 0)

Hsieh et al. (1993) Yih (2001) Present results

χ λ = 0 λ = 0 λ = 1/3 λ = 1 λ = 0 λ = 1/3 λ = 1

1.0 0.5642 0.5642 0.6515 0.7979 0.5642 0.6516 0.7979

0.9 0.5098 0.5097 0.5878 0.7181 0.5098 0.5879 0.7181

0.8 0.4603 0.4602 0.5278 0.6385 0.4602 0.5280 0.6385

0.7 0.4174 0.4173 0.4731 0.5599 0.4173 0.4732 0.5599

0.6 0.3832 0.3832 0.4261 0.4854 0.3832 0.4261 0.4854

0.5 0.3603 0.3603 0.3900 0.4227 0.3603 0.3901 0.4227

0.4 0.3506 0.3505 0.3686 0.3823 0.3506 0.3687 0.3823

0.3 0.3550 0.3550 0.3643 0.3697 0.3550 0.3643 0.3697

0.2 0.3732 0.3732 0.3769 0.3786 0.3732 0.3769 0.3786

0.1 0.4035 0.4035 0.4044 0.4049 0.4035 0.4043 0.4049

0.0 0.4438 0.4437 0.4437 0.4437 0.4437 0.4437 0.4437
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Fig. 2 a Effect of λ on the velocity profiles. b Effect of λ on the temperature profiles. c Effect of λ on the
volume fraction profiles

3 Numerical Method and Validation

The governing Eqs. 7, 8 and 9 with the boundary conditions (10) are non-linear partial differ-
ential equations. Hence, the system of Eqs. 7–9 is solved numerically using an implicit finite
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Fig. 3 a Effect of λ on the local Nusselt number. b Effect of λ on the local Sherwood number

difference scheme known as the Keller box method as described by Cebeci and Bradshaw
(1984). The computations were carried out with �χ = 0.01 and �η = 0.01 (uniform
grids). The value of η∞ = 50 is found to be sufficiently enough to obtain the accuracy of
|θ ′(0)| < 10−5.

In order to validate the numerical results, comparisons with the previously published
results of Hsieh et al. (1993) and Yih (2001) for the case of Newtonian fluid are made when
Rd = N r = Nb = N t = 0. These comparisons are presented in Table 1. It is easy to see
from the table that an excellent agreement exists between the results.

4 Results and Discussion

In this section, representative numerical results are displayed with the help of graphi-
cal illustrations. Computations were carried out for various values of physical param-
eters such as the wedge angle parameter λ, buoyancy ratio N r, the Brownian motion
parameter Nb, thermophoresis parameter N t, surface temperature parameter H , radiation–
conduction parameter Rd, the Lewis number Le and the mixed convection parameter
χ .
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Fig. 4 a Effect of H on the velocity profiles. b Effect of H on the temperature profiles. c Effect of H on the
volume fraction profiles

Figure 2a–c show representatively the velocity f ′, the temperature θ and the nanoparticles
volume fraction φ profiles for different values of the wedge angle parameter λ. It is clear
that the fluid velocity, the temperature and the volume fraction decrease while the negative
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Fig. 5 a Effect of H on the local Nusselt number. b Effect of H on the local Sherwood number

values of their wall slopes increase as λ increases. This has the enhancing effect on both heat
and mass transfer.

In Fig. 3a–c, we present, respectively, the effects of the wedge angle parameter λ on
the local Nusselt number − (

1 + (4Rd H3/3)
)
θ ′(χ, 0) and on the local Sherwood number

−φ′(χ, 0) in the entire range of the mixed convection parameter (0 ≤ χ ≤ 1). From
these figures, we see that an increase in the wedge angle parameter λ causes enhance-
ments in both the heat and mass transfer, and as a result in the local Nusselt and Sherwood
numbers. This phenomenon is true for the entire range of 0 < χ < 1. However, it is
noticed that the effect of λ on the local Nusselt and the Sherwood numbers is almost
negligible.

Figure 4a–c shows the effect of the surface temperature parameter H on the velocity f ′,
temperature θ and the nanoparticles volume fraction φ. It is observed that the temperature
field increases with an increase in the surface temperature parameter H . This is due to the
fact that as the value of H increases, radiation absorption in the boundary layer increases,
causing the temperature to increase. In addition, as H increases, both the fluid velocity and
the nanoparticles volume fraction increase.

Figure 5a, b illustrates the effect of the surface temperature parameter H on the values
of the local Nusselt and the Sherwood numbers in the entire range of the mixed convection
parameter 0 ≤ χ ≤ 1, respectively. It can be observed from these figures that the values of
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Fig. 6 a Effect of N r on the velocity profiles. b Effect of N r on the temperature profiles. c Effect of N r on
the volume fraction profiles

both the local Nusselt and the Sherwood numbers increase as the value of H increases: This
is true in the entire range 0 < χ < 1. However, the effect of H is almost negligible on the
local Sherwood number, but more pronounced with the local Nusselt number.
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Fig. 7 a Effect of N r on the local Nusselt number. b Effect of N r on the local Sherwood number

Figure 6a–c shows the effects of the buoyancy ratio parameter N r on the velocity f ′,
the temperature θ and the nanoparticles volume fraction φ, respectively. It is found that an
increase in N r decreases the fluid velocity in the immediate vicinity of the wedge surface.
This behavior in the velocity is accompanied by a slight increase in the fluid temperature and
in the nanoparticles volume fraction as N r increases.

Moreover, Fig. 7a, b illustrates the changes in the local Nusselt number and the local
Sherwood number, for the entire range of the mixed convection parameter 0 ≤ χ ≤ 1 for
various values of N r. It is observed that an increase in the buoyancy ratio enhances both the
local Nusselt and the Sherwood numbers. However, for χ = 1 (forced convection limit),
the flow is uncoupled from the thermal and volume fraction buoyancy effects, and hence,
there is no change in the local Nusselt and the Sherwood numbers for all values of N r. From
the definition of χ , it is seen that an increase in the value of the parameter Rax/Pex causes
the mixed convection parameter χ to decrease. Thus, small values of Rax/Pex correspond
to values of χ close to unity, which indicate almost pure forced convection regime. On the
other hand, high values of Rax/Pex correspond to values of χ close to zero, indicating
almost pure free convection regime. Furthermore, moderate values of Rax/Pex represent
values of χ between 0 and 1, which correspond to the mixed convection regime. For the
forced convection limit (χ = 1), it is clear from Eq. 7 that the velocity in the boundary
layer is uniform. However, for smaller values of χ (higher values of Rax/Pex ) at a fixed
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Fig. 8 a Effect of Nb on the velocity profiles. b Effect of Nb on the temperature profiles. c Effect of Nb on
the volume fraction profiles

value of N r, the buoyancy effects increase. As this occurs, the fluid velocity close to the wall
increases for χ < 0.5 due to the buoyancy effect and becomes maximum for χ = 0 (free
convection limit). This decrease and increase in the fluid velocity f ′ as χ decreases from
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Fig. 9 a Effect of Nb on the local Nusselt number. b Effect of Nb on the local Sherwood number

unity to zero is accompanied by a respective increase and a decrease in the fluid temperature
and concentration. As a result, the local Nusselt and the Sherwood numbers will be affected.

Figure 8a–c presents the effects of an increase in the Brownian motion parameter Nb
on the velocity, the temperature and the nanoparticles volume fraction profiles, respectively.
It can be seen that as the Brownian motion parameter Nb increases, both the velocity and
the temperature increase, especially in the region close to the wedge surface. However, we
observe a slight increase in the nanoparticles volume fraction.

In Fig. 9a, b, we present, respectively, the values of the local Nusselt number
− (

1 + (4Rd H3/3)
)
θ ′(χ, 0) and local Sherwood number −φ′(χ, 0) for different values

of the Brownian motion parameter Nb in the entire range of the mixed convection parameter
0 ≤ χ ≤ 1. As observed before, an increase in the Brownian motion parameter Nb is to
increase the fluid temperature and the nanoparticles volume fraction. As a result, we see an
enhancement in the local Nusselt number or local Sherwood number.

Figure 10a, b displays the typical velocity, the temperature and the nanoparticles volume
fraction profiles for various values of the thermophoresis parameter N t, respectively. An
increase in the thermophoresis parameter N t has the tendency to increase slightly the fluid
velocity, the temperature and the nanoparticles volume fraction. Figure 11a–b depicts the
influence of the thermophoresis parameter N t on Nu and Sh, respectively. An increase in
the thermophoresis parameter N t results in an increase in the temperature and the volume
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Fig. 10 a Effect of N t on the velocity profiles. b Effect of N t on the temperature profiles. c Effect of N t on
the volume fraction profiles

fraction: This causes the value of − (
1 + (4Rd H3/3)

)
θ ′(χ, 0) to increase and −ϕ′(χ, 0) to

decrease.
Figure 12a–c shows the velocity, the temperature and the nanoparticles volume fraction

profiles for different values of the Lewis number Le, respectively. It is clearly observed that
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Fig. 11 a Effect of N t on the local Nusselt number. b Effect of N t on the local Sherwood number

the fluid velocity and the temperature increase while the nanoparticles volume fraction and
its boundary-layer thickness decrease considerably as the Lewis number Le increases. This
results in the enhancement of heat and mass transfer.

Figure 13a, b illustrates the effects of the Lewis number Le on the local Nusselt num-
ber and the local Sherwood number for the entire range of the mixed convection parameter
0 ≤ χ ≤ 1, respectively. An increase in the Lewis number Le causes the nanoparticles
volume fraction to increase. As a consequence, a reduction in the local Nusselt number and
an enhancement in the local Sherwood number are observed.

Figure 14a, b shows, respectively, the effect of the radiation–conduction parameter Rd

on the local Nusselt number for the Newtonian fluid and the nanofluids, in the entire range
of the mixed convection parameter 0 ≤ χ ≤ 1. It is found that the local Nusselt number
and the Sherwood number increase with increasing Rd, for χ = 0 (pure-convection heat
transfer). Since the local Nusselt number is proportional to the wall temperature gradient
− (

1 + (4Rd H3/3)
)
θ ′(χ, 0), the local Nusselt number is found to be more sensitive to H

and Rd than −ϕ′(χ, 0), as revealed in Eqs. 12 and 13. Moreover, for χ = 1 (forced con-
vection limit), the flow is uncoupled from the thermal and volume fraction buoyancy effects,
and hence, the local Sherwood number does not depend on Rd.
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Fig. 12 a Effect of Le on the velocity profiles. b Effect of Le on the temperature profiles. c Effect of Le on
the volume fraction profiles

5 Conclusion

Non-similar solution of steady mixed convection flow of a nanofluid adjacent to an isother-
mal wedge embedded in a saturated porous medium in the presence of thermal radiation
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Fig. 13 a Effect of Le on the local Nusselt number. b Effect of Le on the local Sherwood number

with Rosseland diffusion approximation is investigated. The model used for the nanofluid
incorporates the effects of Brownian motion and thermophoresis. The entire regime of mixed
convection is included, as the combined convection parameter varies from 0 (pure free con-
vection) to 1 (pure forced convection). The transformed non-linear system of equations
is solved by the Keller box method. A comparison between the present (for some spe-
cial cases) and the previously published results is found to be in very good agreement.
The numerical results are presented for the local Nusselt and the Sherwood numbers with
several sets of values of the buoyancy ratio, the Brownian motion parameter, the thermo-
phoresis parameter, the wedge angle parameter, the radiation–conduction parameter, the
surface temperature parameter and the Lewis number. It was found that the local Nus-
selt number increases when any of the buoyancy ratio, the Brownian motion, the thermo-
phoresis, the radiation–conduction and the surface temperature parameters, and the Lewis
number increases. In addition, the local Sherwood number was increased as the buoyancy
ratio, Brownian motion parameter, Lewis number, wedge angle parameter, radiation–con-
duction parameter or the surface temperature parameter increases. But quite the opposite
is seen as the thermophoresis parameter increases. Furthermore, both the local Nusselt
and the Sherwood numbers decrease initially, reaching to a minimum for the intermedi-
ate value of the mixed convection parameter, and then increase gradually. Moreover, it
is observed that the effects of the Lewis number and the thermophoresis parameters are
stronger on the local Sherwood number than that on the local Nusselt number. However,
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Fig. 14 a Effect of Rd on the local Nusselt number. b Effect of Rd on the local Sherwood number

the effects of the radiation–conduction parameter and the surface temperature parameter
are significantly stronger on the local Nusselt number than that on the local Sherwood
number.

Acknowledgments The authors appreciate the comments of the reviewers, which have led to definite
improvements in the paper.

References

Abu-Nada, E., Oztop, H.F.: Effects of inclination angle on natural convection in enclosures filled with Cu-water
nanofluid. Int. J. Heat Fluid Flow 30, 669–678 (2009)

Alam, M.M., Alim, M.A., Chowdhury, M.M.K.: Free convection from a vertical permeable circular cone with
pressure work and non-uniform surface temperature. Nonlinear Anal. Model. Control 12, 21–32 (2007)

Bakier, A.Y., Rashad, A.M., Mansour, M.A.: Group method analysis of melting effect on MHD mixed con-
vection flow from radiate vertical plate embedded in a saturated porous media. Commun. Nonlinear Sci.
Numer. Simul. 14, 2160–2170 (2009)

Bakier, A.Y.: Thermal radiation effect of mixed convection from vertical surfaces in saturated porous media. Int.
Commun. Heat Mass Transf. 28, 119–126 (2001)

Bejan, A., Dincer, I., Lorente, S., Miguel, A.F., Reis, A.H.: Porous and Complex Flow Structures in Modern
Technologies. Springer, New York (2004)

123



Radiation Effects on Mixed Convection 279

Cebeci, T., Bradshaw, P.: Physical and Computational Aspects of Convective Heat Transfer. 2nd
edn. Springer, New York (1984)

Chamkha, A.J., Aly, A.M., Al-Mudhaf, H.: Laminar MHD mixed convection flow of a nanofluid along a
stretching permeable surface in the presence of heat generation or absorption effects. Int. J. Microscale
Nanoscale Thermal Fluid Transp. Phenom. 2 (2011) Article 3

Chamkha, A.J., Ben-Nakhi, A.: MHD mixed convection—radiation interaction along a permeable surface
immersed in a porous medium in the presence of Soret and Dufour effects. Heat Mass Transf. 44,
845–856 (2008)

Chamkha, A.J., Gorla, R.S.R., Ghodeswar, K.: Non-similar solution for natural convective boundary layer
flow over a sphere embedded in a porous medium saturated with a nanofluid. Transp. Porous Media 86,
13–22 (2011)

Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticle. In: Siginer, D.A., Wang H.P. (eds.),
Developments and Applications of Non-Newtonian Flows, ASME FED, vol. 231/MD 66, pp. 99–105
(1995)

Duangthongsuk, W., Wongwises, S.: Effect of thermophysical properties models on the predicting of
the convective heat transfer coefficient for low concentration nanofluid. Int. Commun. Heat Mass
Transf. 35, 1320–1326 (2008)

Gorla, R.S.R., Chamkha, A.J., Rashad, A.M.: Mixed convective boundary layer flow over a vertical wedge
embedded in a porous medium saturated with a nanofluid. J. Nanoscale Res. Lett. 6, 207–216 (2011)

Gorla, R.S.R., EL-Kabeir, S.M.M., Rashad, A.M.: Heat transfer in the boundary layer on a stretching circular
cylinder in a nanofluid. J. Thermophys. Heat Transf. 25, 183–186 (2011)

Hsieh, J.C., Chen, T.S., Armaly, B.F.: Mixed convection along a non-isothermal vertical plate embedded in a
porous medium: the entire regime. Int. J. Heat Mass Transf. 36, 1819–1825 (1993)

Ingham, D.B., Pop, I.: Transport Phenomena in Porous Media, Pergamon, Oxford, (1998), vol. II, (2002)
Kumari, M., Nath, G.: Radiation effect on mixed convection from a horizontal surface in a porous

medium. Mech. Res. Commun. 31, 483–491 (2004)
Nield, D.A., Bejan, A.: Convection in Porous Media. 2nd edn. Springer, New York (2006)
Nield, D.A., Kuznetsov, A.V.: The Cheng-Minkowycz problem for natural convective boundary-layer flow in

a porous medium saturated by a nanofluid. Int. J. Heat Mass Transf. 52, 5792–5795 (2009)
Nield, D.A., Kuznetsov, A.V.: Thermal instability in a porous medium layer saturated by a nanofluid. Int.

J. Heat Mass Transf. 52, 5796–5801 (2009)
Pop, I., Ingham, D.B.: Convective Heat Transfer: Mathematical and computational Modelling of Viscous

Fluids and Porous media. Pergamon, Oxford (2001)
Pop, I., Grosan, T., Kumari, M.: Mixed convection along a vertical cone for fluids of any Prandtl number case

of constant wall temperature. Int. J. Numer. Methods Heat Fluid Flow 13, 815–829 (2003)
Takhar, H.S., Chamkha, A.J., Nath, G.: Effect of thermo-physical quantities on the natural convection flow of

gases over a vertical cone. Int. J. Eng. Sci. 42, 243–256 (2004)
Vafai, K.: Handbook of Porous Media. 2nd edn. Taylor & Francis, New York (2005)
Vajravelu, K., Nayfeh, J.: Hydromagnetic convection at a cone and a wedge. Int. Commun. Heat Mass

Transf. 19, 701–710 (1992)
Yih, K.A.: Mixed convection about a cone in a porous medium: the entire regime. Int. Comm. Heat Mass

Transf. 26, 1041–1050 (1999)
Yih, K.A.: Radiation effect on mixed convection over an isothermal wedge in porous media: the entire

regime. Heat Transf. Eng. 22, 26–32 (2001)

123


	Radiation Effects on Mixed Convection over a Wedge Embedded in a Porous Medium Filled with a Nanofluid
	Abstract
	1 Introduction
	2 Problem Formulation
	3 Numerical Method and Validation
	4 Results and Discussion
	5 Conclusion
	Acknowledgments
	References


