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Abstract We present here the approach to the theory of fluid-filled poroelastics based on
consideration of poroelastics as a continuum of “macropoints” (representative elementary
volumes), which “internal” states can be described by as a set of internal parameters, such
as local relative velocity of fluid and solid, density of fluid, internal strain tensor, specific
area, and position of the center of mass of porous space. We use the generalized Cauchy–
Born hypothesis and suggest that there is a system of (structural) relationships between
external parameters, describing the deformation of the continuum and internal parameters,
characterizing the state of representative elementary volumes. We show that in nonhomoge-
nous (and, particularly, nonlinear) poroelastics, an interaction force between solid and fluid
appears. Because this force is proportional to the gradient of porosity, absent in homogeneous
poroelastics, and one can neglect with dynamics of internal degrees of freedom, this force is
equivalent to the interaction force, introduced earlier by Nikolaevskiy from phenomenologi-
cal reasons. At last, we show that developed theory naturally incorporates three mechanisms
of energy absorption: visco-inertial Darcy mechanism, “squirt flow” attenuation, and skeleton
attenuation.
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1 Introduction

The purpose of this paper is to reformulate in a more systematic manner and in a somewhat
more general context the mechanics of fluid-saturated porous media and to present this in
a form that can be consecutively applied for nonhomogeneous and nonlinear materials with
arbitrary equations of state.

1.1 Motivation and Goals

The field of applications of poroelastic theory is growing fast. Initially, a significant num-
ber of works dealt with geophysical and civil engineering problems and marine acoustics.
Today, penetrable poroelastics are considered to be an appropriate mechanical image of living
tissues: they find applications as absorbers of sound, are considered as possible protective
materials able to mitigate the damage caused by blast impact, have impressive potential in
the design of new smart materials, and so on. As a result, it has become necessary to expand
current poroelastic theory to provide stronger physical consistency and universality. The the-
ory must be enough general to consider constituents with arbitrary equations of state and
must be applicable to arbitrary nonhomogeneous and anisotropic materials as well linear as
nonlinear.

However, in spite of a tremendous number of publications in this field, the discussion con-
tinues about physical background of the poroelastic theory. Even the form of basic governing
equations are sufficiently different (as we will discuss later in the article) in frame of differ-
ent approaches that one can find in literature. It seems that there is no final agreement about
consistency of proposed different approaches. Such key questions of theory as interfacial
conditions that must be used on the boundaries between materials with different properties
or on the moving shock fronts also are under question (de la Cruz and Spanos 1989; Gurevich
and Schoenberg 1999). This disturbing incompleteness of the poroelastic theory is troubling.
It was correctly stated by Gurevich and Schoenberg (1999), in respect to the problem of
consistent interfacial conditions, who made an attempt to address the problem of boundary
conditions in fluid-filled poroelastics, based on the Biot’s theory (Gurevich): “Their [de la
Cruz and Spanos—SL] concern, if justified, could throw into doubt all the theoretical and
numerical results based on the interface conditions of Deresiewicz and Skalak ….”.1 It is
even more correct in respect to agreement about basic governing equations.

To our view, a physically consistent theory must have solid background in general physical
laws and, particularly, pass though several relatively simple mental tests and checks.

First, theory must lead to total mechanical momentum conservation law independently of
the type of the material being considered: homogeneous or nonhomogeneous (and, particu-
larly, nonlinear). At the same time, theory must lead to correct momentum conservation law
for the fluid.

Second, theory must allow us to solve simple test problems. For example, in frame of
elementary physics, one can immediately answer the following question: Consider a ball of
volume � with rigid (or elastic) walls. One fills this ball with mass M of a fluid with known
equation of state. What will be physical state of the fluid and what will be the force acting on
the walls of the ball? This problem has an obvious solution: one simply has to calculate the
density of fluid and find the state and pressure from a known equation of state. However, can
one solve, for example, in frame of the most common “Biot’s theory,” a similar problem: Let
consider rigid ball that is initially filled with a compressible homogeneous “sponge” with

1 Deresiewicz and Skalak (1963) proposed the boundary conditions that are the most commonly used now in
the theory of poroelasticity.
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initial porosity ϕ0. The questions are: in which state will the fluid of mass M filling the porous
space in equilibrium be? What porosity will the sponge have at equilibrium and what force
will act on the wall of the ball? Will this force depend on the fact that a sponge is perfectly
bonded to the wall of the ball or only limited in it expansion? It is obvious that consistent
theory must answer such questions. However, in the frame of Biot’s theory, it is impossible to
solve this problem consecutively. The point is that, as correctly stated by Wilmanski (1998):
“M. A. Biot proposed an equation for porosity in which the flux was identified with the
relative velocity and the source (relaxation) was absent.” In the meantime, in application to
the formulated problem, the displacements or velocities of constituents cannot be introduced.
This is an indicator of the serious physical limitations of Biot’s theory.

Third, it is obvious that interfacial conditions even in a linear case must follow from
the general boundary conditions, which, in turn, must follow from governing equations of
the general theory of poroelasticity. In particular, the ability of the theory to provide correct
“linear” boundary conditions is also an important check of physical consistency of the theory.

Unfortunately, to the best of our best knowledge, there are no publications in which the
consistency checks of the theory are presented or even discussed. This article is the first in
the series that will address these issues.

1.2 State of the Art

Many approaches to modeling the mechanical behavior of poroelastics have been proposed.
Berryman (2005) separated all of these approaches into four groups: (1) effective medium
theory, (2) mixture theory, (3) multiscale homogenization, and (4) volume averaging. Also,
it is necessary to recall the theory of the multiple scattering of waves on the material nonho-
mogeneities that provides upscaling of the material properties, which we consider as a fifth
group, and has, however, significant specifics: it is based on one of the theories from first
four groups that play the role of a “seed theory.”

One can consider as examples the approaches of the first group of papers by Kastler and
Toksoz (1974), Milton (2002), and Berryman (1992), Berryman and Wang (1995) as typical
examples of mixture theory, the first publication in the field by Frenkel (1944), Rakhmatulin
(1956), Biot (1956), Biot and Willis (1957), Biot (1961), Biot (1973), Bedford and Drumheller
(1979), Berryman and Thigpen (1985), de Boer (2000), Wilmanski (1998), and examples of
multiscale homogenization are given by well-known works of Auriault and Sanchez-Palencia
(1977), Sanchez-Palencia (1980), Jikov et al. (1994), and Gilbert and Lin (1997), Gilbert
(2000). At last, examples of approaches based on direct volume averaging of microequations
are given by works of Nikolaevskiy et al. (1970), Nikolaevskiy (1984), Nigmatullin (1990),
and Milton (2002); works based on microaveraging of energy include those of Lopatnikov
(1995), Lopatnikov and Cheng (1998, 2002, 2004), and Lopatnikov et al. (2003).

Theory of the multiple scattering of waves on material nonhomogeneities, which provides
upscaling of material properties, are presented by works of Lopatnikov and Gurevich (1985),
Gurevich and Lopatnikov (1995), Lopatikov and Gorbachev (1987), Gorbachev et al. (1990),
Berryman (1992).

Obviously, we cannot mention all the works devoted to the problem. The body of appro-
priate literature includes thousands of published papers and dozens of monographs. One can
find a more extensive discussion of different approaches, presented in Lopatnikov and Cheng
(2004) and cited works of Berryman (2005). Later reviews are presented by Schanz (2009)
and Nikolaevskiy (2005).
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1.3 The Problems and Goal

In this article, we will view the most general form of governing dynamic equations on
poroelasticity, consider and discuss appropriate conservation equations, and compare devel-
oped theory with other approaches. We will show also that interaction force introduced by
Nikolaevskiy et al. (1970) is universal and naturally appears in frame of our theory. However,
if the internal dynamics of REVs is significant, it has a more complex structure in comparison
with Nikolaevskiy’s suggestion.

In future publications, we will specifically address the problem of equilibrium of porous
material with compressible matrix with fluid, obtain interfacial boundary conditions for shock
fronts and boundaries between two porous materials, come to canonical representation for
linear waves in homogeneous and nonhomogeneous material, and investigate the relationship
between this canonical representation of wave propagation and theory of (effective) materials
with memory (Hanyga and Rok 2000).

1.4 Approach

The principal point of the approach presented in this article, which differentiates it from most
early works, is the specific view on the modeling of porous materials.

We approach the porous material as one continuum of material points, each with an “inter-
nal structure.” Deformation of this continuum represents deformation of the smoothed (solid)
matrix of the material, identified by the movement of the centers of masses of the “material
point” (or REVs), having some internal structure. Thus, one can consider presented theory
as generalization of the mechanics of continuums with internal degrees of freedom such as
Cosserat (micropolar) continuum (Cosserat and Cosserat 1909; Eringen 1968), continuum
with voids (Dunin and Surkov 1979; Cowin and Nunziato 1983), micromorphic Mindlin’s
continuum (Mindlin and Tiersten 1962; Mindlin 1964)

This view leads to a clear distinction between “external parameters” characterizing the
deformation of the continuum as a whole and “internal parameters” that characterize the state
and internal dynamics of the REVs.

If the number of external parameters is fixed by the fact that the REVs are associated with
the points of the macro-continuum, the number and character of internal parameters differ,
depending on the “depth of the model” and construction of the continuum.

In terms of a generalization of the Cauchy–Born hypothesis (See for example, (Eringen
1968; Ball 1977; Ericksen 1984), widely used in continuum theory of crystals to frame our
approach: we suggest (in frame of local theory) that a full set of parameters fully character-
izing the state of “macro-point” (REV) includes only internal parameters plus coefficients of
the gradient of deformation in appropriate point of macro-continuum.

In this context, in contrast to our approach, we previously presented (Lopatnikov and
Cheng 1998, 2002, 2004) that the averaging procedure is an important but limited part of the
theory. Its specific goal in the frame of the presented theory is to identify the relationship
between (variations of) the external and introduced internal parameters.

Thus, the problem of structural modeling of the material consists of these steps.

• Identify the material points (REVs) of the material.
• Identify a set of internal parameters (in accordance with external parameters are universal

and follow from representation of the material as the continuum)
• Establish relationships between macro-deformation and changes of the internal

parameters
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REV. The key idea of the presented poroelastic approach (as in the theory of composites)
is the concept of REV. This term was first used by Bear (1972, 1993).

The common view on the REV is completely phenomenological: “In order to establish a
given porous medium’s properties, we are going to have to measure samples of the porous
medium. If the sample is too small, the readings tend to oscillate. As we increase the sample
size, the oscillations begin to dampen out. Eventually the sample size will become large
enough that we begin to get consistent readings. This sample size is referred to as the repre-
sentative elementary volume.”

This definition picks up two important ideas: the relationship between the type of mea-
surement and definition of REV size and suggestion that fluctuations of a taken value must
decrease with increasing of the size of specimen (which is a strong enough condition, but can-
not always be satisfied), this definition is not completely satisfactory for theory. An attempt
to provide a more rigorous definition of REV is presented by Evesque (2000). Evesque based
his approach on the calculation of correlation function for the parameters, characterizing the
structure of the material (porosity, density), and suggested that appropriate correlation func-
tions tend to zero at infinity and, thus, one can define characteristic size on which correlation
is negligibly small. As a result, one can consider values defined for volumes separated by
such distance as independent and can consider appropriate volumes as REVs.

External parameters. As mentioned previously, external parameters appear as a result of
the deformation of the continuum, each point of which represents some REV. If one considers
an arbitrary smooth deformation of continuum: ξS = ξS (X, t) , where ξS is a coordinate of
the material point (REV) X in its deformed state, locally this deformation can be described

by the deformation gradient
�

�X
(
X̄

) =
∥∥∥
(

∂ξSi
∂ X j

)

X

∥∥∥ . In frame of an extended Cauchy–Born

hypothesis, gradient of deformation is the only value which a material point can “feel,” if
long-range interactions such as electric or gravity fields are absent.

The deformation gradient contains nine coefficients–functions, whose form is restricted
by the condition that all of them are appropriate derivatives of only three functions: ξS =
ξS (X, t).

The major statement of the presented theory is that nine coefficients of the deformation
gradient (and, probably, their time derivatives) completely represent the information available
for a given REV about the behavior of the body as a whole. This includes both information
about the deformation of the neighborhood of the given REV and information about changes
of its spatial orientation. Thus, external parameters completely describe the mechanical state
of the environment of a given REV.

However, because the state of REV cannot depend on its orientation in space, the potential
part of REV’s energy cannot depend on the part of deformation gradient defining rotation of
REV as a solid body. Thus, potential energy of REV can depend only on associated strain
tensor �̂ (X) having, due to symmetry, only six components.

Internal parameters. If external parameters reflect the continual nature of the REV envi-
ronment, then internal parameters represent the “construction” of the REV itself. Examples
of internal degrees of freedom are relative velocity of fluid in the REV, porosity, microstrain
of solid matrix, density of fluid, etc. The number of such internal degrees of freedom depends
only on the structure of REVs and “depth” of the modeling and, thus, must be defined from
practical reasons.

The set of internal parameters represent the finite-dimensional model of the REV. Depen-
dent on considering physics, one can take in account, for example, one can add the coordinate
of the “geometrical center” of porosity in taken REV ξϕ (X, t) as an independent parame-
ter and characterize its position in respect to the center of REV mass by vector of relative
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displacement: �ξ (X, t) = ξϕ (X, t)− ξS (X, t) . Similarly, one can introduce as the internal
parameter orientation of major axes of the momentum of inertia of REV. In some problems,
such as the destruction of the material, if REV’s energy depends on a specific area of internal
space, one can consider also the average specific surface within the REV as a parameter of
state, etc.

Constitutive relationships for REVs. In the scope of this article, we will restrict our-
selves to the local theory, which means that no long-range fields are significant and thus, only
external and internal parameters of an REV take part in the constitutive equations. However,
an appropriate generalization for the non-local case is also possible in the frame of the logic
presented here.

First, it is necessary to introduce a set of relationships describing how internal and external
degrees of freedom of REV are related with each other. We will refer to such relationships
as “constitutive relationships.”

The formulation of these relationships is a problem of micromodeling the material REVs
and a wide range of approaches can be used to accomplish this task.

The most general way to introduce this structural relationship is to define it for variations
of external and internal parameters. In such incremental form, the theory can describe revers-
ible (potential) and irreversible (non-potential) deformations of porous materials. Moreover,
these structural relationships are defined between variations of parameters, therefore they
can always be considered to be linear.

Procedure. The physical theory is completed as governing equations are formulated. The
most general approach to obtain these governing equations is the Minimal Action Principle
and its associated variational procedure. We will use this principle to get an appropriate set
of governing equations.

Such a general approach to the theory of fluid-filled poroelastics provides the bridge
between the multiscale modeling of complex materials and the theory of poroelasticity and,
also, between the theory of poroelasticity and numerical modeling.

2 Outline of Lagrangian Approach to the Mechanics of Fluid-filled Poroelastics

In this section, we outline the Lagrangian approach to the mechanics of fluid-filled poroelas-
tics, using described above approach. This procedure is slightly different and more general
than used by us earlier (Lopatnikov and Cheng 2002, 2004).

2.1 Action of the Materials With Internal Structure and Outline of Variational Procedure

This follows the classic formulation of the mechanics and is based on consideration of the
action of continuously distributed in space material:

A =
t1∫

t0

Ldt (1)

We will identify the movement of porous body as a continuum with movement of in solid
matrix. Considering the body as a set of REVs. In absence of long-range interactions, one
can presented LagrangianL in terms of the mass density of Lagrangian l (x, t):

L(t) =
∫∫∫

M

L (x, t) dm (2)
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In case of two-phase material, “micro-equations” 1, 2 must be replaced with their averaged
equivalents:

〈A〉 =
t1∫

t0

〈L〉dt; (3)

〈L〉 (t) =
∑

xi

〈L (x, t)〉xi
· �Mxi ≡

∑

xi

⎛

⎜
⎝

1

�mxi

∫∫∫

�xi

L (x, t) dmxi

⎞

⎟
⎠ ·�mxi (4)

Here MXi is the mass of an i-th REV, over which the averaging of Lagrangian is making an
Xi —the coordinate of the center of mass of appropriate REV in the referent state. One can
see that on this stage, material is presented as a set of discrete “macro-points” and overall
Lagrangian is a sum of average “local” Lagrangians of REVs. Each local Lagrangian depends
of the state of appropriate REV.

The next step in creation continuum model of the fluid-filled porous body is the transition
from integral sum (4) to it continuum equivalent. One has:

〈A〉 =
t1∫

t0

〈L〉dt =
t1∫

t0

∫∫∫

MX

L (αi (X) , x (X, t) , t) dmdt (5)

Here we introduced: L (αi , X, t) ≡ 〈L (x, t)〉X .d�X is the volume element in Lagrangian
macrocoordinates (i.e., each vector X marks specific REV). Also, we denote here as αi (X)

the set of parameters characterizing the state of REV X.
The first problem is to identify the set of parameters of state of REVs (i.e., parameters,

which define the state of taken REV. For propose of this article, to make the results eas-
ily comparable with previous publications, we will use the simplest set of such parameters,
which include external parameters, strain of solid matrix, mass (or density) of the fluid, and its
relative (in respect to REV) velocity and volume available for fluids (Lopatnikov and Cheng
1998, 2002, 2004). However, the procedure of incorporation into other internal degrees of
freedom is identical to those used in this article and should not provide any difficulties.

One has to define the movement (deformation) of the material. The major point here is
that for penetrable materials, the movement of solid matrix and fluid independently must be
considered independently. It means that in referent state one Lagrangian coordinate X0 refers
to two separate macropoints (REVs): one for fluids, one for solids. Thus, movement for each
face must be defined separately. Let us define the movement of solid phase:

x = x (X, t) ; x (X, 0) = X (6)

This means that center of mass of REV X is moved in time t in the point with coordinates
x = x (X, t). Similarly, one can define the movement of fluid:

xf = xf (X, t) ; xf (X, 0) = X (7)

This means that the liquid part of the REV X is moved in time t in the REV, with its center of
mass occupying coordinate ξ f (X, t) and belonging now to the REV X′ with the following
coordinate (Fig. 3):

x
(
X′, t

) = xf (X, t) (8)
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Relationship (8) explains the meaning of deformation of a two-phase continuum, which
includes deformation of a matrix related to the movement of macropoints (REVs) and inde-
pendent movement of fluid and it distribution between different macropoints (REVs).

Now one has to specify the form of action. Because fluid and solid occupy separate vol-
umes on the micro level, and because a major property of energy is to be (in absence of
long-range interaction between different parts of system) an additive function of the sys-
tem constituents, the Lagrangian of the system can be separated in two parts that represent
Lagrangian solid and fluid parts of the system.

This property is still valid for average Lagrangians, too. Using an exact averaging pro-
cedure, presented in details in Lopatnikov and Cheng (2004), if only an internal strain of
the body, fluid, and solid densities, porosity, and their time derivatives are considered as
parameters of REV state, one can present Lagrangian of the system as:

A =
t2∫

t1

∫∫∫

�X

[(
V2

S

2
+ kS − es

(
ε̄i j , ϕ

)
)

dmS +
(

V2
f

2
+ kf − es (ρf )

)

dmf

]

dt (9)

Here VS = dx
dt

; Vf = dxf
dt

. Several remarks must be made about this expression (9).
First, in this expression for clarity, we separated masses of fluid and solid in taken in

instances of time to stress the difference between variation procedures for one-phase and
two-phase bodies. Also, we omitted brackets, which we used above to notate operation of
averaging over REV volumes. Thus, notation A in (9) now means average action.

Also, we took (9) in account in that potential energy density of fluid must depend only on
the fluid density.

One does not have this restriction for solid body energy. Because average energy density
of deformation of the body per unit of mass in general case depends on porosity changes, the
solid body deformation energy density is a function of internal strain and porosity.

Average kinetic energy density of the constituents is a sum of kinetic energy density
related with average movement of the REV and kinetic energy, related with fluctuations of
particle velocity on the micro level with each REV. Density of the kinetic energy related
to the average movement of REV is equal simply to half of second power of velocity. The
density of kinetic energy of fluctuations must be calculated from the micro-model of REVs
and can be presented as:

kS,f = 1

ωS,f

∫

�S,f

(
Ṽ2

S,f

2
+ ρ̃S,f

ρS,f
VS,f · ṼS,f + ρ̃S,f

ρS,f

Ṽ2
S,f

2

)

dω (10)

Integration here must be made over the volumes ωS,f , occupied within REV by appropriate
phase; ρS,f , VS,f are average density and average of constituent material and (∼) denotes
fluctuations of associated values. If one can neglect the correlation between fluctuations of
density and fluctuation of particle velocity, or if one can consider material as approximately
incompressible, expression (10) becomes very simple:

kS,f =
〈
Ṽ2

S,f

〉

S,f

2
(11)

Here we denoted 〈. . .〉S,f as operation of averaging over volumes of phases. If we assume
that the microscopic fluctuations are caused by macroscopic asynchronous motion of solid
and fluid, one can present the kinetic energy of fluctuations in a general form:
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kS = kS
(
ε̄i j , ϕ, ˙̄εi j , ϕ, VS − Vf , . . .

) ; kf = kf (ρf , ρ̇f , VS − Vf ) (12)

Expression (10) provides the way to calculate and estimate the value of additional mass for
particular REV’s micro-model. One can see that just this portion of kinetic energy, related to
microscale fluctuations of material movement, is responsible for the appearance of additional
mass. For the additional mass related to the inclination of fluid particle velocities from an
average value, it was explicitly shown by us (Vinogradova and Lopatnikov 1990) in some
periodic structures.

Let us consider a variation of expression (9):

δA =
t2∫

t1

∫∫∫

�X

[(
V2

S

2
+ kS − es

(
ε̄i j , ϕ

)
)

δdmS +
(

V2
f

2
+ kf − es (ρf )

)

δmf dt

]

+
t2∫

t1

∫∫∫

�X

[

δ

(
V2

S

2
+ kS − es

(
ε̄i j , ϕ

)
)

dmS (t) + δ

(
V2

f

2
+kf−es (ρf )

)

dmf (t) dt

]

(13)

One can see that this variation can be separated in two parts. The first part is related to a
variation of values: dmS = (1 − ϕ) ρSd�XS (t) anddmf = ϕρf d�XS (t) . The second part is
related to a variation of the densities of Lagrangians of different phases.

However, by definition of solid phase movement, the mass of solid phase for each REV
during variation is constant and, thus:

δ (dmS) = δ
(
(1 − ϕ) ρSd�XS (t)

) = 0 (14)

Similarly, for fluid one has:

δ (dmf ) = δ
(
ϕρf d�Xf (t)

) = 0 (15)

Thus, the integral in (13) is equal to zero and integration in the second integral can be made
without distinction of fluid and solid volumes. Consequently, one can write:

δA =
t2∫

t1

∫∫∫

�

[

(1 − ϕ) ρSδ

(
V2

S

2
+ kS − es

(
ε̄i j , ϕ

)
)

+ ϕρfδ

(
V2

f

2
+ kf − es (ρf )

)

d�

]

(16)

The total variation of Eq. 16 is thus given by:

δA =
t2∫

t1

∫∫∫

�

(1 − ϕ) ρS

[

VSδξ̇S + ∂kS

∂V−
(
δξ̇f − δξ̇S

) + ∂kS

∂ ˙̄εi j
δ ˙̄εi j + ∂kS

∂ϕ̇
δϕ̇

+∂kS − eS

∂ε̄i j
δε̄i j + ∂kS − eS

∂ϕ
δϕ

]
d�dt

+
t2∫

t1

∫∫∫

�

ϕρf

[
Vfδξ̇f + ∂kf

∂V−
(
δξ̇f − δξ̇S

) + ∂kf

∂ρ̇f
δρ̇f + ∂kf

∂ϕ̇
δϕ̇ + ∂kf

∂ϕ
δϕ

+ρf
∂kf − ef

∂ρf

δρf

ρf

]
d�dt (17)
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Here we took in account the definition of velocity, δVS,f = δξ̇S.
One can see that expression (17) contains variations of only internal variables.
Thus, to complete the construction of the theory, based on macrodeformations of the porous

material, it is necessary to establish relationships between variations of internal parameters
of REVs and variations of external parameters (i.e., to specify the construction of REVs).

It is useful to recall that one can always consider the variations as infinitely small values
and, thus, in each taken state, these relationships are always linear.

2.2 Relationships between variations of external and internal parameters of the material
and consolidation coefficients

Independently in a specific construction of the REVs, two relationships between external and
internal parameters are automatically defied by mass conservation law for solids and fluids
(14, 15). Let us consider these relationships in more detail.

One has:

δS (dmS) = −ρSd�XS (t) δSϕ + (1 − ϕ) d�XS (t) δSρS + (1 − ϕ) ρSδSd�XS (t) = 0

(18)

δf (dmf ) = ρf d�Xf (t) δfϕ + ϕd�Xf (t) δfρf + ϕρfδf d�Xf (t) = 0 (19)

We used index (S,f) to stress that these variations are related with movement of different
phases. First, one can rewrite these equations in a more convenient form.

− δSϕ

1 − ϕ
+ δSρS

ρS
+ δSd�XS

d�XS

= 0 (20)

δfϕ

ϕ
+ δfρf

ρf
+ δf d�Xf

d�Xf

= 0 (21)

Considering this variations, one must remember that porosity and density of solids and vol-
umes d�XS are properties of a solid part of considering elementary macrovolumes. Similarly,
the density of fluid and volume d�Xf is a property of the fluid part of elementary macrovo-
lumes. Thus, their variations represent simply variations of associated function defined in
macropoints. One can omit indexes for this variation. However, porosity is not the property
of the liquid part for considering volume. Its variation δfϕ consists of two parts. One part
represents variation of porosity itself:

δ̄fϕ = δϕ (22)

The second part is related to the movement of mass of fluid from its initial REV into the
other REV. If we suggest that porosity is a smooth function of REV (i.e., ϕ (X) is a smooth
function), we can present this part of variation as:

¯̄δfϕ = (
δξ f − δξS

) · ∇Xϕ (23)

Thus, we can write:

δfϕ = δϕ + (
δξ f − δξS

) · ∇Xϕ (24)

As a result, relationship (21) obtain the form:

δϕ

ϕ
+ (

δξ f − δξS
) · ∇ϕ

ϕ
+ δρf

ρf
+ δd�Xf

d�Xf

= 0 (25)
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Presence in (25) of the term proportional to gradient of porosity qualitatively differs our
proposed variational procedure from the variational procedures used earlier by Bedford and
Drumheller (1979), in a later paper by Berryman and Thigpen (1985), and other authors. We
will see that just this term is responsible to appearance of the force ±p∇ϕ, introduced by
Nikolaevskiy in momentum conservation equations.

Now one can express variation of densities δρS,f and volumes δd�XS,f in terms of varia-
tions of external and internal stain tensors.

Variation of volume δd�XS,f , by construction of macromodel, is related with external
strain as:

δd�XS

d�XS

= δεS (26)

Here:

δεS = T rδε̂S. (27)

In the meantime, virtual external strain tensor for (virtually) small deformations representing
virtual movement of the material δξS , can be always presented as:

δεi j = 1

2

(
∂δξ

j
S

∂ Xi
+ δξ i

S

∂ X j

)

(28)

Thus:

δεS = ∂iδξ
j

S (29)

By definition of internal strain as average strain in solid body, one has:

δρS

ρS
= −δε̄S (30)

where:

δε̄S = T rδ ˆ̄εS (31)

However, there is not any universal relationship of (27) type for virtual internal strain tensor,
because there is no a priori defined vector field, generating this tensor. One must consider this
value simply as a symmetric tensor field defined on the space of macropoints and containing
six independent components.

Similarly, one can relate the variation d�Xf with virtual macromovement of fluid. One
has:

δd�Xf

d�Xf

= δεf (32)

Here:

δεf = ∂iδξ
i
f (33)

One can also define formally virtual internal strain tensor for liquid:

δρf

ρf
= −δε̄f (34)

With these additions, one can present (20, 21) as:
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− δϕ

1 − ϕ
− δε̄S + ∂iδξ

i
S = 0 (35)

δϕ

ϕ
+ 1

ϕ

(
δξ i

f − δξ i
S

)
· ∂ϕ

∂ Xi
− δε̄f + ∂iδξ

i
f = 0 (36)

Thus, two universal relations are given by Eqs. 35, 36, representing mass conservation laws
for solid and fluid constituents of REVs. However, the total number of static internal param-
eters equals eight (six components of internal strain tensor, density of fluid, and porosity).
Thus, in general, a maximum of six additional relationships between these variations can
be defined. It is convenient to introduce these additional relationships as the relationships
between external and internal strain tensors as:

δε̄Si j = L̂kli j
(
ε̄i j , ϕ, ρf , t

)
δεSi j (37)

We will refer relationships of (37) type as “material structural equations,” or simply as
“structural equations” and introduced coefficients Lkli j as “structural” or “consolidation”
coefficients, because they define whether the external strain causes the strain of matrix or
not. Absence of such a relationship means that material is not statically consolidated.

Here we explicitly marked that these coefficients could be functions of parameters of the
REV state and, in a general case, they also could be some operators of time, dependent on
the specific “construction” of material REVs.

When coefficients L̂kli j connect two tensors of second rank, by well-know property of
tensors, they form a tensor of the fourth rank. Also, because virtual strain tensors are sym-
metric, and, thus, contain six independent coefficients, fourth-rank tensor Lkli j contains a
maximum of 21 independent structural coefficients.

However, it seems too rigid a suggestion. If external deformation uniquely defines the
deformation of solid matrix, it follows from (35) that it also uniquely defines the porosity.
Consequently, porosity cannot be changed without external deformation of solid matrix, and
means that if δεSi j = 0, the variation δϕ is also equal to zero. In this case, from (36), its
follows that if there is no flow of fluid into or out of the considering volume and, thus,
∂iδξ

i
f = 0, the density of fluid can not be changed: δε̄f = 0. In other words, if relationship

(37) provides a one to-one map, one comes to conclusion that compressible components of
porous material encapsulated in rigid ball cannot change their densities and volumes, which
looks physically incorrect. The suggestion that (37) provides a one-to-one map makes the
system “too rigid.”2 Thus, for description of porous material having maximal consolidation,
one must define not six, but only five relationships between five components of external and
internal strains tensors. It is easy to calculate that consolidation tensor L̂ can contain now
only contain 15 different coefficients.

If dilatation is absent, the most convenient suggestion is to define these relationships as a
linear relationship between traceless parts of variation of external and internal strain tensor.
In this case, one can write:

{
δε̄i j

} = Li jkl {δεkl} (38)

2 This point is important, because, to the best of our knowledge, it has never been discussed in literature
and refers to one of the key questions of porous material modeling: can one change the porosity of porous
material without changing its external shape, for example, by application homogeneous pressure to “internal
surface”? It seems that a positive or negative answer on this question is an additional “axiom.” From a physical
standpoint, authors prefer to give a positive answer, which matches, particularly, the logic of Frenkel, presented
in his famous paper (Frenkel 1944).
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as it was proposed in (Lopatnikov and Cheng 2002). This suggestion means that external
strain does not affect the density (and, consequently, porosity) of the solid material. Here we
used notation:

{
ai j

} = ai j − 1

3
aiiδi j (39)

One can see that this choice does not change the relationship (35), because shear components
of variation of internal strain, which can be expressed in terms of variation of external strain,
simply do not take part in this equation. All other possible choices (which depend on structure
of the materials) will affect this relationship. It can happen, for example, for materials with
dilatation.

Mechanics of porous materials are not limited to materials, which have a maximal level of
consolidation. For (partially) nonconsolidated materials, the number of consolidation equa-
tions is smaller than five. In the case of non–fully consolidated materials, only some (<5)
internal parameters can be uniquely related with external deformations. All other parame-
ters one must consider as statically nondefined. As we will see, free parameters lead to the
appearance of additional dynamic equations.

Considering the most consolidated porous material, one can present variation (17) in the
form:

δA =
t2∫

t1

∫∫∫

�

(1 − ϕ) ρS

[

VSδξ̇S + ∂kS

∂V−
(
δξ̇ f − δξ̇S

) + 1

3

∂kS

∂ ˙̄εi j
δ ˙̄ε + ∂kS

∂ϕ̇
δϕ̇

+ ∂kS

∂ ˙̄εi j

{
δ ˙̄εi j

} + 1

3

∂kS − eS

∂ε̄i j
δε̄ + ∂kS − eS

∂ϕ
δϕ + ∂kS − eS

∂ε̄i j

{
δε̄i j

}
]

d�dt

+
t2∫

t1

∫∫∫

�

ϕρf

[
Vfδξ̇ f + ∂kf

∂V−
(
δξ̇ f − δξ̇S

) + ∂kf

∂ρ̇f
δρ̇f + ∂kf

∂ϕ̇
δϕ̇ + ∂kf

∂ϕ
δϕ

+∂kf − ef

∂ρf
δρf

]
d�dt (40)

One has from (36, 37):

δε̄S = ∂iδξ
i
S − δϕ

1 − ϕ
(42)

δρf = −ρf

(
∂iδξ

i
f + δϕ

ϕ
+ 1

ϕ

∂ϕ

∂ Xi
·
(
δξ i

f − δξ i
S

))
(43)

For variations of time derivatives of these values, one has:

δ ˙̄εS = ∂iδξ̇
i
S − δϕ̇

1 − ϕ
− ϕ̇

(1 − ϕ)2 δϕ (44)

δρ̇f = −ρf∂iδξ̇
i
f − ρ̇f∂iδξ

i
f − ρf

ϕ
δϕ̇ − ρf

ϕ

(
ρ̇f

ρf
− ϕ̇

ϕ

)
δϕ − ρf

ϕ

∂ϕ

∂ Xi
·
(
δξ̇ i

f − δξ̇ i
S

)

−ρf

ϕ

[
∂ϕ̇

∂ Xi
+

(
ρ̇f

ρf
− ϕ̇

ϕ

)
∂ϕ

∂ Xi

] (
δξ i

f − δξ i
S

)
(45)

and, using suggestion (39):
{
δ ˙̄εi j

} = Lkli j {δε̇kl} + L̇kli j {δεkl} (46)
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Using standard variational procedure, one comes in laboratory frame of coordinates, to the
next system of three momentum conservation equations for solid and fluid movement and
for changes in porosity:

(1 − ϕ) ρS

(
∂πSi

∂t
+ VS j

∂πSi

∂ X j

)
− ∂�Si j

∂x j
+ Finti = FS(dis)i + fS(ext)i (47)

ϕρ f

(
∂πfi

∂t
+ Vf j

∂πfi

∂ X j

)
+ ∂ Pf

∂ Xi
− Finti = Ff(dis)i + ff(ext)i (48)

∂�ϕi

∂t
+ VS j

∂�ϕi

∂ X j
− Fϕ = Fϕ(dis) (49)

A significant singularity of the system (47, 48) is that, in opposition to poromechanics the-
ories proposed earlier, these governing equations define not the only equations of external
deformation of solid matrix and movement of fluid, but also of a complete set of internal
parameters of the material.

Let us enumerate complete set of parameters of unknowns. These unknowns are: three
components of external deformation of solid body ξ i

S; three components of the fluid velocity
V i

f , density of fluid ρf , density of solid ρS, porosity ϕ, and, at last, six components of internal
strain tensor ε̄i j . Thus, the total number of unknowns in (47–49) is equal to 15.

In the mean time, the system (50, 51) contains only seven equations. What are the final
relationships?—Two additional equations come from mass conservation laws and represent
continuity equations for solid and fluid phases:

∂ (1 − ϕ) ρS

∂t
+ ∂ (1 − ϕ) ρSVSi

∂ Xi
= 0 (50)

∂ϕρ f

∂t
+ ∂ϕρf Vfi

∂ X j
= 0 (51)

The relationship between the variation of solid density ρS and the bulk part of the solid
internal strain tensor:

dε̄ = −dρS

ρS
(52)

provides the sixth equation. The last five equations relate, as discussed previously, small
variations of internal and external shear modulus, which can be presented in differential or
time-dependent form:

{
dε̄i j

} = Li jkl {dεkl} →
{

dε̄i j

dt

}
= Li jkl

{
dεkl

dt

}
(53)

Thus, the system of governing equations of porodynamics (47–53) is now complete and can
be investigated. Details of introduction in the theory of dissipative and external forces acting
on constituents of the material one can find in (Lopatnikov and Cheng 2004).

It is important to mention that general differential relationships are not necessary inte-
grable (potential) and, thus, expression (53) describes as reversible (potential) as irreversible
deformations of porous matix.

2.3 Degree of Consolidation and Structural Degradation of Porous Materials

As mention previously, structural coefficients (38) in general can be operators of time. A
material can be dynamically defined, but a matrix of coefficients in the stationary state can
be degenerated.
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A simple example is an isotropic material with viscous type of load transmission from
external to internal strain:

{
dε̄i j

} = τν

d

dt

{
dεi j

}
(54)

For any dynamic movement, this type of relationship is well-defined. However, in a static
case, the matrix of structural coefficients will be completely degenerated. Thus, defining the
degree of consolidations, we refer to the stationary state of a porous material. Definitely,
some destructive processes can lead to the change in degree of material consolidation.

This observation provides a clear way for classification of porous material degradation.
Two factors must be taken in account: the loss of integrity (which can be described by the
difference between initial and final degree of consolidation) and symmetry properties of the
initial and final matrices of structural coefficients. Because the loss of integrity in all events
makes the system “more symmetric,” both factors must be taken into account simultaneously.

2.4 A simplified Form of Governing Equations

To establish a physical meaning for the obtained governing equations, one can completely
neglect the parts of kinetic energy related to fluctuations in comparison with average kinetic
energy. Later we will consider conditions when it possible and which parts one can neglect.
In this case, expressions for momentum of constituents, phase pressure of the fluid, stress
tensor of matrix, and interaction force are drastically simplifying. One has:

�fi = ϕρf Vfi (55)

Pf = ϕpf (56)

�Si = (1 − ϕ) ρSVSi (57)

�kl = (1 − ϕ) ρS

((
1

3

∂eS

∂ε̄nm
δnm − 1

3

∂eS

∂ε̄i j
Lnmi jδmn

)
δkl + ∂eS

∂ε̄i j
Lkli j

)
(58)

Finti = pf
∂ϕ

∂ Xi
(59)

One can not completely neglect the fluctuational term in expression for �ϕi , because appro-
priate expression does not contain any values with which it can be compared. However, one
can neglect in this expressions the terms, containing the derivatives of fluctuational parts of
kinetic energy of constituents over ρ̇f and ˙̄εi j in comparison with derivatives in respect to ϕ̇.
Moreover, if to hold only the major term in respect to ϕ̇ and, thus, to suggest that:

kf ≈ 1

2
l2
fϕϕ̇2 (60)

and:

kS ≈ 1

2
l2
Sϕϕ̇2 (61)

where we introduced coefficients l2
fϕ and l2

Sϕ , which must have the dimension of a second
power of length to provide a proper dimension for the kinetic energy density of fluctuations,
one has, for the generalized momentum, related with porosity dynamics:

�ϕ = ρf l
2
fϕϕϕ̇ + ρSl2

Sϕ (1 − ϕ) ϕ̇ (62)

123



486 S. L. Lopatnikov, J. W. Gillespie Jr.

At last, generalized force Fϕ in this approximation is equal to:

Fϕ =
(

− (1 − ϕ) ρS
∂eS

∂ϕ
+ ρ2

f
∂ef

∂ρf
+ 1

3
ρS

∂eS

∂ε̄i j
δi j

)
(63)

or, using definitions of solid and liquid pressures:

Fϕ =
(

− (1 − ϕ) ρS
∂eS

∂ϕ
+ pf − pS

)
(64)

In this approximation, equations of porodynamics in absence of external fields obtain trans-
parent form:

(1 − ϕ) ρS

(
∂VSi

∂t
+ VS j

∂VSi

∂ X j

)
− ∂�Si j

∂x j
+ pf

∂ϕ

∂ Xi
= FS(dis)i (65)

ϕρf

(
∂Vfi

∂t
+ Vf j

∂Vfi

∂ X j

)
+ ∂ϕpf

∂ Xi
− pf

∂ϕ

∂ Xi
= Ff(dis)i (66)

ρSl2
Sϕ

[
(
1 + λϕϕ

) d2ϕ

dt2 + λϕ

(
dϕ

dt

)2
]

= pf − pS − (1 − ϕ) ρS
∂eS

∂ϕ
+ Fdisϕ (67)

Here we introduce parameter:

λϕ =
(
ρf l2

fϕ − ρSl2
Sϕ

)

ρSl2
Sϕ

(68)

It is important to mention that one must understand the derivative in (67) as a full derivative
over time, reflecting transport of the porosity. Thus, in the Eulerian frame, one has:

d

dtϕ
= ∂

∂t
+ Vϕi

∂

∂xi
(69)

In (69), the velocity of porosity transport is presented. As mentioned previously, we sug-
gested that, because porosity is a property of solid matrix, in some approximation one can
use the suggestion that

Vϕi = VSi (70)

However, this suggestion is an additional statement that is, from wider point of view, not
necessary.

After consideration of dissipative terms, it is possible to show (Lopatnikov and Cheng
2004) that

Ff(dis)i = −FS(dis)i (71)

In quadratic approximation for dissipation function, one has:

Ff(dis)i = ϕ (1 − ϕ) Ĉ ji (t)
(
Vf j − VS j

) ; Fdisϕ = −ν̂ϕ (t) ϕ̇ (72)

In (71, 72), coefficients could be time-dependent operators. In frequency domain this opera-
tor can be presented as a function of frequency as suggested by Biot, or in later works (See,
for example Johnson et al. 1987)

It is possible to show that if we consider “liquid” matrix and porosity formed by a low con-
centration of gas-filled voids (“bubbles”), the dynamic equation for porosity (69) becomes
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practically equivalent to the most common Rayleigh-Plesset equation of “bubble dynamics”
(Rayleigh 1917; Plesset 1949) with a specific dissipation force of Fdisϕ (72).

It is important to mention that if this dissipation force Ff(dis)i represents visco-inertial
dissipation related with “global flow” of fluid, investigated in many papers, starting with
Frenkel (Frenkel 1944), dissipation force Fdisϕ represents relaxation of the porosity within
each REV and, thus, it is quite a different source of dissipation that does not present in the
theories of Biot type and mixture theories. However, the last type of attenuation is well known
in the poroelastic theory as the “squirt flow” mechanism of attenuation (Dvorkin et al. 1993;
Jakobsen 2009).

There is also the third source of dissipation of mechanical energy in the presented theory.
This source is related to the form of structural relationships (53) describing the “construction”
of REVs and the relationship between external and internal parameters. These relationships,
as mentioned previously, are not necessarily potential, or, even if they are potential are not
necessarily conservative. This dissipation is related to “skeleton” attenuation, considered, for
example, in early papers of Stall and Bryan (1970) and Stall (1974).

3 Conservation Laws

As discussed in the introduction of this article, conservation laws are a critically important
element of the theory. It is obvious that presented theory contains separate mass conservation
laws for each phase.

Situations with momentum conservation are more complicated. It is easy to check that
universal momentum conservation law, which theory supports, is the total momentum con-
servation law, which has (if one can neglect the dynamics of internal degrees of freedom and
use a simplified form of governing equations) the form:

(
∂ϕρf Vfi + (1 − ϕ) ρSVSi

∂t
+ ∂ϕρf Vfi Vf j + (1 − ϕ) ρSVSi VS j

∂ X j

)
(73)

−∂ (1 − ϕ) σSi j − ϕpf

∂ X j
= 0 (74)

Here we introduce solid phase stress σSi j as:

σSi j = ρS

((
1

3

∂eS

∂ε̄nm
δnm − 1

3

∂eS

∂ε̄i j
Lnmi jδmn

)
δkl + ∂eS

∂ε̄i j
Lkli j

)
(75)

In the meantime, using continuity equation for fluid, after simple manipulations one can
present equation for fluid momentum as:

ρf

(
∂Vfi

∂t
+ Vf j

∂Vfi

∂ X j

)
+ ∂pf

∂ Xi
= 1

ϕ
Ff(dis)i (76)

One can see that interaction force pf
∂ϕ
∂ Xi

annihilates the part of “phase force” − ∂ϕpf
∂ Xi

and

force, acting on the fluid to become equal to − ∂pf
∂ Xi

independently whether porosity is con-
stant in space or not. In stationary case, Eq. 76 predicts correct behavior of fluid pressure
even in case of non-homogeneous porosity: it becomes constant in space.

In the meantime, one can present Eq. 65 for momentum of solid as:

(1 − ϕ) ρS

(
∂VSi

∂t
+ VS j

∂VSi

∂ X j

)
− ∂ (1 − ϕ) σSi j + ϕpf

∂ X j
− ϕ

∂pf

∂ Xi
= FS(dis)i (77)

If the value:
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�i j = (1 − ϕ) σSi j − ϕpf (78)

in total momentum conservation obviously represents the effective stress acting on porous
material as a whole, the value:

�T = (1 − ϕ) σSi j + ϕpf (79)

replaces Terzaghi’s stress.
If Eq. 66 is equivalent to a regular equation of the fluid motion (77), in a non-homogeneous

(and, in nonlinear materials too) equation for the momentum of a solid phase is significantly
different from equations considered in literature earlier, except for the phenomenological
consideration of Nikolaevskiy et al. (1970).

As to energy conservation laws, we will devote to the special publication, because they
must take in account energy exchange between phases, and this process needs extended and
carful physical consideration.

Comparison with earlier theories

Gathering Eqs. 47–53, one comes to the most general formulation of poroelastic theory, in a
form convenient for comparison with earlier approaches:

∂ (1 − ϕ) ρS

∂t
+ ∂ (1 − ϕ) ρSVSi

∂ Xi
= 0 (80)

∂ϕρ f

∂t
+ ∂ϕρf Vfi

∂ X j
= 0 (81)

(
∂ϕρf Vfi + (1 − ϕ) ρSVSi

∂t
+ ∂ϕρf Vfi Vf j + (1 − ϕ) ρSVSi VS j

∂ X j

)

−∂�
(M)
i j

(
ϕ, ρf , ε̄i j

)

∂ X j
= 0 (82)

ρf

(
∂Vfi

∂t
+ Vf j

∂Vfi

∂ X j

)
+ ∂pf

∂ Xi
= 1

ϕ
Ff(dis)i (83)

ρSl2
Sϕ

[
(
1 + λϕϕ

) d2ϕ

dt2 + λϕ

(
dϕ

dt

)2
]

= pf − pS − (1 − ϕ) ρS
∂eS

∂ϕ
+ Fdisϕ (84)

dρS

dt
= −ρS

dε̄

dt
(85)

{
dε̄i j

dt

}
= Li jkl

{
dεkl

dt

}
(86)

It is easy to check, that if one considers propagation of linear waves in homogeneous mate-
rials, can neglect with porosity dynamics and the material is not degenerated (consolidated
material), the theory developed is equivalent to Biot’s governing equations. It is important to
mention that the present theory is equivalent to Biot theory even in case of non-homogeneous
materials, if one can neglect with porosity dynamics and consider the material as completely
consolidated. Particularly, it provides rigorous proof that one can apply Biot theory for wave
propagation in non-homogeneous materials without any other restrictions.

In general, if one considers the case of non-degenerated (consolidated) material and can
neglect with porosity dynamics, present theory is also equivalent to the theory, developed by
V. Nikolaevskiy. In the mean time, the difference is that interaction force proportional to the
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porosity gradient introduced by Nikolaevskiy from phenomenological reasons, automatically
appears in the frame of our approach.

As to mentioned theories; Bedford and Drumheller, Berryman and Thigpen, Wilmanski
and some other works; these theories does not provide correct equations for fluid motion
in case of non-homogeneous materials and, thus, are valid only in the case of propagation
of linear waves in homogeneous materials, if one neglects the difference between ∇ϕpf

and ϕ∇ pf , which is possible only if characteristic wavelength of a process is significantly
smaller than the characteristic length of porosity changes. In many cases, it is too restrictive
a requirement.

4 Discussion and Conclusions

One can see that, in opposition to the majority of approaches, the presented theory clearly
separates the deformation of the porous continuum itself from the deformation of a solid
matrix, which is identified with an average deformation of a solid matrix and the effect of
the external deformation on the internal state of REVs and back. The relationship between
macrodynamics and microdynamics is a question to micromodeling. The number of internal
degrees of freedom is limited only by practical needs. Relationships between external and
internal degrees of freedom can be formulated as the set of linear equations for differentials
of appropriate variables. For example, continuity equations and structural equations of the
(86) type provide the relationship between external deformation of the continuum as a whole
and state of “macropoints” (REVs) of the continuum in approximation used in this article.

One can consider relationships of (86) as the discrete description of the internal “mech-
anism” of considering macrocontinuum. Such a view on the problem opens the opportunity
to use developed theory as a background for new field of application of poroelastic theory”
the theory of “conformable robots.” Under “conformable robots,” the body, which REVs can
be an active machine able to provide work and, thus, can include both “passive” as active
degrees of freedom as in classic theory of machines and mechanisms (Kolovsky et al. 2000).
We will consider this new application of the theory in a special publication.

Second, developed theory automatically leads to the appearance of the interaction force
between phases, which has the same physical meaning as the force, introduced by Nikolaev-
skiy. However, this interaction force is equal to the force, introduced by Nikolaevskiy, only
if one can neglect the dynamics of internal degrees of freedom (except porosity) and repre-
sent its generalization. Nikolaevskiy’s interaction force must be incorporated properly in the
governing equations. One can see that if to introduce Terzaghi stress, the “rest force” is equal

to ϕ
∂pf
∂ Xi

; this term has the same order as the major “elastic force” term
∂(1−ϕ)σSi j +ϕpf

∂ X j
and

cannot be neglected ad hoc. Another consequence is that the appearance of Nikolaevskiy’s
force questions the interfacial conditions, because it is definitely not small on the interfaces,
where porosity is sharply changing. Thus, interfacial conditions boundary which must be
reinvestigated. This investigation will be presented in the next part of this work.

The third advantage of the presented theory is that it naturally incorporates all three mecha-
nisms of attenuation discussed in the literature: “global flow” visco-inertial attenuation, which
is as usual describing by generalized Darcy force; “squirt flow” attenuation, related with local
movement of fluid that appears as an attenuation term in equation for porosity dynamics; and,
the “skeleton” attenuation, which can be related to processes such as dry friction, dilatation,
and “lubricant-like” interaction between grains of the material, which appears as a part of a
“structural equation.”
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Appendix

Definitions of used values

�Si = (1 − ϕ) ρSVSi − (1 − ϕ) ρS
∂kS

∂V−i
− ϕρ f

∂kf

∂V−i
+ ρ2

f
∂kf

∂ρ̇f

∂ϕ

∂ Xi
− ∂�i j

∂ X j
(A.1)

�kl = (1 − ϕ) ρS

[
1

3

(
∂kS

∂ ˙̄εi j
δi j − ∂kS

∂ ˙̄εi j
Lnmi jδnm

)

δkl + ∂kS

∂ ˙̄εi j
Lkli j

]

(A.2)

�fi = ϕρf Vfi + (1 − ϕ) ρS
∂kS

∂V−i
+ ϕρf

∂kf

∂V−i
− ρ2

f
∂kf

∂ρ̇f

∂ϕ

∂ Xi
− ∂

∂ Xi

(
ϕρ2

f
∂kf

∂ρ̇f

)

(A.3)

πSi = 1

(1 − ϕ) ρS
�Si ;πfi = 1

ϕρf
�fi (A.4)

�ϕ =
(

ϕρf
∂kf

∂ϕ̇
+ (1 − ϕ) ρS

∂kS

∂ϕ̇
− ρ2

f
∂kf

∂ρ̇f
− 1

3
ρS

∂kS

∂ ˙̄εi j
δi j

)

(A.5)

�kl = −1

3

(
(1 − ϕ) ρS

∂kS − eS

∂ε̄nm
δnm − (1 − ϕ) ρS

∂kS − eS

∂ε̄i j
Lnmi jδmn

− (1 − ϕ) ρS
∂kS

∂ ˙̄εi j
L̇mni jδmn

)

δkl

−
(

(1 − ϕ) ρS
∂kS

∂ ˙̄εi j
L̇kli j + (1 − ϕ) ρS

∂kS − eS

∂ε̄i j
Lkli j

)

(A.6)

Pf = ϕρ2
f
∂ef

∂ρf
− ϕρ2

f
∂kf

∂ρf
− ϕρf ρ̇f

∂kf

∂ρ̇f
= ϕpf − ϕρ2

f
∂kf

∂ρf
− ϕρf ρ̇f

∂kf

∂ρ̇f
(A.7)

pf = ρ2
f
∂ef

∂ρf
(A.8)

fSi = −Finti = −pf
∂ϕ

∂ Xi
+ ρ2

f

[(
∂kf

∂ρf
+

(
ρ̇f

ρf
− ϕ̇

ϕ

)
∂kf

∂ρ̇f

)
∂ϕ

∂ Xi
+ ∂kf

∂ρ̇f

∂ϕ̇

∂ Xi

]
(A.9)

ffi = Finti = pf
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∂ Xi
− ρ2

f

[(
∂kf

∂ρf
+

(
ρ̇f

ρf
− ϕ̇

ϕ

)
∂kf

∂ρ̇f

)
∂ϕ

∂ Xi
+ ∂kf

∂ρ̇f

∂ϕ̇

∂ Xi

]
(A.10)

Fϕ =
⎛

⎝
(1 − ϕ) ρS

∂kS−eS
∂ϕ

− ρ2
f

∂kf−ef
∂ρf

− 1
3ρS

∂kS−eS
∂ε̄i j

δi j−
− 1

3
ϕ̇

(1−ϕ)
ρS
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∂ ˙̄εi j

δi j − ρ2
f

(
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ϕ

)
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⎠ (A.11)

References

Auriault, J.-L., Sanchez-Palencia, E.: Etude du comportement macroscopique d’un milieu poreux satur’e
d’eformable. J. Mech. 16, 575–603 (1977)

Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech.
Anal. 63, 337–403 (1977)

123



Poroelasticity-I: Governing Equations of the Mechanics of Fluid-Saturated Porous Materials 491

Bear, J.: Dynamics of Fluids in Porous Media. American Elsevier, New York (1972)
Bear, J.: Modeling flow and contaminant transport in fractured rocks. In: Bear, J., Tsang, C.-F., de Marsily,

G. Flow and Contaminant Transport in Fractured Rock, Academic Press, New York (1993)
Bedford, A., Drumheller, D.S.: A variational theory of porous media. Int. J. Solids Struct. 15, 967–980 (1979)
Berryman, J.G., Thigpen, L.: Non-linear and semilinear dynamic poroelasticity with microstructure. J. Mech.

Phys. Solids 33, 97–116 (1985)
Berryman, J.: Single-scattering approximation for coefficients in Biot’s equations of poroelasticity. J. Acoust.

Soc. Am. 91, 551–571 (1992)
Berryman, J., Wang, H.F.: The elastic coefficients of double-porosity models for fluid transport in jointed

rock. J. Geophys. Res. 100, 24611–24627 (1995)
Berryman, J.G.: Comparison of upscaling methods in poroelasticity and its generalizations. J. Eng. Mech.

ASCE 131(9), 928–936 (2005)
Biot, M.A.: Theory of propagation of elastic waves in a fluid saturated porous solid. II Higher frequency

range. J. Acoust. Soc. Am. 28-2, 179–191 (1956)
Biot, M.A.: Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys. 33, 1482–

1498 (1961)
Biot, M.A., Willis, D.G.: The elastic coefficients of the theory of consolidation. J. Appl. Mech. 24, 594–

601 (1957)
Biot, M.A.: Nonlinear and semilinear rheology of porous solids. J. Geophys. Res. 78, 4924–4937 (1973)
Cosserat, E., Cosserat, F.: Theorie des Corps Deformables. Hermann et Fils, Paris (1909)
Cowin, S., Nunziato, J.: Linear elastic materials with voids. J Elasticity 13(2), 125–147 (1983)
de la Cruz, V., Spanos, T.J.T.: Seismic boundary conditions for porous media. J. Geophys. Res. B 94, 3025–

3029 (1989)
de Boer, R.: Theory of Porous Media: Highlights in Historical Development and Current State, 615 p. Springer,

Berlin (2000)
Deresiewicz, H., Skalak, R.: On uniqueness in dynamic poroelasticity. Bull. Seism. Soc. Am. 53, 783–

788 (1963)
Dunin, S.Z., Surkov, V.V.: Dynamics of the closing of pores at the shock wave front. PMMJ. Appl. Math.

Mech. 43(3), 550–558 (1979)
Dvorkin, J., Nolen-Hoeksema, R., Nur, A.: The squirt flow mechanism: macroscopic description. Geophys-

ics 59, 428–438 (1993)
Ericksen, J.L.: The Cauchy and Born hypothesis for crystals. In: Phase Transformation and Material Instabil-

ities in Solids. Academic Press, New York (1984)
Eringen, A.C.: Mechanics of micromorphic continua. In: Kroner, E. (ed.) IUTAM Symposium, Mechanics of

Generalized Continua, pp. 18–33. Springer-Verlag (1968)
Evesque, P.: Fluctuations, correlation and representative elementary Volume (REV) in granular materials. Pou-

dres Grains 11, 6–17 (2000)
Frenkel, Ya.: On the theory of seismic and seismoelectric phenomena in a moist soil. J. Phys. 8, 230–241 (1944)
Gertasmaa, J., Smith, D.: Some aspects of elastic wave propagation in fluid-saturated porous solids. Geophys-

ics 26, 169–181 (1961)
Gilbert, R.P., Lin, J.Z.: Acoustic waves in shallow inhomogeneous oceans with a poroelastic sea-

bed. ZAMM 79(4), 1–12 (1997)
Gilbert, R.P., Mikelic, A.: Homogenizing the acoustic properties of the seabed: Part I. Nonlinear Anal. 40,

185–212 (2000)
Gorbachev, P.Y., Gurevich, B.Y., Lopatnikov, S.L.: Elastic waves propagation in a porous medium with ran-

domly inhomogeneous gas distribution. Izvestiya Akademii Nauk SSSR Fizika Zemli 6, 28–32 (1990)
Gurevich, B., Lopatnikov, S.: Velocity and attenuation of elastic waves in finely layered porous rocks. Geophys.

J. Int. 121, 933–947 (1995)
Gurevich, B., Schoenberg, M.: Interface conditions for Biot’s equations of poroelasticity. J. Acoust. Soc.

Am. 105(5), 2585–2589 (1999)
Hanyga, A., Rok, V.E.: Wave propagation in micro-heterogeneous porous media: a model based on an inte-

gro-differential wave equation. J. Acoust. Soc. Am. 107(6), 2965–2972 (2000)
Hubert, J., Sanchez-Palencia, E.: Vibration and Coupling of Continuous Systems: Asymptotic Meth-

ods. Springer-Verlag, Heidelberg (1989)
Jakobsen, M.: Unified theory of global flow and squirt flow in cracked porous media. Geophysics 74(2), WA65–

WA76 (2009)
Jikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of Differential Operators and Integral Function-

als. Springer, New York (1994)
Johnson, D.L., Koplik, J., Dashen, R.J.: Theory of Dynamic Permeability and Tortuosity in Fluid-Saturated

Porous Media. Fluid Mech. 176, 379–402 (1987)

123



492 S. L. Lopatnikov, J. W. Gillespie Jr.

Kastler, G.T., Toksoz, M.N.: Velocity and attenuation of seismic waves in two-phase media: Part 1 Theoretical
formulation. Geophysics 39, 587–606 (1974)

Kolovsky, M.Z., Evgrafov, A.N., Semenov, Y. et al.: Advanced Theory of Mechanisms and Machines (Foun-
dations of Engineering Mechanics). Springer, (2000)

Landau, L.D., Lifshitz, E.M.: Course of theoretical physics, vol.7. In: Theory of Elasticity, 3rd ed. Pergamon,
Oxford (1986)

Landau, L.D., Lifshitz, E.M.: Course of theoretical physics, vol.5 statistical physics: Part I. 3rd edn. Butter-
worth-Heinemann, London (1999)

Lopatnikov, S.L., Gorbachev, P.Y.: Propagation and attenuation of longitudinal waves in a partially gas-
saturated porous media. Izv. Akademii Nauk SSSR Fizika Zemli 8, 78–86 (1987)

Lopatnikov, S., Gurevich, B.: On attenuation of longitudinal waves in fluid-saturated media contained ran-
dom inhomogeneities. USSR Academy of Sciences Reports (Doklady Academii Nauk USSR) 281(2),
47–50 (1985)

Lopatnikov, S., Gurevich, B.: Elastic waves attenuation in the randomly heterogeneous fluid saturated porous
media. USSR Academy of Sciences Reports 291, 3 (Doklady Academii Nauk USSR) (1986)

Lopatnikov, S.: Dynamic equations for the new materials: porous media saturated with magneto- and electro-
rheological liquids. Russian Academy of Science Reports (Doklady Rossiyskoi Academii Nauk) 34(43–
35), 4637–4657 (1998)

Lopatnikov, S., Cheng, A.H.D.: A thermodynamically consistent formulation of magneto-poro-elasticity. Int.
J. Solids Struct. Poroelasticity Maurice A. Biot. Memorial Issue 34(43–35), 4637–4657 (1998)

Lopatnikov, S., Cheng, A.H.D.: Variational formulation of fluid infiltrated porous materials and physically
based micro-mechanical constants. Poromechanics II. In: Aurialt, J.L. et al. (eds.) Proceeding of the 2nd
Biot Conference on Poromechanics, pp. 386–390. Balkema, Grenoble, France, 26–28 August 2002

Lopatnikov, S., Cheng, A.H.D.: Variational formulation of fluid infiltrated porous materials in thermal and
mechanical equilibrium. Mech. Mater. 34, 685–704 (2002)

Lopatnikov, S., Cheng, A.H.D., Gillespie, J.W., Jr.: Lagrangian formulation of poroelastisity with porous
dynamics. In: 16th Engineering Mechanical Conference, 16–18 July 2003

Lopatnikov, S., Cheng, A.H.D.: Lagrangian formulation of poroelasticity with porosity dynamics. J. Mech.
Phys. Solids 52(12), 2801–2839 (2004)

Lopatnikov, S., Cheng, A.H.D.: If you ask a physicist from any country: a tribute to Yacov Il’ich Frenkel. J.
Eng. Mech. ASCE 131(9), 875–878 (2005)

Milton, G.W.: The Theory of Composites. Cambridge University Press, Cambridge (2002)
Mindlin, R.D., Tiersten, H.F.: Effect of couple stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–

448 (1962)
Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)
Nigmatullin, R.I.: Dynamics of Multiphase Systems, vol. 1–2. Hemisphere, Washington (1990)
Nikolaevskiy, V.N., Basniev, K.S., Gorbunov, A.T., et al.: Mechanics of Saturated Porous Media. Nedra,

Moscow (1970) (in Russian)
Nikolaevskiy, V.N.: Mechanics of Porous and Cracked Media. Nedra, Moscow (1984) (in Russian)
Nikolaevskiy, V.N.: Biot–Frenkel poromechanics in Russia (Review). J. Eng. Mech. 131, 888–897 (2005)
Plesset, M.S.: The dynamics of cavitation bubbles. J. Appl. Mech. 16, 277–282 (1949)
Rakhmatulin, Kh.A.: Fundamentals of gas-dynamics of interpenetrating motions of compressible media. J.

Appl. Math. Mech. 20(2), 184–195 (1956)
Rayleigh, L.: On the pressure developed in a liquid during the collapse of a spherical void. Philos.

Mag. 34, 94 (1917)
Reid, R.O., Kajiura, K.: On the damping of gravity waves over a permeable seabed. Trans. Am. Geophys.

Union 38, 662–666 (1957)
Sanchez-Palencia, E.: Non-Homogeneous Media and Vibration Theory (Lecture Notes in Physics). Springer

Verlag (1980)
Schanz, M.: Poroelastodynamics: linear models, analytical solutions, and numerical methods. Appl. Mech.

Rev. 62 (May) (2009)
Stall, R.D.: Acoustic waves in saturated sediments. In: Hampton, L. Physics of Sounds in Marine Sediments,

Plenum, New York (1974)
Stall, R.D., Bryan, G.M.: Wave attenuation in saturated sediments. J. Acoust. Soc. Am 47(5), 1440–1447 (1970)
Terzaghi, K.: Theoretical Soil Mechanics. John Wiley & Sons, University of Washington, Seattle (1943)
Vinogradova O.S., Lopatnikov S.L.: On the associated mass in the equations of motion for multiphase media.

Izv. AN USSR FIZIKA ZEMLI. J. Solid Earth 1, 76–82 (1990)
Wilmanski, K.: A thermodynamic model of compressible porous materials with the balance equation of

porosity. Transport in Porous Media 32(1), 21–47 (1998)

123


	Poroelasticity-I: Governing Equations of the Mechanics of Fluid-Saturated Porous Materials
	Abstract
	1 Introduction
	1.1 Motivation and Goals
	1.2 State of the Art
	1.3 The Problems and Goal
	1.4 Approach

	2 Outline of Lagrangian Approach to the Mechanics of Fluid-filled Poroelastics
	2.1 Action of the Materials With Internal Structure and Outline of Variational Procedure
	2.2 Relationships between variations of external and internal parameters of the material and consolidation coefficients
	2.3 Degree of Consolidation and Structural Degradation of Porous Materials
	2.4 A simplified Form of Governing Equations

	3 Conservation Laws
	4 Discussion and Conclusions
	Acknowledgements
	Appendix
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


