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Abstract Heat and mass transfer effects on Newtonian biomagnetic fluid of blood flow
through a tapered porous artery with a stenosis is investigated. Governing equations have
been modeled by treating blood as Newtonian biomagnetic fluid. The governing equations
are simplified under the assumption of mild stenosis. Exact solutions have been evaluated for
velocity, temperature, and concentration profiles. The effects of Newtonian nature of blood
on velocity, temperature, concentration profile, wall shear stress, shearing stress at the ste-
nosis throat and impedance of the artery are discussed graphically. Stream lines have been
presented in last section of the article.

Keywords Newtonian fluid · Blood flow · Tapered porous arteries · Stenosis ·
Analytical solution · Magnetic fluid

1 Introduction

The blood flow through a tapered arteries with a stenosis is a new area of research in fluid
mechanics. Blood is a marvelous fluid which is an important factor of life. From the last
few decades, the theoretical and experimental studies (Sankar and Lee 2009; Sankar and
Hemalatha 2007a,b; Mekheimer and El Kot 2008; Sankar 2009; Nadeem and Akbar 2011;
Akbar and Nadeem 2010; Kumar 2010) of blood flow through the circulatory system of living
mammals, has been the subject of scientific research. Fluid dynamics of biological fluids in
the presence of magnetic fields is biomagnetic fluid dynamics (BFD). According to BFD,
which was developed by Haik et al. (1999), the biological fluids are treated as electrically
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non-conducting magnetic fluids. The investigation of basic BFD flow problems attracts inter-
est due to the numerous proposed applications in bioengineering and medical sciences. The
biomagnetic (blood) fluid flow in a channel with stenosis under the influence of a steady local-
ized magnetic field is studied by Tzirtzilakis (2008). Magneto-micropolar fluid flow, heat and
mass transfer with suction and blowing through a porous medium is analyzed numerically by
Elgazery (2009). Unsteady response of non-Newtonian blood flow through a stenosed artery
in magnetic field was developed by Ikbal et al. (2009). Nadeem and Akbar (2011) studied the
influence of heat and chemical reactions on Walter’s B fluid model for blood flow through a
tapered artery. The effect of heat transfer on the motion of blood in a diseased artery has been
modeled under the optically thin fluid assumption was developed by Ogulu and Abbey (2005).
Chakravarty and Sen (2005) studied mathematical model describing the dynamic response
of heat and mass transfer in blood flow through bifurcated arteries under stenotic condition.
Some important investigations related to blood flow in arteries are cited in the studies of Ai
and Vafai (2006), Yang and Vafai (2006, 2008), and Khakpoura and Vafai (2008a,b).

To show the application of computational fluid dynamics in biomedical engineering, Qiao
and Liu (2008) studied medical application oriented blood flow simulation. They observed
that the simulation of blood flow is of great importance for understanding the function of
the cardiovascular system under normal and abnormal conditions, designing cardiovascular
devices, and diagnosing and treating disease. It is helpful and economical that the physician
can utilize computational tools to construct and evaluate a combined anatomic/physiologic
model to predict the outcome of alternative treatment plans for an individual patient. Com-
puter assisted surgery has become a powerful assistant for the modern medical application
(Nadeem et al. 2009). Some recent developments which have been made to study the bio-
magnetic fluid and heat transfer phenomena are cited in the studies of Nadeem and Akbar
(2009a,b,c,d), Nadeem et al. (2010a,b,c).

Motivated from the above analysis, the objective of the present article is to study the heat
and mass transfer effects on Newtonian biomagnetic fluid of blood flow through a tapered
porous artery with a stenosis. We have developed our article as follows: In Sect. 2, we have
presented the physical and mathematical formulation of the problem. In Sect. 3, we have
presented the solutions to the problem in detail, while in Sect. 4, we give a quantitative dis-
cussion of the consequences of the graphical results. Trapping phenomena have also been
discussed in Sect. 4.

2 Mathematical Model

Consider the continuity, the balance of momentum, temperature, and concentration for hydro-
magnetic fluid with porous medium

divV = 0. (1)

ρ
dV
dt

= −∇ p + divS+J × H0 + V�

k1
. (2)

ρcp
dT̄

dt
= k∇2T̄ + S·L . (3)

dC̄

dt
= D∇2C̄ + DKT

Tm
∇2T̄ . (4)

where

S = −pI+μA1, A1 = L + Lt , L is gradient of V
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In the above equations, p̄ is the pressure, T̄ is the temperature, C̄ is the concentration of fluid
(Mass of the fluid) , ρ is the density, k1 is the permeability of the porous medium, cp is the
specific heat at constant pressure, Tm is the temperature of the medium, D is the coefficients
of mass diffusivity, KT is the thermal-diffusion ratio, μ̄ is the viscosity, k denotes the the
thermal conductivity, and H0 is applied magnetic field.

3 Formulation of the Problem

Consider the flow of an incompressible magnetohydrodynamic (MHD) Newtonian fluid lying
in a porous arteries having length L . We are considering the cylindrical coordinate system
(r, θ, z) in a such a way that ū, v̄, and w̄ are the velocity component in r̄ , θ̄ , and z̄ direc-
tions, respectively. The equations governing the steady incompressible MHD Newtonian
fluid through porous medium in view of Eqs. 1–4 are given as

∂ ū

∂ r̄
+ ū

r̄
+ ∂w̄

∂ z̄
= 0, (5)

ρ

[
ū

∂ ū

∂ r̄
+ w̄

∂ ū

∂ r̄

]
= −∂ p̄

∂ r̄
+ ∂

∂ r̄

[
2μ

∂ ū

∂ r̄

]
+ 2μ

r̄

(
∂ ū

∂ r̄
− ū

r̄

)
+ ∂

∂ z̄

[
μ

(
∂ ū

∂ z̄
+ ∂w̄

∂ r̄

)]

(6)

ρ

[
ū

∂w̄

∂ r̄
+ w̄

∂w̄

∂ z̄

]
= −∂ p̄

∂ z̄
+ ∂

∂ z̄

[
2μ

∂w̄

∂ z̄

]
+ 1

r̄

∂

∂ r̄

[
μr̄

(
∂ ū

∂ z̄
+ ∂w̄

∂ r̄

)]

− σ1μ
2
m H2

0 w̄ − μw̄

k1
, (7)

ρcp

[
ū

∂ T̄

∂ r̄
+ w̄

∂ T̄

∂ z̄

]
= k

r̄

∂

∂ r̄

(
r̄
∂ T̄

∂ r̄

)
+

(
∂w̄

∂ r̄

)2

. (8)

(
ū

∂

∂ r̄
+ w̄

∂

∂ z̄

)
C̄ = D

(
∂2C̄

∂ r̄2 + 1

r̄

∂C̄

∂ r̄
+ ∂2C̄

∂ z̄2

)

+ DKT

Tm

(
∂2T̄

∂ r̄2 + 1

r̄

∂ T̄

∂ r̄
+ ∂2T̄

∂ z̄2

)
. (9)

where σ1 is the electrical conductivity, μm is the magnetic permeability. ū, w̄ are the respec-
tive velocity components in the radial and axial directions.

The geometry of the stenosis is defined as Mekheimer and El Kot (2008).

h (z) = d (z)
[
1 − η

(
bn−1 (z − a) − (z − a)n)]

,

a ≤ z ≤ a + b,

= d (z) , otherwise (10)

with

d (z) = d0 + ξ z,

in which d (z) is the radius of the tapered arterial segment in the stenotic region, d0 is the
radius of the non-tapered artery in the non-stenotic region, ξ is the tapering parameter, b
is the length of stenosis, (n ≥ 2) is a parameter determining the shape of the constriction
profile and referred to as the shape parameter (the symmetric stenosis occurs for n = 2), and
a indicates its location as shown in Fig. 1. The parameter η is defined as
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Fig. 1 Geometry of an axially nonsymmetric stenosis in a porous artery

Fig. 2 Geometry of the stenosed tapered porous artery for different taper angle

η = δn
n

n−1

d0bn (n − 1)
, (11)

where δ denotes the maximum height of the stenosis located at

z = a + b

n
n

n−1
.

We introduce the non-dimensional variables

r = r̄

d0
, z = z̄

b
, w = w̄

u0
, u = bū

u0δ
, p = d2

0 p̄

u0bμ
, h = h̄

d0
,

Re = ρbu0

μ
, θ =

(
T̄ − T̄0

)
T̄0

, Pr = μcp

k
, Ec = u2

0

cp (T0 − T1)
,

Z = k1

d0
, M = σ1μm H0

√
σ1

μ
. (12)
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here u0 is the velocity averaged over the section of the tube of the width d0. M is magnetic
field.

Making use of Eq. 12 and after adopting the additional conditions (Mekheimer and El Kot
2008),

(i)
Reδ∗n

(
1

n−1

)

b
<< 1, (13)

(i i)
d0n

(
1

n−1

)

b
∼ O (1) , (14)

Equations 5–9, for the case of mild stenosis
(

δ∗
d0

<< 1
)

, take the form

∂u

∂r
+ u

r
+ ∂w

∂z
= 0, (15)

∂p

∂r
= 0, (16)

∂p

∂z
= 1

r

∂

∂r

[
r

(
∂w

∂r

)]
−

(
M2 + 1

Z

)
w. (17)

0 = 1

r

∂

∂r

[
r

(
∂θ

∂r

)]
+ Ec Pr

((
∂w

∂r

)2
)

(18)

1

Sc

(
1

r

∂

∂r

(
r
∂σ

∂r

))
+ Sr

(
1

r

∂

∂r

(
r
∂θ

∂r

))
= 0, (19)

where Br = Ec Pr .
The corresponding boundary conditions are

∂w

∂r
= 0,

∂θ

∂r
= 0,

∂σ

∂r
= 0 at r = 0, (20a)

w = 0, θ = 0, σ = 0 at r = h (z) , (20b)

in which

h (z) = (1 + ξ z)
[
1 − η1

(
(z − σ2) − (z − σ2)

n)]
,

σ2 ≤ z ≤ σ2 + 1, (21)

and

η1 = δn
n

n−1

(n − 1)
, δ = δ∗

d0
, σ = a

b
, ξ ′ = ξb

d0

where (ξ = tan φ) , φ is called tapered angle and for converging tapering (φ < 0) , non-
tapered artery (φ = 0) and the diverging tapering (φ > 0) as discussed in Mekheimer and
El Kot (2008) (Fig. 2).
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4 Solution of the Problem

4.1 Exact Solution

Expression for velocity field, temperature and concentration field, and pressure gradient can
be written as

w (r, z) = d p

dz

1(
M2 + 1

Z

)
(

I0

(√(
M2 + 1

Z

)
r

)
− I0

(√(
M2 + 1

Z

)
h

))

I0

(√(
M2 + 1

Z

)
h

) , (22)

θ (r, z) = −Br

(
∂p

∂z

)2 1

(
M2 + 1

Z

)2
(

I0

(√(
M2 + 1

Z

)
h

))2

∞∑
k,m=0

amk

×
⎛
⎝

(√(
M2 + 1

Z

)
r

)2k+2m+4

−
(√(

M2 + 1

Z

)
h

)2k+2m+4⎞
⎠ , (23)

σ (r, z) = Sr Sc Br

(
∂p

∂z

)2 1

(
M2 + 1

Z

)2
(

I0

(√(
M2 + 1

Z

)
h

))2

∞∑
k,m=0

amk

×
⎛
⎝

(√(
M2 + 1

Z

)
r

)2k+2m+4

−
(√(

M2 + 1

Z

)
h

)2k+2m+4⎞
⎠ , (24)

d p

dz
=

2M4 I0

(√(
M2 + 1

Z

)
h

)
Q

2
√(

M2 + 1
Z

)
hI1

(√(
M2 + 1

Z

)
h

)
−(

M2 + 1
Z

)
h2 I0

(√(
M2 + 1

Z

)
h

) , (25)

The pressure drop (�p = p at z = 0 and �p = −p at z = L) across the stenosis between
the section z = 0 and z = L is obtain from (26) as done by Mekheimer and El Kot (2008)

�p =
L∫

0

(
−d p

dz

)
dz. (26)

4.2 Resistance Impedance

The resistance impedance (resistance to blood flow) is obtain from Eq. 27 as

λ̄ = �p

F
= 8

⎧⎨
⎩

a∫
0

F (z)|h=1 dz +
a+b∫
a

F (z) dz +
L∫

a+b

F (z)|h=1 dz

⎫⎬
⎭ (27)

where

F (z) =
−M4 I0

(√(
M2 + 1

Z

)
h

)

4

(
2
√(

M2 + 1
Z

)
hI1

(√(
M2 + 1

Z

)
h

)
− (

M2 + 1
Z

)
h2 I0

(√(
M2 + 1

Z

)
h

)) ,
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Table 1 Comparison of our
results with previous work when
δ = 0.025, σ = 0.00,

F = 0.3, z = 0.1, n = 2.

a Mekheimer and El Kot (2008)
b Nadeem and Akbar (2011)
c Akbar and Nadeem (2010)

r M = 0, Z = 0
our results

N = 0a α = 0b λ1 = 0c

−1.0 0.000 0.000 0.000 0.000

−0.8 0.303 0.305 0.116 0.116

−0.6 0.535 0.537 0.204 0.204

−0.4 0.703 0.701 0.416 0.416

−0.2 0.802 0.803 0.533 0.533

0.0 0.000 0.000 0.000 0.000

0.2 0.802 0.803 0.533 0.533

0.4 0.703 0.701 0.416 0.416

0.6 0.535 0.537 0.204 0.204

0.8 0.303 0.305 0.116 0.116

1.0 0.000 0.000 0.000 0.000
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Fig. 3 Variation of velocity profile for F = 0.3, M = 0.2, Z = 2, n = 2, z = 0.95, σ = 0.00

so, the resistance impedance is

λ̃ = 8

⎧⎪⎪⎨
⎪⎪⎩

(L − b)

⎛
⎜⎜⎝

−M4 I0

(√(
M2 + 1

Z

))

4

(
2M I1

(√(
M2 + 1

Z

)) − (M)2 I0

(√(
M2 + 1

Z

)))
⎞
⎟⎟⎠

+
a+b∫
a

F (z) dz

⎫⎬
⎭ , (28)
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Fig. 4 Variation of velocity profile for F = 0.3, δ = 0.9, Z = 0.5, n = 2, z = 0.5, σ = 0.00
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Fig. 5 Variation of velocity profile for F = 0.3, δ = 0.9, M = 0.2, n = 2, z = 0.5, σ = 0.00

4.3 Expression for the Wall Shear Stress

The nonzero dimensionless shear stress is given by

S̃r z =
[(

∂w

∂r

)]
, (29)
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Fig. 6 Variation of shear stress at the stenosis throat for Z = 0.8, M = 2
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Fig. 7 Variation of shear stress at the stenosis throat for Z = 0.8, F = 0.3

From Eq. 29, we can find the expression for wall shear stress by

S̃r z =
[(

∂w

∂r

)]∣∣∣∣
r=h

, (30)

So

S̃r z =
2M3 F I1

(√(
M2 + 1

Z

)
h

)

2

(√(
M2 + 1

Z

)
h

)
I1

(√(
M2 + 1

Z

)
h

)
−(

M2 + 1
Z

)
h2 I0

(√(
M2 + 1

Z

)
h

) , (31)

where F is the flow rate.
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Fig. 8 Variation of shear stress at the stenosis throat for M = 2, F = 0.3
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Fig. 9 Variation of wall shear stress for M = 0.2, F = 0.3, n = 2, σ = 0.0, Z = 2

We can note that the shearing stress at the stenosis throat, i.e., the wall shear at the maxi-
mum height of the stenosis located at z = a

b + 1

n
n

n−1
, i.e.,

τ̃s = S̃r z

∣∣∣
h=1−δ

(32)

We can find the final expression for the dimensionless resistance to λ, wall shear stress Srz

and the shearing stress at the throat τs by
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Fig. 10 Variation of wall shear stress for δ = 0.5, F = 0.3, n = 2, σ = 0.0, Z = 2
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Fig. 11 Variation of wall shear stress for δ = 0.2, F = 0.3, M = 0.2, σ = 0.0, Z = 2

λ = 8

3

⎧⎪⎪⎨
⎪⎪⎩

(
1 − b

L

)
⎛
⎜⎜⎝

−M4 I0

(√(
M2 + 1

Z

))

4

(
2
√(

M2 + 1
Z

)
I1

(√(
M2 + 1

Z

)) − (
M2 + 1

Z

)
I0

(√(
M2 + 1

Z

)))
⎞
⎟⎟⎠

+ 1

L

a+b∫
a

F (z) dz

⎫⎬
⎭ , (33)
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Fig. 12 Variation of resistance impedance for n = 2, F = 0.3, L = 1, σ = 0.0, b = 1, Z = 2
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Fig. 13 Variation of impedance resistance for n = 2, F = 0.3, L = 1, σ = 0.0, b = 1, M = 2

Srz =
M3 I1

(√(
M2 + 1

Z

)
h

)

2

(
2

(√(
M2 + 1

Z

)
h

)
I1

(√(
M2 + 1

Z

)
h

)
−(

M2 + 1
Z

)
h2 I0

(√(
M2 + 1

Z

)
h

)) , (34)

τs =
M3 I1

(√(
M2 + 1

Z

)
h

)

2

(
2

(√(
M2 + 1

Z

)
h

)
I1

(√(
M2 + 1

Z

)
h

)
−(

M2 + 1
Z

)
h2 I0

(√(
M2 + 1

Z

)
h

))
∣∣∣∣∣∣∣∣
h=1−δ

,(35)
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Fig. 14 Variation of impedance resistance for Z = 2, F = 0.3, L = 1, σ = 0.0, b = 1, M = 2
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Fig. 15 Variation of temperature profile for z = 0.5, F = 0.3, n = 2, σ = 0.0, Br = 0.45, δ = 0.6, Z = 2

where

λ = λ̃

λ0
, Srz = S̃r z

τ0
, τs = τ̃s

τ0
, λ0 = 3L , τ0 = 4F.

and λ0, τ0 are the resistance to flow and the wall shear stress for a flow in a normal artery
(no stenosis).
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Fig. 16 Variation of temperature profile for z = 0.5, F = 0.3, n = 2, σ = 0.0, Br = 0.45, δ = 0.6, M = 2
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Fig. 17 Variation of temperature profile for z = 0.5, F = 0.3, n = 2, σ = 0.0, Z = 0.45, δ = 0.6, M = 2

4.4 Comparison of our Results with Previous Work

Table 1 shows the comparison of our results with previous work when δ = 0.025, σ =
0.00, F = 0.3, z = 0.1, n = 2..
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Fig. 18 Variation of concentration profile for z = 0.5, F = 0.3, n = 2, σ = 0.0, Z = 0.45, δ = 0.6, M =
2, Sr = 0.5, Sc = 0.5
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Fig. 19 Variation of concentration profile for z = 0.5, F = 0.3, n = 2, σ = 0.0, Br = 0.45, δ = 0.6, Z =
2, Sr = 0.5, Sc = 0.5

5 Numerical Results and Discussion

The quantitative effects of the magnetic field M , porosity parameter Z , the stenosis shape
n, and maximum height of the stenosis δ for converging tapering, diverging tapering, and
non-tapered arteries for Newtonian fluid are observed physically through Figs. 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15, and 16. The variation of axial velocity for M, W , and δ for
the case of converging tapering, diverging tapering and non-tapered arteries are displayed in
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Fig. 20 Variation of concentration profile for z = 0.5, F = 0.3, n = 2, σ = 0.0, Br = 0.45, δ = 0.6, M =
2, Sr = 0.5, Sc = 0.5
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Fig. 21 Variation of concentration profile for z = 0.5, F = 0.3, n = 2, σ = 0.0, Br = 0.45, δ = 0.6, M =
2, Z = 0.5, Sc = 0.5

Figs. 3, 4, and 5. In Figs. 3, 4, and 5, we observed that with an increase in M, δ, and veloc-
ity profile decreases, while increases with an increase in Z . It is also seen that for the case
of converging tapering velocity gives larger values as compared with the case of diverging
tapering and non-tapered arteries. Figures 6, 7, and 8 are prepared to see the variation of the
shearing stress at the stenosis throat τs with δ. It is analyzed through figures that shearing
stress at the stenosis throat decreases with an increase in F and M , while increases with an
increase in Z . Figures 9, 10, and 11 shows how the converging tapering, diverging tapering,
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Fig. 22 Stream lines for different values of n: a n = 2, b n = 4. Other parameters are φ = π, M = 1, δ =
0.01, σ = 0.4, Z = 0.3, F = 0.2
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Fig. 23 Stream lines for different values of M : a M = 2, b M = 4. Other parameters are φ = π, n = 2, δ =
0.01, σ = 0.4, Z = 0.3, F = 0.2

0 0.5 1 1.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
(a)

0 0.5 1 1.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
(b)

Fig. 24 Stream lines for different values of Z : a Z = 0.2, b Z = 0.4. Other parameters are φ = π,

n = 2, δ = 0.01, σ = 0.4, M = 3, F = 0.2

and non-tapered arteries influence on the wall shear stress Srz . It is observed that with an
increase in δ, M and n shear stress increases, the stress yield diverging tapering with tapered
angle φ > 0, converging tapering with tapered angle φ < 0, and non-tapered artery with
tapered angle φ = 0. In Figs. 12, 13, and 14, we notice that the impedance resistance increases
for converging tapering, diverging tapering, and non-tapered arteries when we increase M
and m, while decreases when we increase Z . We also observed that resistive impedance in a
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Fig. 25 Stream lines for different values of δ: a δ = 0.3, b δ = 0.4. Other parameters are φ = π, n =
2, Z = 0.1, σ = 0.4, M = 3, F = 0.2
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Fig. 26 Stream lines for different values of F : a F = 0.3, b F = 0.4. Other parameters are φ = π, n =
2, Z = 0.1, σ = 0.4, M = 3, δ = 0.2

diverging tapering appear to be smaller than those in converging tapering because the flow
rate is higher in the former than that in the latter, as anticipated and impedance resistance
attains its maximum values in the symmetric stenosis case (n = 2). Figures 15, 16, and 17
shows the variation of temperature profile for different values of Brickmann number Br ,

magnetic field M , and porosity parameter Z . It is observed that with an increase in Brick-
mann number Br and porosity parameter Z , temperature profile increases, while temperature
profile decreases with an increase in magnetic field M and temperature profile gives the
large values for converging tapering as compared with the diverging and non-tapered artery.
Figures 18, 19, 20, and 21 are prepared to see the variation of concentration profile for
Brickmann number Br , magnetic field M , porosity parameter Z , and Soret number Sr . It is
analyzed that with an increase in Brickmann number Br , porosity parameter Z and Soret
number Sr concentration profile decreases, while increases with an increase in magnetic field
M. It is also observed that concentration profile has an opposite behavior as compared with
the temperature profile. Trapping phenomena have been discussed in Figs. 22, 23, 24, and
25. Figures 22, 23, and 24 shows the stream lines for different values of the stenosis shape n,
magnetic field M , and porosity parameter Z . It is observed that with an increase in nM and
Z , number of the trapping bolus increases while size of the trapping bolus decreases. Stream
lines for different values of the height of the stenosis δ are prepared in Fig. 25. It is analyzed
that the size of the trapping bolus increases and number of trapping bolus decreases when we
increase the height of the stenosis. Figure 26 is plotted to see the stream lines for different
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values of flow rate F . It is seen that the size of the trapping bolus increases, while number
of trapping bolus decreases with an increases of the flow rate F .
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