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Abstract The extended Darcy’s law is a commonly used equation for the description of
immiscible two-phase flow in porous media. It dates back to the 1940s and is essentially an
empirical relationship. According to the extended Darcy’s law, pressure gradient and gravity
are the only driving forces for the flow of each fluid. Within the last two decades, more
advanced and physically based descriptions for multiphase flow in porous media have been
developed. In this work, the extended Darcy’s law is compared to a thermodynamically con-
sistent approach which explicitly takes the important role of phase interfaces into account,
both as entities and as parameters. In this theoretically derived approach, forces related to cap-
illarity and interfaces appear as driving/resisting forces, in addition to the traditional terms.
It turns out that the extended Darcy’s law and the thermodynamically based approach are
compatible if either (i) relative permeabilities are a function of saturation only, but capillary
pressure is a function of saturation and specific interfacial area or (ii) relative permeabilities
are a function of saturation and saturation gradients. Theoretical considerations suggest that
the former alternative is only valid in case of reversible displacement while in the general
case (irreversible displacement), the latter alternative is relevant.
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List of Symbols

Latin Variables
aαβ Specific interfacial area of αβ-interface [m−1]
g Gravity [m s−2]
krα Relative permeability of phase α [−]
pα Pressure of phase α [Pa]
pc Capillary pressure [Pa]
t Time [s]
vα, vαβ Velocity of phase α or αβ-interface, respectively [m s−1]
A Area [m2]
Ed Net efficiency [−]
H Specific Helmholtz free energy [m2 s−1]
K Intrinsic permeability tensor [m2]
L Length [m]
Qα External source or sink of phase α [s−1]
Q Volumetric flux [m3 s−1]
R Resistance tensor [Pa s m−2]
Sα Saturation of phase α [−]
Tα Temperature of phase α [K]
Vb Bulk volume [m3]
W Work [J]

Greek Symbols
Symbol Meaning
γαβ Macroscopic interfacial tension [Pa m]
μα Dynamic viscosity of phase α [Pa s]
φ Porosity [−]
ρα Density of phase α [kg m−3]
σαβ Pore-scale interfacial tension of αβ-interface [Pa m]
�αβ Areal mass density of αβ-interface [kg m−2]
	 Contact angle [rad]

Subscripts
c Capillary
n Non-wetting
w Wetting
α Phase
αβ Interface

1 Introduction

Fluid flow in porous media is a subject of general relevance in science, technology, and
environment. Classical applications comprise petroleum engineering where oil and gas are
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produced from the porous sedimentary rock, civil engineering where stability issues of geo-
technical systems are investigated, or environmental engineering where flow and transport
of contaminants in the subsurface are considered. Recently, in the field of flow and transport
in porous media, new topics have evolved. They range from storage of carbon dioxide in
deep geological formations and the migration of methane emitted by abandoned coal mines
to paper manufacturing, processes in polymer electrolyte membrane fuel cells, to fluid flow
processes in the human body (Huyghe et al. 1989; Vankan et al. 1996). While in many cases
only a single phase is mobile, there is a large number of cases of practical relevance where
two or more phases flow at the same time with the case of two-phase flow being the simplest
case of multi-phase flow.

1.1 Approaches for Two-Phase Flow in a Porous Medium

The most commonly used description for macro-scale two-phase flow in porous media
uses a phenomenological extension of Darcy’s law introducing the saturation-dependent
parameter relative permeability. The introduction of an additional parameter, capillary
pressure becomes necessary for the closure of the system. However, there are a number
of well-known problems associated with this model (Hassanizadeh and Gray 1993a,b)
which are addressed in more detail in Sect. 2.1.3. In brief, first, constitutive relation-
ships (mainly capillary pressure–saturation, but also relative permeability–saturation rela-
tions) are found to be hysteretic (Killough 1976) indicating that the set of independent
parameters may be incomplete. Second, it is well known that depending on the sys-
tem considered, there may be more driving forces for the flow of phases than are in-
cluded in Darcy’s law (saturation gradients, temperature gradients, gradients in chemical
potential,. . .). Third, dynamic pressure effects are found to be important in case of tran-
sient flow (Stauffer 1978; Hassanizadeh and Gray 1990, 1993b; DiCarlo 2004; Bottero
et al. 2006; Mirzaei and Das 2007; DiCarlo 2005; Manthey et al. 2005). Finally, given
the fact that the rate of interphase mass or heat transfer must depend on the amount of
interfacial area, kinetic interphase mass and heat transfer can be modeled in a physically
based way only if interfacial areas are included as parameters, like in the approach of
Niessner and Hassanizadeh (2009,c). The absence of interfacial area as a parameter in
classical models makes it impossible to account for the above-mentioned processes in a
physically based way. These shortcomings obviously occur as a consequence of making
empirical extensions to an empirical law without taking thorough account of all the phys-
ical principles involved like the laws of thermodynamics and the omnipresence of phase-
interfaces.

In the past decades, several approaches have been made to describe two-phase flow in a
thermodynamically consistent way, partially also including interfacial areas as parameters.
Among these are a rational thermodynamics approach by Hassanizadeh and Gray (1980,
1990, 1993a,b), a thermodynamically constrained averaging approach by Gray and Miller
(2005) which is based on the work of Hassanizadeh and Gray (1990), mixture theory (Bowen
1982) and an approach based on averaging and non-equilibrium thermodynamics by Marle
(1982) and Kalaydjian (1987). While Marle (1982) and Kalaydjian (1987) developed their
set of constitutive relationships phenomenologically, Hassanizadeh and Gray (1990, 1993a),
Gray and Miller (2005), Miller and Gray (2005), Bowen (1982) exploited the entropy inequal-
ity to obtain constitutive relationships. The authors of Hassanizadeh and Gray (1990, 1993a),
Gray and Miller (2005), Miller and Gray (2005), Bowen (1982) all assume free energies to
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depend on saturation and thus, come up with an additional driving force in Darcy’s law which
depends on the saturation gradient.

1.2 Purpose of this Work

The extended two-phase Darcy description is used frequently by researchers and engineers
and a large set of experimental data and parameters is available for a broad range of mate-
rials and applications. Despite the obvious shortcomings, it is still the most commonly used
approach today and implemented in most numerical modeling software. Given the strengths
of thermodynamically consistent and interfacial-area-based approaches and their potential
importance for describing relevant problems like CO2 sequestration, it is now a pertinent
question how they relate to the two-phase Darcy description and/or under which conditions
the description of flow is equivalent in both approaches. Even though the commonly used
two-phase Darcy flow description is phenomenological in nature and does not contain all
driving forces for flow, it may still describe the relation between phase fluxes and pressure
gradients correctly. As a consequence, the large set of published data on material parameters
may be valid and after appropriate “translation” be useful in thermodynamically based the-
ories as well. For that purpose, a knowledge of the relationships between parameters of the
extended two-phase Darcy approach and the thermodynamically based approach is required.
For example, Hassanizadeh and Gray (1990) conjectured that the dependency on saturation
gradients is lumped into relative permeability. This means that relative permeability may
contain contributions from other “hidden” variables like saturation gradients and possibly
also interfacial area. Therefore, in this work, the extended two-phase Darcy model is directly
compared to the approach of Hassanizadeh and Gray (1990, 1993a).

1.3 Outline of this Work

In Sect. 2, we first summarize the classical two-phase flow approach and then review the
thermodynamically consistent approach for two-phase flow in porous media that considers
phase-interfaces as separate entities (Hassanizadeh and Gray 1990, 1993a). In Sect. 3, the
two theories are compared directly demanding equality of the specific phase fluxes which
results in two possible cases which are investigated in detail. We find that either (i) relative
permeabilities are a function of saturation only, but capillary pressure is a function of satu-
ration and specific interfacial area or (ii) relative permeabilities are a function of saturation
and saturation gradients.

2 Mathematical Models for Two-Phase Flow in Porous Media

2.1 Classical Models

For various applications mentioned in Sect. 1, it is impossible to resolve the porous medium
and the relevant flow and transport processes in detail; the considered systems are much too
large to allow for a detailed resolution of the pore space and the relevant processes. Instead,
classical models usually proceed by describing the relevant processes on a volume-averaged
scale. Therefore, a so-called representative elementary volume (REV) is identified for which
volume-averaged quantities are provided. The standard procedure is to formulate continuity
equations based on mass balances for each fluid phase α (here assumed incompressible) with
respect to an REV:
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φ
∂Sα

∂t
+ ∇ · vα = Qα, (1)

where φ is porosity (ratio of pore space to the volume of an REV), Sα is the saturation
(fraction of pore space in an REV occupied by fluid α), vα is the so-called extended Darcy
velocity, and Qα an external source or sink of the α-phase. An important variable in these
continuity equations is the extended Darcy velocity vα . It is commonly prescribed by an
empirical extension of a relationship that was postulated based on experimental observations
by Darcy (1856) for one-dimensional single-phase flow through a homogeneous and isotro-
pic porous medium. Therefore, in the following, we proceed by reviewing Darcy’s law for
single-phase flow, present its extension to two-phase flow, and discuss possible limitations.

2.1.1 Single-Phase Flow and Darcy’s Law

Historically, Darcy’s law was introduced in a phenomenological way for single-phase flow
through sand. According to Darcy’s law, the flux of a single phase is given by

Q = A
K

μ

�p

L
, (2)

where Q is the flux, A is the cross section, K the intrinsic permeability of the medium, μ

the viscosity, and �p the pressure drop over sample length L (Dullien 1992). The Darcy
velocity is based on the flux and defined as v = q = Q/A. Darcy’s law was later generalized
to three-dimensional flow:

v = − K

μ
· (∇ p − ρg), (3)

where ∇ p is the pressure gradient and K is the intrinsic permeability tensor assumed to be
a property of the porous solid only and g is the gravity vector.

The same functional relationship between pressure gradient and flow rate has been found
rigorously by homogenizing the Navier–Stokes equations (see Auriault 2005; Bear and
Bachmat 1990), but through imposing the assumptions that inertial forces and friction within
the fluid can be neglected. Hassanizadeh and Gray (1980) showed that Darcy’s law may
actually result from the macro-scale momentum balance equation by upscaling of pore-scale
mass, momentum, energy, and entropy balances in the framework of a thermodynamic aver-
aging theory and applying a large set of assumptions.

2.1.2 Two-Phase Extension of Darcy’s Law

For multi-phase flow, the situation is conceptually more complicated. The presence of a sec-
ond phase can, depending on its distribution in the porous network, hinder the flow of the
first phase. Various attempts have been made at describing two-phase flow in porous media
where the extension of Darcy’s law from Eq. 3 is a very commonly used approach. While the
principle functional relationship as in the single-phase Darcy’s law is maintained, coefficients
are generally made phase-specific and permeability is made saturation dependent.

In this phenomenological two-phase extension of Darcy’s law, the specific flux of phase
α (α = w for the wetting phase and α = n for the non-wetting phase) is described as

vα = − K
α

μα

· (∇ pα − ραg), (4)
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where K
α

is the saturation dependent two-phase permeability of the α-phase. Although this
extension of Darcy’s law is empirical, this approach has been established as the standard
approach for calculating specific fluxes in porous media.

By introducing the concept of relative permeability, the two-phase permeabilities are sep-
arated into products:

K
α

= krα K , (5)

where krw = krw(Sw) and krn = krn(Sn) are the saturation-dependent relative permeabili-
ties. Sw and Sn are the saturations of the wetting and non-wetting phases, respectively, and
are constrained via

Sw + Sn = 1. (6)

Due to this relationship, saturation-dependent functions are often expressed via the wetting-
phase saturation Sw. The full set of equations describing two-phase flow consists of a mass
balance equation (reduced to a volume balance, see Eq. 1) for each of the two fluid phases
α where velocities are calculated using the extended form of Darcy’s law given by Eq. 4,
and restricted by the condition in Eq. 6. However, inserting the Darcy velocities into the
volume balance equations results in three equations for four unknown quantities: two pres-
sures pα and the two saturations Sα . In order to close the system of equations, it has been
postulated that the difference in phase pressures is a function of the wetting-phase saturation.
This postulation was based on observations that there is obviously some connection between
pressure difference and saturation. By drawing an analogy to equilibrium considerations at
a fluid–fluid interface, this pressure difference was called capillary pressure pc:

pc := pc(Sw) := pn − pw, (7)

where it is assumed that the capillary pressure is a function of the wetting-phase saturation
only.

2.1.3 Known Limitations of the Two-Phase Darcy Approach

In this work, we restrict ourselves to situations where for single-phase flow, Darcy’s law
is valid, i.e., flow in porous media at low Reynolds numbers Re < 1 (so-called creeping
flow). Extensions for larger Reynolds numbers like the Forchheimer equation (Hassanizadeh
and Gray 1987) or high-porosity flow modeled by the Darcy–Brinkman equation (Brinkman
1947) are not considered here. In the following, a number of fundamental shortcomings of
the conventional two-phase Darcy flow approach are listed:

– In the classical two-phase flow model, parameters like relative permeability and capil-
lary pressure depend on saturation only. Observations like capillary pressure hysteresis,
where the capillary pressure depends not only on saturation but also on saturation history
(Killough 1976), provide direct evidence that the parameter set of the two-phase Darcy
flow description is incomplete.
Theoretical work (Hassanizadeh and Gray 1990, 1993a,b), numerical modeling (Joekar-
Niasar et al. 2008, 2009; Niessner and Hassanizadeh 2008), and experiments (Culligan
et al. 2004; Chen et al. 2007) have demonstrated that hysteresis (almost) disappears if
the specific fluid–fluid interfacial area is introduced as a new parameter. This can be
considered as an established view (Oostrom et al. 2001; Dalla et al. 2002; Gladkikh and
Bryant 2003; Culligan et al. 2006; Seth and Morrow 2007).
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– Classically, macro-scale capillary pressure is assumed to be equal to the difference in non-
wetting and wetting-phase pressures (Eq. 7). In dynamic situations, however, pn − pw

and pc differ (Stauffer 1978; DiCarlo 2004; Bottero et al. 2006) by a term which depends
on the time rate of change of saturation, ∂Sw/∂t (Hassanizadeh and Gray 1990, 1993b;
Hassanizadeh et al. 2002; Das et al. 2007).

– Viscous coupling between fluid phases is ignored (Ayub and Bentsen 2005, 1999; Zhang
et al. 2008; Huang and Lu 2009). From a fluid mechanics point of view, at the interface
between two immiscible fluids, the tangential stress is continuous. As a consequence,
the two-phase Darcy description given in Eq. 4 would require “cross coupling” terms
(Hassanizadeh and Gray 1993a). While this effect is in principle present for any flow
situation (Zhang et al. 2008), its magnitude varies from situation to situation. It is found
to be most significant in countercurrent flow (Eastwood and Spanos 1991).

– Relative permeabilities were introduced as parameters for scaling saturated permeabil-
ity such that 0 ≤ krα ≤ 1. However, various cases with krα > 1 have been reported
independently (see Berg et al. 2008 and references therein). This is supposedly caused
by the lubricating effect of wetting films coating the rock surface during the flow of the
non-wetting phase.

2.2 Thermodynamic Averaging Approach

In order to obtain a thermodynamically consistent set of equations, Hassanizadeh and Gray
1990 proceeded as follows:

1. Balance equations for mass, momentum, energy, and entropy for both fluid phases and
phase-interfaces are formulated on the pore scale.

2. Pore-scale conservation equations are volume averaged over REVs to the macro scale
(Gray and Hassanizadeh 1989).

3. Subsequently, the entropy production occurring in the macro-scale entropy balance equa-
tions is used to formulate the second law of thermodynamics (entropy inequality) on the
macro scale.

4. The condition that the entropy has to reach its absolute minimum at equilibrium can be
used to obtain constitutive relationships. Thus, constitutive relationships are not postu-
lated, but derived as a result of the procedure.

Special attention was paid to the dependency of the Helmholtz free energies of phases
and interfaces on the model parameters. It is commonly accepted that they depend on phase
densities and temperature. To the best of our knowledge, it is also widely accepted that
Helmholtz free energies of phases depend on saturation. Not including the dependence of
phase or interface Helmholtz free energies on saturation leads to unacceptable results. For
example, from the entropy inequality developed by Hassanizadeh and Gray (1990), it can
be concluded that the neglect of the saturation dependence in the free energies leads, for
isothermal systems, to the two phase pressures being equal, pn = pw. It is well known
from experiments that this equality does not hold. For describing two-phase flow in a ther-
modynamic framework, researchers have generally included the saturation dependence of
free energy; while Bowen (1982) made that assumption in the frame of mixture theory,
Hassanizadeh and Gray (1990) made their investigations based on that dependency in a
rational thermodynamics framework. Recently, Jackson et al. (2009) considered the ap-
proach of Hassanizadeh and Gray (1990) in the frame of a different thermodynamic ap-
proach also accounting for saturation dependency of the free energy. Another argument
in favor of the saturation dependence of free energy concerns the work of drainage out-
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lined by Seth and Morrow (2007). They argue that the work W done to the system (which
partially leads to an increase in surface free energy) is parameterized by the area under
the pc(Sw) curve at different saturations (Seth and Morrow 2007), i.e., W = W (Sw).
Since the work of drainage represents an energy change in the system, it is a contribu-
tion to the Helmholtz free energy and therefore, Helmholtz free energy should depend
on Sw.

Hassanizadeh and Gray (1990) derived an equation for the Darcy velocity of phases:

vα = −−S2
α K ∗

α

μα

·
(

∇ pα − ραg + ρα

∂ Hα

∂Sα

∇Sα

)
, (8)

where K ∗
α

is the permeability tensor of phase α.
For the interface between phases α and β, the following equation for the macro-scale

velocities of an αβ-interface is obtained:

vαβ = −R−1
αβ

·
(

∇(aαβγαβ) + aαβ�αβ g − aαβ�αβ

∂ Hαβ

∂Sw
∇Sw

)
. (9)

Hα and Hαβ are the Helmholtz free energies of phases and interfaces, respectively, aαβ is the
specific interfacial area of the αβ-interfaces (i.e., the interfacial area per unit volume), γαβ

is the macro-scale interfacial tension, and �αβ is the areal mass density (mass per unit area)
of αβ-interfaces.

For the full derivation of Eqs. 8 and 9, we refer to the original work by Hassanizadeh and
Gray (1990). A similar result for Eq. 8 was found by Bowen (1982) in the frame of mixture
theory.

Another important result of the work of Hassanizadeh and Gray (1990) is the definition
of macro-scale capillary pressure. From the residual entropy inequality, it was derived that
macro-scale capillary pressure corresponds to the changes in free energies of phases and
interfaces due to a change in saturation:

pc = ρn Sn
∂ Hn

∂Sn
− ρwSw

∂ Hw

∂Sw
−

∑
αβ

(
�αβaαβ

φ

∂ Hαβ

∂Sw

)
. (10)

Thermodynamically based “Darcy’s Law” without Interfacial Area When interfaces are
not included in the derivation of flow equations, no balance equations for interfaces can
be formulated and we are left with the equations for the velocities vα of the w-phase and
the n-phase as given in Eq. 8. Without accounting for interfaces, the definition of capillary
pressure identified in Eq. 10 will simplify to

pc = ρn Sn
∂ Hn

∂Sn
− ρwSw

∂ Hw

∂Sw
. (11)

Thermodynamically based “Darcy’s Law” with Fluid–Fluid Interfacial Area With wn-
interfaces, in addition to the equation for the velocity of fluid phases given by Eq. 8, we have
to account for velocity of the wn-interface as given in Eq. 9. Capillary pressure is then given
by Eq. 10 as

pc = ρn Sn
∂ Hn

∂Sn
− ρwSw

∂ Hw

∂Sw
− �wnawn

φ

∂ Hwn

∂Sw
. (12)

Fluid–solid interfaces could also be included, but are generally of secondary importance com-
pared to fluid–fluid interfaces and therefore not accounted for in this work. The reason for that
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is that the sum of the ws- and ns-interfaces is constant (equal to the specific solid surface).
The experimental evidence that hysteresis in the capillary pressure–saturation relationship
disappears to within the measurement error through inclusion of fluid–fluid interfacial area
Chen et al. (2007) only further supports this assumption.

3 Direct Comparison of Darcy’s Law with the Thermodynamically Consistent
Approach

In the next step, we compare the classical two-phase Darcy approach to the thermodynam-
ically consistent theory. By demanding equality of the “Darcy velocities,” i.e., the phase
fluxes, for the two-phase Darcy approach in Eq. 4 and the thermodynamically consistent
approach in Eq. 8, we must have

− krα K

μα

·
(
∇ pα − ραg

)
= − S2

α K ∗
α

μα

·
(

∇ pα − ραg + ρα

∂ Hα

∂Sα

∇Sα

)
. (13)

Equation 13 is the central part of our comparison and is investigated in detail. The goal of
the comparison is to identify if the extended Darcy’s law can capture the same physics as the
thermodynamically consistent approach and if properties and relationships from the classi-
cal approach can be “translated” to and used in the thermodynamically consistent approach.
Therefore, we consider the following two cases:

1. The first possibility is to set krα = krα(Sα) and also allow that K ∗
α

depends on saturation
Sα . Note that in this case, K ∗

α
(Sα) is a tensorial quantity which suggests that relative

permeability which, in the classical two-phase flow approach is assumed to be a scalar,
may be a tensor (Lake 1989; Ataie-Ashtiani et al. 2002). For simplicity, we accept the
choice of scalar relative permeabilities in the following.
Demanding that Eq. 13 holds both for ∇Sα = 0 and ∇Sα �= 0, we find an unresolvable
inconsistency in the definition of pc if interfacial area is not included. By accounting for
interfacial area, this inconsistency can be resolved.

2. The second possibility is that krα is a function of both Sα and ∇Sα which implies a
more complex material relation for relative permeability than is commonly assumed and
measured.

These two possibilities are investigated in more detail in the following subsections.

3.1 Case 1: K ∗
α

= K ∗
α
(Sα) and krα = krα(Sα) leading to ∂ Hα/∂Sα = 0

As constitutive relationships have to hold independent of gradients in saturation, we can
directly deduce a connection between K ∗

α
(Sα) and the relative permeability–saturation

relationship of the classical approach for the case ∇Sα = 0 from Eq. 13. This directly
leads to

krα(Sα)K = S2
α K ∗

α
(Sα). (14)

But this equation now needs to hold both for the general case with ∇Sα �= 0 (which is the case
in unsteady-state flow, for instance) and for the special case of ∇Sα = 0 (such conditions
occur in steady-state flow far away from boundaries; Tiab and Donaldson 2004; Kyte and
Rapoport 1958; Cable et al. 2000; Poulsen et al. 2000; Kalam et al. 2007; Dong and Dullien
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1997; Bacri et al. 1990). Inserting Eq. 14 in Eq. 13, we obtain

− ρα

∂ Hα

∂Sα

∇Sα = 0. (15)

For that, of course, we need to restrict considerations to the case where both fluid phases are
moving, i.e., where neither Sα nor K ∗

α
are equal to zero. Equation 15 must be valid for both

∇Sα = 0 and ∇Sα �= 0.
For Eq. 15 to hold for all ∇Sα , one must have ∂ Hα/∂Sα = 0. This leads to different

results depending on whether we include interfacial areas or not:

– No consideration of interfacial area Using the definition of pc from Eq. 11, we directly
obtain pc = 0 which is an inconsistency.

– Inclusion of interfacial area Let us recall Eq. 9 where the macro-scale velocity of a
wn-interface is given by

− ∇ (γwnawn) − �wnawng + �wnawn
∂ Hwn

∂Sw
∇Sw = R

wn
vwn . (16)

By identifying the term −�wnawn(∂ Hwn/∂Sw) as the product of capillary pressure and
porosity, see Eq. 12 with ∂ Hα/∂Sα = 0, we obtain

− φpc∇Sw = ∇ (γwnawn) + �wnawng + R
wn

vwn . (17)

In cases where gravity can be neglected, the equation simplifies to

− φpc∇Sw = ∇ (γwnawn) + R
wn

vwn . (18)

The inclusion of interfaces clearly leads to physically meaningful results. If there is a
saturation gradient, this can lead to two situations:

1. if interfaces are not moving, gradients in saturation can be balanced either by gravity
and/or by gradients in specific interfacial area and/or

2. a saturation gradient may lead to a movement of interfaces (expressed by vwn).

In case the saturation gradient vanishes, flow of interfaces is driven by a gradient in specific
interfacial area (if macroscopic interfacial tension is constant). The most important implica-
tion of this case is that capillary pressure being defined as −�wnawn

φ
∂ Hwn
∂Sw

shows that pc must
depend on saturation and specific interfacial area, i.e., pc = pc(Sw, awn).

3.2 Case 2: ∂ Hα/∂Sα �= 0 leading to krα = krα(Sα,∇Sα)

A non-vanishing term ∂ Hα/∂Sα is “lumped” into the krα relationship and as a consequence,
krα = krα(Sα,∇Sα) in general (only for the special case of ∇Sα = 0, krα = krα(Sα)). The
dependency on Sα and ∇Sα would imply a much more complex material behavior than is
commonly assumed and determined experimentally.

Note that the theory does not give any prediction about the magnitude of the terms
∂ Hα/∂Sα and �wnawn(∂ Hwn/∂Sw); their magnitude has to be determined for a given situa-
tion, e.g., in an experiment.

There is indeed experimental evidence that relative permeabilities depends on the capil-
lary number Nc = μv/σ (Boom et al. 1995, 1996; Avraam and Payatakes 1995b; Henderson
et al. 1996, 2000; Skauge et al. 2001; Bartley and Ruth 2001; Ataie-Ashtiani et al. 2002;
Tsakiroglou et al. 2004; Li et al. 2005) which was tested by variation of all three parameters
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(viscosity μ, flow velocity v, and the interfacial tension σ ). The dependency on v leads to an
implicit dependency on pressure gradients and thus, saturation gradients in the general case.

Recently, a modified Richards equation for unsaturated flow was proposed by Cueto-
Felgueroso and Juanes (2009), who introduced a term with a fourth-order saturation gradient
in the flow equation. This modification was based on a phase field model, with the aim of
describing a flow front instability during infiltration of water into (partially) dry soil. In their
formulation, the water flux depends on the third-order gradient of saturation. So, when lump-
ing the relative permeability and this higher-order term into an effective relative permeability,
which would not only depend on saturation Sw, but also on a third-order gradient of Sw.

We will continue by discussing whether Case 1 or 2 is more realistic.

3.3 Discussion: Magnitude/Importance of the ∂ Hα/∂Sα Terms

We have identified two different possibilities where the classical approach and the interfacial-
area-based approach provide the same results. From a mathematical point of view, the differ-
ence between these two possibilities lies in the question whether the derivatives ∂ Hα

∂Sα
can be

assumed to be identical to zero (or negligibly small). Therefore, we will have a closer look
at this issue in the following.

We closely follow the line of thought of two publications, Morrow (1970) and Seth and
Morrow (2007) who studied the change in the surface area in a pore-scale fluid configuration
(in particular pendular rings) and the relation to external work done to the system, e.g., work
of drainage of the wetting phase. In Morrow (1970), the reversible pore-scale fluid displace-
ment is studied in an idealized setup assuming that changes in the surface area are only due
to external work done on the system.

For isothermal flow, the change in the total Helmholtz free energy of the system is given
by

∑
α

∂ Hα

∂Vα

dVα = −
∑

α=w,n,s

pαdV ′
α +

∑
αβ=wn,ws,ns

σαβd Aαβ, (19)

where V is volume, σ is the pore-scale interfacial tension, and A is area. From there, by con-
sidering a virtual displacement (implying

∑
α

∂ Hα

∂Vα
dVα = 0) and assuming incompressible

phases, one obtains

(pn − pw) dVw +
∑

αβ=wn,ws,ns

σαβd Aαβ = 0. (20)

Dividing this equation by dVw, multiplying both sides by φ, taking account of σαβ =
−aαβ�αβ

∂ Hαβ

∂aαβ
and φ · ∂ Aαβ

∂Vw
= ∂aαβ

∂Sw
yields

φ (pn − pw) =
∑

αβ=wn,ws,ns

aαβ�αβ

∂ Hαβ

∂aαβ

∂aαβ

∂Sw
. (21)

The term ∂ Hαβ

∂aαβ

∂aαβ

∂Sw
can be transformed making use of the equality

d Hαβ = ∂ Hαβ

∂aαβ

∣∣∣∣
Sw

daαβ + ∂ Hαβ

∂Sw

∣∣∣∣
aαβ

d Sw, (22)
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considering the case d Hαβ = 0 and dividing by d Sw which yields

∂ Hαβ

∂aαβ

∂aαβ

∂Sw
= −∂ Hαβ

∂Sw
(23)

and finally

φ (pn − pw) = −
∑

αβ=wn,ws,ns

aαβ�αβ

∂ Hαβ

∂Sw
, (24)

which is identical to our result for pc from Eq. 12 for ∂ Hα

∂Sα
= 0 and considering wn-interfaces

only (Case 1), i.e., pc = −�wnawn
φ

∂ Hwn
∂Sα

.

Note that the terms ∂ Hα

∂Sα
vanish in Morrow’s work only due to the assumption of incom-

pressibility and reversible displacement, which does not fully describe the general case
because of irreversible displacement contributions. In case of irreversible displacement,∑

α
∂ Hα

∂Vα
dVα �= 0 leading to ∂ Hα

∂Sα
�= 0. Indeed, Seth and Morrow (2007) found that Eq. 20

does not hold for irreversible displacement. They found a discrepancy between the work done
to the system (left hand side of Eq. 20) and the change in internal energy, i.e., the change in
surface free energy (right hand side of Eq. 20). The external work W done to the system is
based on the pressure term in Eq. 20,

W = φVb

∫
pc d Sw, (25)

where Vb is the bulk volume of the solid. The change in internal energy is computed from
the change in surface free energy �H ,

�H = σwn (�Awn + �Ans cos 	) , (26)

where 	 is the contact angle and account was taken of Young’s equation. The ratio of the
change in surface free energy over the work done to the system is defined as net efficiency

Ed = �H

W
. (27)

Seth and Morrow found values of Ed between 0.36 and 0.85 which indicates that in the
general case (irreversible displacement), the terms ∂ Hα

∂Sα
have significant contributions and

cannot be assumed to be small.
As pointed out in Case 2, ∂ Hα/∂Sα �= 0 leads to krα = krα(Sα,∇Sα), i.e., kr,α can be

different for ∇Sw = 0 and ∇Sw �= 0. In most field situations, e.g., in oil recovery, there is
unsteady-state flow where saturations change over time and space, i.e., saturation gradients
∇Sw �= 0 occur in particular in the case of moving fronts (Buckley and Leverett 1942). Since
saturation changes are typically a combination of reversible and irreversible processes, for
the irreversible part, the ∂ Hα/∂Sα terms do not vanish: they can be of relevant magnitude
and are lumped into the krα = krα(Sα,∇Sα) relationships.

In laboratory experiments, however, relative permeability krα is typically determined in
both unsteady-state and in steady-state flow experiments. For steady-state flow, saturations do
not change over time. The overwhelming majority of experimental studies including numer-
ical simulations (Lake 1989; Tiab and Donaldson 2004; Langaas et al. 1996; Chen and Wood
2001; Cable et al. 2000; Urkedal et al. 2000) show that in steady-state experiments, apart from
sample heterogeneity and end-effects (Huang and Honarpour 1996), the saturation gradients
are small, i.e., ∇Sw ≈ 0. Under such conditions, the ∂ Hα/∂Sα∇Sα terms vanish. This would
imply that relative permeability determined in steady-state flow and in unsteady-state flow
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are not necessarily identical which is supported by experimental evidence (Tsakiroglou et al.
2004).

4 Conclusions

In this work, we have compared the classical model for two-phase flow with an existing
thermodynamically consistent approach. By demanding the equality of the specific fluxes of
both approaches (Darcy velocities), we could show that the extended two-phase Darcy’s law
is compatible with the thermodynamically consistent approach if either (i) relative perme-
abilities are a function of saturation only, but capillary pressure depends on saturation and
specific interfacial area or (ii) relative permeabilities are a function of saturation and satura-
tion gradients. Significant irreversible contributions to the work of drainage suggest that the
latter is the more likely case. It implies a more complex material behavior than commonly
assumed. The sensitivity of relative permeability with respect to saturation gradients must
be determined experimentally, but theoretical considerations suggest that the sensitivity may
be low in case of reversible displacement, but significant in the general case (irreversible
displacement). While this comparison study provided insights on the conditions under which
the classical and the thermodynamically based approach provide the same results, it needs
to be stressed that it is desirable to describe two-phase flow by explicitly accounting for the
driving forces for flow (as is done in the thermodynamically based approach) rather than
adapt constitutive functions.

In summary, we have demonstrated that under flow conditions, the classical two-phase
flow approach can be “mapped” onto the thermodynamically consistent flow theory by
Hassanizadeh and Gray (1990) when either interfacial area and/or a more complex relation-
ship for relative permeability are introduced. The direct comparison between both theories
shows a route how experimental data collected in the framework of two-phase Darcy flow
can be “translated” to determine the magnitude of the parameters in the thermodynamically
consistent theory.

Note that while mapping under flow conditions is possible, there are clear differences
between both theories under no-flow conditions. The difference is whether pressure gradients
have to be zero (classical two-phase flow approach) or may be non-zero (thermodynamically
consistent theory). We currently investigate this issue experimentally.
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