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Abstract A thermomechanical theory for multiphase transport in unsaturated swelling
porous media is developed on the basis of Hybrid Mixture Theory (saturated systems can
also be modeled as a special case of this general theory). The aim is to comprehensively and
non-empirically describe the effect of viscoelastic deformation on fluid transport (and vice
versa) for swelling porous materials. Three phases are considered in the system: the swelling
solid matrix s, liquid l, and air a. The Coleman–Noll procedure is used to obtain the restric-
tions on the form of the constitutive equations. The form of Darcy’s law for the fluid phase,
which takes into account both Fickian and non-Fickian transport, is slightly different from
the forms obtained by other researchers though all the terms have been included. When the
fluid phases interact with the swelling solid porous matrix, deformation occurs. Viscoelastic
large deformation of the solid matrix is investigated. A simple form of differential-integral
equation is obtained for the fluid transport under isothermal conditions, which can be coupled
with the deformation of the solid matrix to solve for transport in an unsaturated system. The
modeling theory thus developed, which involves two-way coupling of the viscoelastic solid
deformation and fluid transport, can be applied to study the processing of biopolymers, for
example, soaking of foodstuffs and stress-crack predictions. Moreover, extension and mod-
ification of this modeling theory can be applied to study a vast variety of problems, such as
drying of gels, consolidation of clays, drug delivery, and absorption of liquids in diapers.
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Nomenclature

Latin Symbols
An Fourth order material coefficient tensor
Aα j Helmholtz free energy of the jth component in α phase
Aα Helmholtz free energy of the α phase
bα j External entropy source for the jth component in α phase
bα External entropy source for the α phase
B Material coefficient related to the bulk relaxation function
B Material coefficient
Bα Fourth order viscous dissipation tensor
Cα j Mass fraction of the jth component in α phase
Cs Right Cauchy-Green strain tensor of the solid phase
C̄s Right Cauchy-Green strain tensor associated with F̄s

dα Rate of deformation tensor of the α phase
dα Material constant related to the initial bulk modulus of α phase
eα j Energy density of the jth component in α phase
eα Energy density of the α phase
êβ
α j Rate of mass transfer from phase β to the jth component in α phase

êβ
α Rate of mass transfer from β phase to the α phase

Es Lagrangian strain tensor of the solid phase
Fs Deformation gradient of the solid phase
F̄s The multiplicative decomposition of the deformation gradient
gα j Gravitational force on the jth component in α phase
gα Gravitational force on the α phase
G(t) Relaxation function in shear
hα j External supply of energy to the jth component in α phase
hα External supply of energy to α phase
Hα Third order material coefficient tensor
îα j Rate of momentum gain to the jth component in α phase due to interaction with other

species in the same phase
I Identity tensor
Ik Principal invariants of the right Cauchy-Green tensor Cs

Īk Principal invariants of C̄s

J s Determinant of the deformation gradient
K α Initial bulk modulus of α phase
Kα Second rank coefficient tensor from linearization
L Laplace transform operator
Mα Material coefficient
pα Physical pressure in the α phase
qα j Heat flux vector for the jth component in α phase
qα Heat flux vector for α phase
Q̂α j Rate of energy gain to the jth component in α phase due to interaction with other

species in the same phase
Q̂β

α j Rate of energy transfer from phase β to the jth component in α phase

Q̂β
α Rate of energy transfer from phase β to α phase

r̂α j Rate of mass gain to the jth component in α phase due to interaction with other species
in the same phase
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Ra Resistivity tensor
Rl Resistivity tensor
S Material coefficient related to the shear relaxation function
Ss Second Piola-Kirchhoff stress tensor
t Time
tα j Stress tensor of the jth component in α phase
tα Stress tensor of the α phase
tse Terzaghi stress for the solid phase
tsh Hydration stress for the solid phase
T Temperature
T̂β

α j Rate of momentum transfer to the jth component in α phase from β phase

T̂β
α Rate of momentum transfer to α phase from β phase

us Displacement of the solid phase
vα j Velocity of the jth component in α phase
vα Velocity of the α phase
vα,β Relative velocity between phase α and phase β

Greek Symbols
δ Dirac’s delta function
εα Volume fraction of the α phase
ηα j Entropy of the jth component in α phase
ηα Entropy of the α phase
η̂α j Entropy gain by the jth component in α phase due to interaction with other species in

the same phase
λα Lagrange multiplier for the continuity equation of α phase
�α j Entropy production per unit mass density for the jth component in α phase
�α Entropy production per unit mass density for α phase
μ Viscosity of the liquid phase
μα j Chemical potential of the jth component in α phase
μα Chemical potential of α phase
μα Initial shear modulus of α phase
π l Swelling pressure due to interaction of the solid phase and the bulk fluid
ρα j Density of the jth component in the α phase
ρα Density of the α phase
φα j Entropy flux vector for the jth component in α phase
φα Entropy flux vector for α phase
�̂

β
α j Entropy transfer to the jth component in α phase from β phase

�̂
β
α Entropy transfer to α phase from β phase

Superscripts, Subscripts, and Other Notations
a Air phase
A Particle composed of solid phase and the vicinal fluid
wA Vicinal water in the particle
sA Solid phase in the particle
f Fluid composed of vicinal water and the bulk phase fluid
j jth component of species

123



338 H. Zhu et al.

l Liquid phase
s Solid phase
vs The viscoelastic part
(·)0 Initial value of (·)
α α phase
ˆ(·)βα Exchange from β phase to α phase

(·)α,s Difference of two quantities ((·)α − (·)s)
Dαj(·)

Dt Material time derivative of a variable with respect to velocity of jth component
in the α phase

1 Introduction

A porous medium in this study is a solid matrix with fluid-filled pores. A deforming
porous medium is one that swells or shrinks upon liquid absorption or desorption. Exam-
ples of swelling porous media include clays, biopolymers, and cell membranes. A porous
medium is considered saturated with a fluid phase when its pores are completely filled
with that fluid phase. When two or more fluid phases are present in the pores, the mate-
rial is called unsaturated. In many practical applications, swelling systems can be unsatu-
rated, e.g., in the case of drying of wood and food materials (Datta 2007; Perre and Turner
1999), and transport in soils (Carminati et al. 2008; Purandara et al. 2008). The swelling
behavior of a porous medium (saturated or unsaturated) results from interactions at differ-
ent spatial scales, and therefore, researchers have developed multiscale thermomechanical
models to study heat and mass transport in multiphase swelling porous systems (Achanta
1995; Bennethum and Cushman 1996b; Murad et al. 1995; Murad and Cushman 1996,
1997, 2000; Bennethum et al. 2000; Schrefler 2002; Singh et al. 2003a,b; Weinstein et al.
2008).

Approaches used to develop macroscopic theories can be broadly classified into three
categories—averaging or macroscopization theories, theory of mixtures, and hybrid theo-
ries of the first two. In macroscopization theories, conservation laws as well as empirical
constitutive relations are introduced at the microscale, and then, averaging is done to obtain
relationships at the macroscale. In the theory of mixtures, conservation laws are stated at
the macroscale, and then, the entropy inequality (from second law of thermodynamics) is
exploited to obtain constitutive relations at the macroscale. Since the entropy inequality
is not used by the macroscopization theories, relationships among macroscopic thermody-
namic variables cannot be obtained (Hassanizadeh and Gray 1990). On the contrary, mixture
theories may overlook the essential features of multiphase systems as little information of
the microscale is used (Hassanizadeh and Gray 1990). The third category contains var-
ious theories which are hybrids of the first two. As the name suggests, Hybrid Mixture
Theory (HMT), introduced by Hassanizadeh and Gray (1979a,b), is one of the approaches
from the third category, which has been extensively used to study swelling porous systems.
In this approach, conservation laws are written at the microscale before introducing the
constitutive relations, and then, an averaging procedure is performed to obtain conserva-
tion equations at higher scales. The entropy inequality is then applied at the macroscale to
derive constitutive relations such as Fick’s law of gas diffusion and Darcy’s law of water
flow. While developing HMT for a swelling system, interactions at two or three spatial
scales are considered depending on the requirements and complexity of the modeling sys-
tem. The advantages of HMT over all the other approaches are explained in detail by Achanta
(1995).
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1.1 Viscoelastic Deformation of the Solid

Several swelling porous materials, such as biologic tissues, food materials, and polymer
foams, exhibit viscoelastic behavior. This viscoelastic behavior can result either from inter-
action between the elastic solid skeleton and the viscous fluid(s) present in the pores, or from
viscoelasticity of the solid skeleton itself. For example, in the multiscale fluid transport model
developed by Achanta and Cushman (1994); Achanta et al. (1994) and Achanta (1995), the
solid phase is assumed to be elastic at the microscale, and the interaction between the elastic
solid and the viscous fluid results in only short memory at the macroscale. This short memory
may not be adequate to fully capture the viscoelastic effects in all situations. Therefore, in
Singh’s study (Singh et al. 2003a,b; Singh 2002), the viscoelastic effects are captured by
including higher order material time derivatives of the macroscopic Green strain tensor of

the solid phase,
(n)s
E , to enable a generalized Kelvin–Voigt model.

Many of the detailed transport studies on swelling porous media have been on saturated
systems, where the deformation of the solid is given by change in fluid volume fraction only,
and the solid deformation equation is not required. Few researchers discuss the deformation
of the solid phase or the coupling between the liquid transport and the solid deformation.
Singh et al. (2003a,b) considered an unsaturated system; however, the second fluid phase is
assumed to be immobile. The immobility of one fluid phase makes the system essentially
saturated; and under these conditions, the ratio of volume fraction of the immobile phase
to the volume fraction of the solid skeleton remains constant. Many simplifications can be
made on the basis of this constant ratio. If we assume that the second bulk phase is able to
move freely, then this constant ratio relationship does not hold anymore. In such a case, the
fluid transport equation needs to be solved simultaneously with the solid phase equations.

Murad and Cushman (1996) considered deformation for an elastic solid and assumed lin-
earity, which only allows for small strain. Schrefler (2002) proposed a constitutive model for
the solid deformation; however, elastoplasticity has been assumed. Bennethum (2007) dis-
cussed deformation and derived a generalized Terzaghi stress principle for swelling porous
materials considering a saturated swelling porous system. However, a detailed study on the
deformation of the nonlinear viscoelastic solid in unsaturated swelling systems is not avail-
able in the literature.

1.2 Three-scale Swelling Systems

While applying HMT to a particular system, many studies consider phenomena at three
spatial scales: micro-, meso-, and macro-scales. At the microscale, the vicinal fluid and the
solid matrix exist as separate phases. At the mesoscale, the solid matrix and the vicinal fluid
are considered together as a homogenous mixture representing a particle; and the liquid(s)
and/or gaseous bulk fluid(s) are separated from this particle. At the macroscale, the particle
and the bulk fluid(s) form overlaying continua. Although a three-scale theory seems to be
a more general approach of developing a model for swelling systems, complexities arise in
the treatment of vicinal and bulk phases of a fluid, and while coupling the transport equation
with the deformation of the solid in an unsaturated case.

In the three-scale model developed by Singh (2002) and Singh et al. (2003a,b), the vicinal
phase and the bulk phase conservation equations of a mobile fluid were added to obtain a com-
bined transport equation for the fluid. This addition of equations is necessary as only overall
transport properties of the fluid can be obtained through experiments. Separate information
about the vicinal phase and the bulk phase is not available. The major assumptions made to
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obtain a single transport equation for the mobile fluid are that the micro- and macropores
drain at the same rate, i.e., the permeabilities of the micro- and the macro-pores are equal,
and the volume fraction of the vicinal phase of the fluid is always proportional to the volume
fraction of the bulk fluid. However, both the assumptions are difficult to justify. For example,
in plants, the permeability of cell wall (micropores) is of the order of 10−21 m2, while the
permeability of extracellular space (macropores) is 10−17 m2. Similarly, in the wood drying
literature, it is well established that until the moisture content reaches the Fiber Saturation
Point (FSP), all the moisture is in a vicinal state. Another problem with the three-scale model
is that the separation of the volume fractions of the solid phase and the vicinal fluid cannot be
achieved as the volume fraction of the particle (composed of the solid phase and the vicinal
water) is chosen as an independent variable. The upscaling technique is slightly modified in
Cushman et al. (2004) and, in the conservation equations, whenever the volume fraction and
the density of the vicinal fluid appear as a product, the volume fraction of vicinal water is
separated. However, in all other cases, it remains difficult to separate them without making
further assumptions, which are not always justifiable (Refer to Appendix B for details).

To summarize, although the three-scale theory is more general, it also has more parameters,
and thus, its implementation requires much more information about the system than what is
available from experiments. Current applications of the three-scale theory make assumptions
to simplify the system, some of which are not justified under all conditions. (See Appendix B)

1.3 Objectives of the Study

We develop a two-scale thermomechanical theory for an unsaturated swellable porous sys-
tem, which includes a solid porous skeleton, a liquid, and an air phase. The solid skeleton
is considered as viscoelastic of generalized Kelvin–Voigt type, while both the liquid and air
phases are considered as viscous. Large deformation of the solid is considered and discussed
in detail in this manuscript.

In the first part of this article, modified constitutive equations, Darcy’s law for the liquid
and Cauchy stress–strain relationship for the solid are derived. In the second part of this
article, we develop a model for isothermal conditions in which the viscoelastic deformation
of the solid phase and the flow of the fluid are fully coupled. We present a derivation of the
transport equation by combining the conservation of mass of the liquid phase and Darcy’s
law. An investigation of the constitutive relationship between the stress and the strain of the
solid phase is also presented in detail.

2 Model Development: Constitutive Relations

The methodology followed to arrive at the constitutive relations is outlined in Fig. 1. Mass,
momentum, energy, and entropy conservation equations are written for all the phases at
the microscale, and are then, upscaled to the macroscale. Then, we select a set of macro-
scopic independent variables which is assumed to fully capture the behavior of the system.
Helmholtz free energy of each of the phases is assumed to be dependent on a subset of the
independent variables. Using these dependencies, the total entropy for the system is then
obtained by adding the entropies of all the constituents. Restrictions on the constitutive rela-
tionships are then obtained by exploiting the entropy inequality in the sense of Coleman
and Noll (1963). Some of these restrictions hold only at equilibrium and are, thus, called
equilibrium restrictions; while some others are true regardless of the state of the system and
are called nonequilibrium restrictions. New forms of Darcy’s law and Cauchy stress–strain
relationship are then obtained when a near-equilibrium state is considered.
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Fig. 1 Methodology followed to derive the coupled model

The conservation laws for all the three phases, solid, liquid, and air, are listed in Appendix
A. These conservation laws are obtained from Bennethum and Cushman (1996a). In this sec-
tion, we use the Coleman and Noll (1963) procedure to impose restrictions on the constitutive
relations.

2.1 Development of Expressions for Free Energies and Entropy

We consider three phases in the system: the solid phase denoted by s, fluid l, and air a (Fig. 2).
The solid is considered as viscoelastic, and both fluids are taken as viscous in nature. We
make the following assumptions:

1. Both the solid and the liquid phases are incompressible.
2. All constituents are chemically nonreacting, and dissolution of air in the fluid is assumed

to be negligible.
3. Local thermodynamic equilibrium exists so that only one temperature and one energy

equation are needed.
4. The system is thermodynamically simple following Eringen (1994), which means that

the entropy flux is due to heat flux alone and the external supplies (sources) are due to
heat alone.

5. There are no interfacial effects.

The starting point of constitutive modeling is the selection of a set of independent variables
to describe the system. The choice is based on the nature of the system as well as experience.
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Fig. 2 Schematic of the porous medium showing the three phases and interactions between the phases

We choose the following independent variables to define the system:

εl,∇εl,
(m)l
ε ,∇ (m)l

ε , εs,∇εs, J s, C̄s,

(n)s

C̄ , Cs j , T,∇T,

ρl, dl, C l j , vα,s, vα j ,s,∇vα j ,s, ρa, da, Ca j (2.1)

where m = 1, . . . p and n = 1, . . . q denote the material time derivatives of order m and n.
The complete list of variables along with descriptions is available in the nomenclature.

Here, only εl and εs, volume fractions of liquid and solid, respectively, are chosen because
εa, volume fraction of air, is related through

εs + εl + εa = 1 (2.2)

As is discussed by Weinstein and Bennethum (2006), the Green strain tensor Es, the density
ρs, and the solid phase volume fraction εs are dependent due to mass conservation of the
solid phase. Therefore, instead of choosing Es, ρs, and εs as independent variables, we fol-
low Weinstein and Bennethum (2006) and consider the multiplicative decomposition of the
deformation gradient F s:

F̄s = J s− 1
3 Fs (2.3)

Then, we consider a new strain measure given by:

C̄s = (F̄s)T F̄s (2.4)

This multiplicative decomposition of the deformation gradient was originally proposed by
Flory (1961) and successful applications include Simo and Hughes (1997) in the context
of finite strain viscoelasticity. We use J s and C̄s to replace Es and ρs, respectively. More
discussion on the advantage of this replacement could be found in Weinstein et al. (2008).
The higher order derivatives of C̄s and εl are also included to ensure that the solid phase
is modeled as a Kelvin–Voigt solid. The viscous nature of the two fluids are represented by
the rate of deformation tensors, dl and da respectively, which are all macroscopic variables.
We choose temperature instead of entropy as an independent variable because entropy could
hardly be measured, while we could easily measure temperature. Moreover, we could per-
form a Legendre transformation to convert the internal energy into the Helmhotlz free energy
(Atkins and de Paula 2002).
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Table 1 Dependence of Helmholz free energies on independent variables

Helmholtz free
energy

Volume
fraction

Density Mass
concentration

Deformation Temperature Viscoelastic
effects

Liquid, Al εl, εs ρl C l j C̄s T
(n)s
C̄ ,

(m)l
ε

Solid, As εl, εs None Cs j J s, C̄s T
(n)s
C̄ ,

(m)l
ε

Gas, Aa εl, εs ρa Ca j None T None

Note that we are taking the solid phase as the reference phase and in what follows the
time derivatives follow the velocity of the solid phase:

˙(·) = Ds(·)
Dt

= ∂(·)
∂t

+ vs · ∇(·) (2.5)

(m)

(·) = Dsm(·)
Dtm

(2.6)

We postulate the forms of the Helmholtz free energies as being dependent only on a subset
of the independent variables based on the physical characteristic of the system:

As = As(εs, J s, C̄s,

(n)s

C̄ , εl,
(m)l
ε , Cs j , T ) (2.7)

Al = Al(εs, C̄s,

(n)s

C̄ , εl,
(m)l
ε , ρl, C l j , T ) (2.8)

Aa = Aa(εs, εl, ρa, Ca j , T ) (2.9)

Here, the liquid and the solid Helmholtz energies are functions of the state of the system
(volume fractions, densities, mass fractions of constituents, deformation, and temperature)
as well as some of their histories (viscoelastic effects). The interactions between the solid
and the liquid are accounted for by the dependence of the solid and liquid Helmholtz energies

on cross terms, εl,
(m)l
ε and C̄s,

(n)s

C̄ , respectively. Helmholtz energy of air does not have any
viscoelastic effects (Table 1).

Total derivatives of the free energies are involved in the entropy inequality. Therefore, to
explore the entropy inequality, we need to calculate the total derivatives of the free energies
using the chain rule. We use the following identities to obtain the material derivatives of the
free energies:

Dα(·)
Dt

= Ds(·)
Dt

+ vα,s · ∇(·) (2.10)

where

vα,s = vα − vs (2.11)

denotes the relative velocity of the α phase with respect to the solid phase.
Since CαN is a dependent variable as listed in Appendix A (A.136), this gives rise to the

relative chemical potential:

μ̃α j ≡ μα j − μαN (2.12)
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where

μα j ≡ ∂ Aα

∂Cα j
(2.13)

Then, the material time derivatives of the free energies are given as

Ds As

Dt
= ∂ As

∂εl ε̇l + ∂ As

∂εs ε̇s + ∂ As

∂T
Ṫ + ∂ As

∂ J s J̇ s +
N−1∑

j=1

μ̃s j Ċs j +
p∑

m=1

∂ As

∂
(m)l
ε

(m+1)l
ε

+ ∂ As

∂C̄s
: ˙̄Cs +

q∑

n=1

∂ As

∂

(n)s

C̄

:
(n+1)s

C̄ (2.14)

Dl Al

Dt
= ∂ Al

∂εl ε̇l + ∂ Al

∂εs ε̇s + ∂ Al

∂T
Ṫ + ∂ Al

∂ρl ρ̇l +
N−1∑

j=1

μ̃l j Ċ l j +
p∑

m=1

∂ Al

∂
(m)l
ε

(m+1)l
ε

+ ∂ Al

∂C̄s
: ˙̄Cs +

q∑

n=1

∂ Al

∂

(n)s

C̄

:
(n+1)s

C̄ +∂ Al

∂εl vl,s · ∇εl + ∂ Al

∂εs vl,s · ∇εs

+∂ Al

∂T
vl,s · ∇T + ∂ Al

∂ρl vl,s · ∇ρl +
N−1∑

j=1

μ̃l j vl,s · ∇C l j

+ ∂ Al

∂C̄s
: ∇C̄s · vl,s +

q∑

n=1

∂ Al

∂

(n)s

C̄

: ∇
(n)s

C̄ ·vl,s +
p∑

m=1

∂ Al

∂
(m)l
ε

vl,s · ∇ (m)l
ε (2.15)

Da Aa

Dt
= ∂ Aa

∂εl ε̇l + ∂ Aa

∂εs ε̇s + ∂ Aa

∂T
Ṫ + ∂ Aa

∂ρa ρ̇a +
N−1∑

j=1

μ̃a j Ċa j + ∂ Aa

∂εl va,s · ∇εl

+∂ Aa

∂εs va,s · ∇εs + ∂ Aa

∂T
va,s · ∇T + ∂ Aa

∂ρa va,s · ∇ρa

+
N−1∑

j=1

μ̃a j va,s · ∇Ca j (2.16)

The material time derivatives of the free energies are then inserted in the total entropy
inequality for the system (given by A.168). Mass conservation equations are weakly imposed
in the entropy inequality using Lagrange multipliers in the sense of Liu (1972):

�new = �old +
∑

α

λα

T

⎡

⎣ Dα(εαρα)

Dt
+ εαρα∇ · vα −

∑

α,α �=β

êβ
α

⎤

⎦

+
∑

α

N∑

j=1

λα j

T

[
εαρα DαCα j

Dt
+ ∇ · (εαρα j vα j ,α)

]

−
∑

α

N∑

j=1

λα j

T

⎡

⎣

⎛

⎝
∑

α,α �=β

êβ
α j

+ r̂α j − Cα j
∑

α,α �=β

êβ
α

⎞

⎠

⎤

⎦ ≥ 0 (2.17)

where �old is given in Appendix A (A.168).
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The entropy inequality is then given as

� = − 1

T

(
εsρs ∂ As

∂T
+ εlρl ∂ Al

∂T
+ εaρa ∂ Aa

∂T
+ ηs + ηl + ηa

)
Ṫ

− 1

T

(
εsρs ∂ As

∂εl + εlρl ∂ Al

∂εl + εaρa ∂ Aa

∂εl − λlρl + λaρa
)

ε̇l

− 1

T

(
εsρs ∂ As

∂εs + εlρl ∂ Al

∂εs + εaρa ∂ Aa

∂εs + λaρa
)

ε̇s

− 1

T

[
εsρs ∂ As

∂ J s − 1

3
εs 1

J s

∑
tr(ts j )

]
J̇ s

− 1

T

∑

α

N∑

j=1

εαρα(μ̃α j − λα j )Ċα j

− 1

T

(
εsρs

p∑

m=1

∂ As

∂
(m)l
ε

+ εlρl
p∑

m=1

∂ Al

∂
(m)l
ε

)
(m+1)l

ε

− 1

T

⎡

⎣εsρs
q∑

n=1

∂ As

∂

(n)s

C̄

+ εlρl
q∑

n=1

∂ Al

∂

(n)s

C̄

⎤

⎦ :
(n+1)s

C̄

− 1

T

(
εlρl ∂ Al

∂ρl − λlεl
)

ρ̇l

− 1

T

(
εaρa ∂ Aa

∂ρa − λaεa
)

ρ̇a

− 1

T

⎛

⎝εlρl ∂ Al

∂εl ∇εl + εlρl ∂ Al

∂εs ∇εs + εlρl
N−1∑

j=1

μ̃l j ∇C l j

+εlρl ∂ Al

∂C̄s
: ∇C̄s + εlρl

q∑

n=1

∂ Al

∂

(n)s

C̄

: ∇
(n)s

C̄

+εlρl
p∑

m=1

∂ Al

∂
(m)l
ε

∇ (m)l
ε −λlρl∇εl +

∑

β �=l

T̂β
l − λl j εlρl∇Cs j

⎞

⎠ vl,s

− 1

T

⎛

⎝εaρa ∂ Aa

∂εl ∇εl + εaρa ∂ Aa

∂εs ∇εs − λaρa∇εa + εaρa
N−1∑

j=1

μ̃a j ∇Ca j

+
∑

β �=a

T̂β
a − λa j εaρa∇Ca j

⎞

⎠ va,s

− 1

T

⎛

⎝εsρs ∂ As

∂C̄s
+ εlρl ∂ Al

∂C̄s
− εs

2
(F̄s)−1

N∑

j=1

ts j (F̄s)−T − εsρsλs

2
(F̄s)−1(F̄s)−T

⎞

⎠ : ˙̄Cs

+εl

T

⎛

⎝
N∑

j=1

tl j + λlρlI

⎞

⎠ : dl
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+εa

T

⎛

⎝
N∑

j=1

ta j + λaρaI

⎞

⎠ : da

+
∑

α

εα

T

⎛

⎝qα −
N∑

j=1

[
tα j · vα j ,α − ρα j vα j ,α(Aα j + 1

2
(vα j ,α)2)

]⎞

⎠ · ∇T

+
∑

α

N−1∑

j=1

εα

T

(
tα j − ρα j Aα j I − ρα j

ραN
tαN + ρα j AαN I + ρα j λα j I − ρα j λαN I

)
· ∇vα j ,α

+ 1

T

N−1∑

j=1

[
ρα j

ραN
(T̂β

αN
+ îαN ) − (T̂β

α j
+ îα j ) − ∇[εαρα j (AαN − Aα j )]

+(λα j − λαN )∇(εαρα j ) − εαtαN ∇(
ρα j

ραN
)

]
· vα j ,α

− 1

T

N∑

j=1

r̂α j

[
λα j + 1

2
(vα j ,α)2

]

− 1

T

∑

α

∑

β �=α

êβ
α

⎡

⎣−
N−1∑

j=1

λα j Cα j + λα + Aα + 1

2
(va,s)2 + 1

2
(va,s)2

⎤

⎦

− 1

T

∑

α

N−1∑

j=1

êβ
α j

[
λα j + 1

2
(vα j ,α)2

]
≥ 0 (2.18)

Since ρs is not chosen as an independent variable, we have used the determinant of the
deformation gradient tensor, J s:

ρsεs = εs
0ρ

s
0

J s (2.19)

in the entropy inequality above, to express ρ̇s in terms of other independent variables:

λs

T

⎡

⎣ Ds(ρsεs)

Dt
+ εsρs∇ · vs −

∑

β �=s

êβ
s

⎤

⎦

= λs

T

⎡

⎣ Ds(
εs

0ρs
0

J s )

Dt
+ εsρs∇ · vs −

∑

β �=s

êβ
s

⎤

⎦

= λs

T

⎡

⎣−εs
0ρ

s
0 J̇ s

(J s)2 + εsρsds : I −
∑

β �=s

êβ
s

⎤

⎦

= λs

T

⎡

⎣−εsρs J̇ s

J s + εsρs 1

2
((F̄s)−1(F̄s)−T ) : ˙̄Cs + εsρs J̇ s

J s −
∑

β �=s

êβ
s

⎤

⎦

= λs

T

⎡

⎣εsρs 1

2
((F̄s)−1(F̄s)−T ) : ˙̄Cs −

∑

β �=s

êβ
s

⎤

⎦ (2.20)
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where ds : I is calculated as

ds : I = 1

2
((F̄s)−1(F̄s)−T ) : ˙̄Cs + J̇ s

J s (2.21)

The details of this calculation can be found in Weinstein et al. (2008), where ds is rewritten
in terms of J s and C̄s.

In order to remove dependence on velocities of the N th components of the phases (more
later), we have used (Holzapfel 2000):

N∑

j=1

Fα j · vα j ,α =
N−1∑

j=1

(
Fα j − ρα j

ραN
FαN

)
· vα j ,α (2.22)

N∑

j=1

Gα j : ∇vα j ,α =
N−1∑

j=1

(
Gα j − ρα j

ραN
GαN

)
: ∇vα j ,α − GαN

N−1∑

j=1

∇
(

ρα j

ραN

)
· vα j ,α

(2.23)

2.2 Nonequilibrium Restrictions

We first consider that the system is in a stationary state far from thermodynamic equilibrium.
Following the procedure of Coleman and Noll (1963), the variables Ṫ , J̇ s,∇vs j ,s, Ċα j , ρ̇α,
(q+1)s

C̄ , and
(p+1)l

ε in the entropy inequality are not in our list of dependent variables or in
that of independent variables, and thus, they are neither dependent nor independent. Since
they could vary arbitrarily, the coefficients of these variables in the entropy inequality must
vanish. Thus, the following nonequilibrium results are obtained:

∑

α

(
∂ Aα

∂T
+ ηα

)
= 0 (2.24)

1

3

N∑

j=1

tr(ts j ) = −ps (2.25)

where

tr(x) =
∑

i

xi i (2.26)

and the physical pressure is given by (Bennethum and Weinstein 2004)

ps = −ρs J s ∂ As

∂ J s

∣∣∣∣
εs

(2.27)

N∑

j=1

ts j = ρs j (As j − AsN − μ̃s j )I + ρs j

ρsN
tsN (2.28)

μ̃α j = λα j (2.29)

λl = ρl ∂ Al

∂ρl |εl = pl

ρl (2.30)

λa = ρa ∂ Aa

∂ρa |εa = pa

ρa (2.31)
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εsρs ∂ As

∂

(q)s

C̄

+ εlρl ∂ Al

∂

(q)s

C̄

= 0 (2.32)

εsρs ∂ As

∂
(p)l
ε

+ εlρl ∂ Al

∂
(p)l
ε

= 0 (2.33)

Since temperature and entropy are conjugate thermodynamic variables for a single phase,
for Eq. 2.24, we further assume that entropy of each phase is related to temperature through

ηα = −∂ Aα

∂T
, α = s, l, a (2.34)

If we assume that there is only one species in the solid phase or if we assume that the diffusive
velocity in the solid phase is negligible, then Eq. 2.25 would become

1

3
tr(ts) = −ps (2.35)

Eqs. 2.30 and 2.31 will be used throughout this article. In this section and hereafter, not all
the relationships are listed as some are not needed in the model development.

2.3 Equilibrium Restrictions

Next we explore information from the entropy inequality when the system is at an equilib-
rium state. The total rate of entropy production, �, reaches its minimum value at equilibrium.
When the system is in thermodynamic equilibrium, the state variables do not change with
time, and therefore, the following variables are zero at thermodynamic equilibrium:

ε̇l, ε̇s,
(m)l
ε ,

(n+1)s

C̄ , vl,s, va,s, dl, da,∇T, vα j ,α,∇vl j ,l,∇va j ,a, êβ
α j

, êβ
α , ˙̄Cs

(2.36)

If we denote these variables as x and y, then the necessary and sufficient conditions for � to
be at a minimum at thermodynamic equilibrium is

(
∂�

∂x

)

eq
= 0 (2.37)

and
∥∥∥∥∥

(
∂2�

∂x∂y

)

eq

∥∥∥∥∥ be positive semi-definite (2.38)

Using these conditions, we can obtain the following relations at equilibrium:

εsρs ∂ As

∂εl + εlρl ∂ Al

∂εl + εaρa ∂ Aa

∂εl − pl + pa = 0 (2.39)

εsρs ∂ As

∂εs + εlρl ∂ Al

∂εs + εaρa ∂ Aa

∂εs + pa = 0 (2.40)

εsρs ∂ As

∂
(m)l
ε

+ εlρl ∂ Al

∂
(m)l
ε

= 0 (2.41)

εsρs ∂ As

∂

(n)s

C̄

+ εlρl ∂ Al

∂

(n)s

C̄

= 0 (2.42)
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tl = −plI (2.43)

ta = −paI (2.44)

εlρl ∂ Al

∂εl ∇εl + εlρl ∂ Al

∂εs ∇εs − pl∇εl + εlρl ∂ Al

∂C̄s
: ∇C̄s

+ εlρl
q∑

n=1

∂ Al

∂

(n)s

C̄

: ∇
(n)s

C̄ +εlρl
p∑

m=1

∂ Al

∂
(m)l
ε

∇ (m)l
ε +

∑

β �=l

T̂β
l = 0 (2.45)

εaρa ∂ Aa

∂εl ∇εl + εaρa ∂ Aa

∂εs ∇εs − pa∇εa +
∑

β �=a

T̂β
a = 0 (2.46)

∑

α

εαqα = 0 (2.47)

ρα j

ραN
(T̂β

αN
+ îαN ) − (T̂β

α j
+ îα j ) − ∇[εαρα j (AαN − Aα j )]

+(λα j − λαN )∇(εαρα j ) − εαtαN ∇
(

ρα j

ραN

)
= 0 (2.48)

tα j − ρα j Aα j I − ρα j

ραN
tαN + ρα j AαN I + ρα j λα j I = 0, α = l, a (2.49)

−
N−1∑

j=1

λα j Cα j + λα + Aα + 1

2
(va,s)2 + 1

2
(vl,s)2 = 0 (2.50)

μ̃s j = μ̃l j = μ̃a j (2.51)

ts = −λsρsI + 2
εl

εs ρlF̄s ∂ Al

∂C̄s
(F̄s)T + 2ρsF̄s ∂ As

∂C̄s
(F̄s)T (2.52)

Aα + λα −
N−1∑

j=1

μ̃α j Cα j = Aβ + λβ −
N−1∑

j=1

μ̃β j Cβ j , α �= β (2.53)

Since ρs is not taken as an independent variable, we have replaced the term involving ρ̇s

in the entropy inequality. Thus, there is no equation for λs. We take 1
3 of the trace of (2.52),

use (2.35), and solve for λs (Weinstein and Bennethum 2006):

λs = ps

ρs + 2

3

εlρl

εsρs

∂ Al

∂C̄s
: C̄s + 2

3

∂ As

∂C̄s
: C̄s (2.54)

Then,

ts = −psI + 2
εl

εs ρlF̄s ∂ Al

∂C̄s
(F̄s)T + 2ρsF̄s ∂ As

∂C̄s
(F̄s)T

−2

3

εlρl

εs

(
∂ Al

∂C̄s
: C̄s

)
I − 2

3
ρs

(
∂ As

∂C̄s
: C̄s

)
I (2.55)

We write out the Terzaghi stress tse and the hydration stress tsh as

tse = 2

[
εsρsF̄s ∂ As

∂C̄s
(F̄s)T − 1

3
εsρs

(
∂ As

∂C̄s
: C̄s

)
I
]

(2.56)

tsh = 2

[
εlρlF̄s ∂ Al

∂C̄s
(F̄s)T − 1

3
εlρl

(
∂ Al

∂C̄s
: C̄s

)
I
]

(2.57)
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Then the equilibrium result for the Cauchy stress is of the following form:

εsts = −εs psI + tsh + tse (2.58)

2.4 Removing Nth Component Dependence

The relationships we obtained based on HMT for the species are expressed relative to the
N th constituent. In classical Gibbsian thermodynamics, however, since extensive variables,
such as number of molecules of each constituent, rather than intensive variables, such as
concentrations, are chosen as independent variables, N th components do not appear in the
species equations. Here, we follow Bennethum et al. (1997) and find out the results that
are in accordance with the classic Gibbsian thermodynamics. In order to do so, we use the
definition of the N th chemical potential μαN by Bennethum et al. (1996) and remove the
N th component dependence. We take:

μαN I = AαN I − tαN

ραN
, α = l, a (2.59)

μsN I = AsN I − tsN

ρsN
+ tse

ρs + εl

εs

tsh

ρs (2.60)

Substituting Eqs. 2.59 and 2.60 into Eqs. 2.49 and 2.50, respectively, we obtain:

μα j I = Aα j I − tα j

ρα j
, α = l, a (2.61)

μs j I = As j I − ts j

ρs j
+ tse

ρs + εl

εs

tsh

ρs (2.62)

Multiplying Eqs. 2.61 and 2.62 by Cα j and Cs j , respectively, summing over all species and
substituting tα with Eqs. 2.43, 2.44, and 2.58, we obtain the Gibbs free energies:

Gα =
N∑

j=1

Cα j μα j = Aα + pα

ρα
(2.63)

Gs =
N∑

j=1

Cs j μs j = As + ps

ρs (2.64)

We rewrite Eq. 2.53 as:

Aα + λα −
N∑

j=1

μα j Cα j + μαN = Aβ + λβ −
N∑

j=1

μβ j Cβ j + μβN (2.65)

Substituting λα using Eqs. 2.30, 2.31, and 2.54 and using Eqs. 2.63 and 2.64, we obtain:

μαN = μβN , α �= β (2.66)

Therefore, the classical result is obtained as

μα j = μβ j , α �= β (2.67)
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In order to remove N th component dependence from Eq. 2.48, we sum from j = 1 to N :

ρα j

ραN

⎛

⎝
∑

β �=α

T̂β
αN

+ îαN

⎞

⎠ −
∑

β �=α

T̂β
α + ∇(εαρα AαN ) − εαρα(∇ Aα) − Aα∇(εαρα)

+
N∑

j=1

μ̃α j ∇(εαρα j ) − εαtαN ∇
(

ρα

ραN

)
= 0, α = l, a (2.68)

Expanding ∇ Aα using Eqs. 2.7–2.9 yields

∇ As = ∂ As

∂εs ∇εs + ∂ As

∂T
∇T + ∂ As

∂ J s ∇ J s +
N−1∑

j=1

μ̃s j ∇Cs j

+
p∑

m=1

∂ As

∂
(m)l
ε

∇ (m)l
ε +

q∑

n=0

∂ As

∂

(n)s

C̄

: ∇
(n)s

C̄ (2.69)

∇ Al = ∂ Al

∂εl ∇εl + ∂ Al

∂εs ∇εs + ∂ Al

∂T
∇T + ∂ Al

∂ρl ∇ρl +
N−1∑

j=1

μ̃l j ∇C l j

+
p∑

m=1

∂ Al

∂
(m)l
ε

∇ (m)l
ε +

q∑

n=0

∂ Al

∂

(n)s

C̄

: ∇
(n)s

C̄ (2.70)

∇ Aa = ∂ Aa

∂εl ∇εl + ∂ Aa

∂εs ∇εs + ∂ Aa

∂T
∇T + ∂ Aa

∂ρa ∇ρa +
N−1∑

j=1

μ̃a j ∇Ca j (2.71)

Substituting ∇ Aα and
∑

β �=α T̂β
α into Eq. 2.68, for phase l, we get

ρl

ρlN
(T̂s

lN
+ T̂a

lN
+ îlN ) − pl∇εl + ∇(εlρl AlN ) − εlρl ∂ Al

∂ρl ∇ρl − εlρl
N−1∑

j=1

μ̃l j ∇C l j

−Al∇(εlρl) +
N∑

j=1

μ̃l j ∇(εlρl j ) − εltlN ∇
(

ρl

ρlN

)
= 0 (2.72)

where we have ignored the term involving ∇T since it is zero at equilibrium. If we write out
∇(εlρl j ) = εlρl∇C l j + C l j ∇εlρl and simplify, the above equation becomes

ρl

ρlN
(T̂s

lN
+ T̂a

lN
+ îlN ) − εltlN ∇(

ρl

ρlN
) + ∇(εlρl AlN ) − μlN ∇(εlρl)

= pl∇εl + Al∇(εlρl) −
N∑

j=1

μl j C l j ∇(εlρl) − εlρl ∂ Al

∂ρl ∇ρl (2.73)

We substitute the third term on the right-hand side using Eq. 2.63 and use the definition that

pl = (ρl)2 ∂ Al

∂ρl in the above equation to obtain

ρl

ρlN
(T̂s

lN
+ T̂a

lN
+ îlN ) − εltlN ∇

(
ρl

ρlN

)
+ ∇(εlρl AlN ) − μlN ∇(εlρl) = 0 (2.74)
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Substituting Eq. 2.74 back into Eq. 2.68 and undoing the sum yields

∑

β �=l

T̂β
l j

+ îl j = μl j ∇(εlρl j ) − ∇(εlρl Al j ) (2.75)

Following the same procedure, we could find that for phase a we obtain exactly the same
form as (2.75). Thus, removing the N th component dependence from Eq. 2.48, we obtain

∑

β �=α

T̂β
α j

+ îα j = μα j ∇(εαρα j ) − ∇(εαρα Aα j ), α = l, a (2.76)

2.5 Near-Equilibrium Results

Other useful information such as Darcy’s and Fick’s laws could be obtained when we consider
the systems to be at a state near equilibrium. Here, we use Taylor’s expansion about variables
that become zero at equilibrium (2.36) and truncate all second-order and higher-order terms

to obtain near-equilibrium results. Taking Taylor’s expansion of ts about ∇T and
(n)s

C̄ (two
of the several variables that go to zero at equilibrium) and retaining only linear terms, we
perform a two-term linearization (as discussed in Singh et al. (2003a)) and obtain:

εsts = −εs psI + tsh + tse +
q∑

n=1

F̄sAn :
(n)s

C̄ (F̄s)T + Hs : ∇T (2.77)

tl = −plI −
N∑

j=1

ρl j vl j ,lvl j ,l + Bl : dl + Hl : ∇T (2.78)

ta = −paI −
N∑

j=1

ρa j va j ,ava j ,a + Ba : da + Ha : ∇T (2.79)

We perform a linearization about ε̇l and ε̇s and obtain

εsρs ∂ As

∂εl + εlρl ∂ Al

∂εl + εaρa ∂ Aa

∂εl − pl + pa = −M lε̇l (2.80)

εsρs ∂ As

∂εs + εlρl ∂ Al

∂εs + εaρa ∂ Aa

∂εs + pa = −Msε̇s (2.81)

The following is obtained by a linearization about vl,s:

∑

β �=l

T̂ β
l = −Rlvl,s − εlρl ∂ Al

∂εl ∇εl − εlρl ∂ Al

∂εs ∇εs + pl∇εl

−εlρl ∂ Al

∂C̄s
: ∇C̄s − εlρl

q∑

n=1

∂ Al

∂

(n)s

C̄

: ∇
(n)s

C̄ −εlρl
p∑

m=1

∂ Al

∂
(m)l
ε

∇ (m)l
ε (2.82)

A linearization about va,s gives

∑

β �=a

T̂ β
a = −Rava,s − εaρa ∂ Aa

∂εl ∇εl − εaρa ∂ Aa

∂εs ∇εs + pa∇εa (2.83)
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Finally, we perform a linearization about ∇T :

qα =
N∑

j=1

[
tα j vα j ,α − ρ j vα j ,α

(
Aα j + 1

2

(
vα j ,α

)2
)]

+ Kα · ∇T, α = s, l, a (2.84)

In Eq. 2.77, An is a fourth-order positive semi-definite tensor representing dissipation of the
viscoelastic solid stress in shear due to relaxation. Hα, α = s, l, a in Eqs. 2.77, 2.78, and
2.79 are third-rank tensors, and thus, vanish when the material is isotropic. The terms involv-
ing Hα, α = s, l, a vanish when the solid phase is isotropic. An and Hs are not functions

of
(n)s

C̄ and ∇T , respectively. The quantity Bα, α = l, a are fourth-rank positive semi-defi-
nite tensors accounting for the viscous dissipation in the liquid and air phase, respectively.
Ms and M l in Eqs. 2.80 and 2.81 are material coefficients resulting from the Taylor expan-
sion. In Eqs. 2.82 and 2.83, Rl and Ra are second rank tensors arising from the Taylor series
expansion and represent resistance to the liquid and air flow, respectively. Kα in Eq. 2.84
denotes a second-rank tensor.

2.6 Darcy’s Law

We use Eq. 2.82 in the linear momentum balance (A.140) with α = l, and we neglect the
inertia term. Simplifying, we obtain Darcy’s law for the liquid phase as

Rlvl,s = −εl∇ pl − εlρl ∂ Al

∂εl ∇εl − εlρl ∂ Al

∂εs ∇εs − εlρl ∂ Al

∂C̄s
: ∇C̄s − εlρl

q∑

n=1

∂ Al

∂

(n)s

C̄

: ∇
(n)s

C̄

−εlρl
p∑

m=1

∂ Al

∂
(m)l
ε

∇ (m)l
ε +∇ · (εlBl : dl) + ∇ · (εlHl : ∇T ) + εlρlg (2.85)

The first term on the right-hand side is the primary driving force in classical Darcy’s
law for nonswelling media. This term represents flow due to a negative pressure gradient.
The second and third terms denote flow due to the gradient of the volume fraction of the
fluid and solid phases, respectively. The fourth term on the right-hand side was presented in
Weinstein et al. (2008). The fourth and fifth terms were also first presented in Weinstein and
Bennethum (2006). These terms are responsible for flow due to the effect of rate of shear on
the free energy of the fluid. At moderate to high moisture content, as the solid phase alters
the liquid free energy only through the normal component, these terms could be neglected.
As εl is related to the normal component of the strain of the solid phase, the sixth term on the
right-hand side represents the effect of the rate of expansion on the free energy of the fluid.
The seventh term on the right-hand side is Brinkman’s correction and is always neglected
at slow velocity flows. The eighth term on the right-hand side was first mentioned in Singh
et al. (2003a), and it represents flow due to thermal gradient in anisotropic materials. The
last term represents gravity as a driving force.

3 Model Development: Governing Equations

In this section, a two-scale transport model is developed for an unsaturated swelling porous
system based on the conservation laws listed in Appendix A and the constitutive relationships
developed above. In this model, we assume isothermal conditions. Both the liquid phase and
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the solid skeleton are assumed to be isotropic and incompressible, while the “smeared-out”
solid is compressible due to uptake/release of fluids. The effect of gravity is ignored.

3.1 Solid Phase

After ignoring the inertial terms, linear momentum balance (A.140) for the solid phase is
given by

∇ · (εsts) = −
∑

β �=s

T̂β
s (3.86)

Since there is no mass transfer from other phases to the solid phase, summing over all N
species, the restriction (A.146) becomes

−
∑

β �=s

T̂β
s =

∑

β �=l

T̂β
l +

∑

β �=a

T̂β
a (3.87)

We plug Eq. 2.85 into Eq. 2.82 and obtain
∑

β �=l

T̂β
l = ∇(εl pl) (3.88)

And similarly, the following is obtained when the air phase is considered:
∑

β �=a

T̂β
a = ∇(εa pa) (3.89)

With Eqs. 3.87, 3.88, and 3.89, linear momentum balance of the solid phase is finally given
by

∇ · (εsts) = ∇(εl pl) + ∇(εa pa) (3.90)

The right-hand side of the above equation has the linear momentum transported from the
liquid and the air phases, to the solid phase, respectively. This indicates that the negative
pressure gradient and the negative concentration gradient are the volumetric driving forces
of the deformation. Since isotropy is assumed, the last term of Eq. 2.77 vanishes, and the
constitutive relationship between the Cauchy stress tensor and the strain becomes

εsts = −εs psI + tsh + tse +
q∑

n=1

F̄sAn :
(n)s

C̄ (F̄s)T (3.91)

Since the solid phase is assumed to be isotropic, the energy is a function of the strain invariants
(Ogden 1984).

A(I1, I2, I3) = A( Ī1, Ī2, J s) (3.92)

where Ik, k = 1, 2, 3 are the principal invariants of Cs, and the ones with bars denote the
principal invariants of C̄s. They are related by

Īk = (J s)−
2
3 Ik, k = 1, 2 (3.93)

For simplicity, we assume that the material is of the Neo-Hookean type. The modified form
of the free energy to account for compressibility is given by Treloar (1943a,b); Holzapfel
(2000)

εαρα Aα = εα
0 ρα Aα

0 + μα

2
( Ī1 − 3) + 1

dα

(J s − 1)2, α = s, l (3.94)
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where we only list terms related to C̄s. Aα
0 = Aα(εα

0 ) is the free energy evaluated at initial
volume fraction. μα is the initial shear modulus of the α phase, while dα is related to the
initial bulk modulus of the α phase K α by

2

dα

= K α, α = s, l (3.95)

In order to express Eq. 3.91 and write out the Cauchy stress, an explicit function of the strain,
we take the partial derivative of Aα with respect to C̄s using the chain rule:

∂ Aα

∂C̄s
= ∂ Aα

∂ Ī1

∂ Ī1

∂C̄s
+ ∂ Aα

∂ J s

∂ J s

∂C̄s
= μα

2
I + 2

dα

(J s − 1)
∂ J s

∂C̄s
(3.96)

where

∂ J s

∂C̄s
= ∂ J s

∂Cs

∂Cs

∂C̄s
= 1

2
J s(Cs)−1 : L (3.97)

where we have used the identity

∂det(·)
∂(·) = det(·)(·)−1 (3.98)

and the fact that

J s = √
detCs (3.99)

In Eq. 3.97, L is a fourth-rank tensor, and its inverse is given by Simo and Hughes (1997)

∂C̄s

∂Cs = (J s)−
2
3

[
I − 1

3
Cs ⊗ (Cs)−1

]
(3.100)

The Terzaghi and hydration stresses become

tse = 2

{
μs

2
F̄s(F̄s)T + K s

2
J s(J s − 1)F̄s[(Cs)−1 : L](F̄s)T

−1

3

μs

2
tr(C̄s)I − K s

6
J s(J s − 1)[(Cs)−1 : L : C̄s]I

}
(3.101)

tsh = 2

{
μl

2
F̄s(F̄s)T + K l

2
J s(J s − 1)F̄s[(Cs)−1 : L](F̄s)T

−1

3

μl

2
tr(C̄s)I − K l

6
J s(J s − 1)[(Cs)−1 : L : C̄s]I

}
(3.102)

The pressure ps is given by

ps = −ρs J s ∂ As

∂ J s = − K s

εs
0

(J s3 − J s2
) (3.103)
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Finally, the Cauchy stress tensor is given by

εsts = K s

εs
0

(J s3 − J s2
)I

+μsF̄s(F̄s)T + K s(J s2 − J s)F̄s[(Cs)−1 : L](F̄s)T

−μs

3
tr(C̄s)I − K l

3
(J s2 − J s)[(Cs)−1 : L : C̄s]I

+μlF̄s(F̄s)T + K l(J s2 − J s)F̄s[(Cs)−1 : L](F̄s)T

−μl

3
tr(C̄s)I − K l

3
(J s2 − J s)[(Cs)−1 : L : C̄s]I

+ F̄s

t∫

0

G(t − τ) : ˙̄Csdτ(F̄s)T (3.104)

where the last term is obtained by using the Laplace transform technique on the last term in
Eq. 3.91. This procedure is explained below.

We first note that the relationship between the Cauchy stress tensor ts and the second
Piola-Kirchhoff stress tensor Ss is given by

Ss = J sFs−1tsFs−T (3.105)

Using Eqs. 3.105 and 2.3, we convert the last term in Eq. 3.91,
∑q

n=1 F̄sAn :
(n)s

C̄ (F̄s)T , into
the corresponding second Piola-Kirchhoff counterpart:

J s−1/3
εsSvs =

q∑

n=1

An :
(n)s

C̄ (3.106)

Then, as An is not a function of
(n)s

C̄ , it is possible that we take the Laplace transform of the
above equation:

L(J s−1/3
εsSvs) =

q∑

n=1

sn−1An : C̄ss (3.107)

The inverse transform of the above is then given by

J s−1/3
εsSvs =

t∫

0

q∑

n=1

dn−1

dtn−1 δ(t − τ)An : ˙̄Csdτ (3.108)

where δ(t) is the Dirac’s delta function. Let

G(t) ≡
q∑

n=1

An dn−1

dtn−1 δ(t) (3.109)

where G is the relaxation function in shear. Equation 3.108 becomes

J s−1/3
εsSvs =

t∫

0

G(t − τ) : ˙̄Csdτ (3.110)
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The above is then converted back to the Cauchy form, and the last term in Eq. 3.104 is
obtained.

3.2 Liquid Phase

Mass conservation of the liquid phase is given by Eq. A.130. We assume that there is no
exchange of mass with other phases, so that the right-hand side of this equation vanishes and
the equation becomes

Dl(εlρl)

Dt
+ εlρl(∇ · vl) = 0 (3.111)

Since relative velocity appears in Darcy’s law, we rewrite Eq. 3.111 as

ε̇l + ∇ · (εlvl,s) + εl∇ · vs = 0 (3.112)

We rewrite Darcy’s law (2.85) as

vl,s = (Rl)−1

⎡

⎣ − εl∇ pl − εlρl ∂ Al

∂εl ∇εl − εlρl ∂ Al

∂εs ∇εs − εlρl ∂ Al

∂C̄s
: ∇C̄s

−εlρl
q∑

n=1

∂ Al

∂

(n)s

C̄

: ∇
(n)s

C̄ −εlρl
p∑

m=1

∂ Al

∂
(m)l
ε

∇ (m)l
ε

⎤

⎦ (3.113)

We assume that the term εsρs ∂ As

∂εl and the term εaρa ∂ Aa

∂εl can be neglected in the capillary
pressure result (2.80). The first term is neglected since layers of fluid molecules do not exert
stress on molecules of the solid phase when the moisture content is not very low, i.e., when
the moisture content is larger than that occupied by 10 fluid monolayers (Bennethum et al.
1997). The second term is ignored when we assume that the free energy of the air phase
does not depend on the volume fraction of the liquid phase since the two phases interact only
through the boundaries. Then,

− π l − pl + pa = −M lε̇l (3.114)

where

π l = −εlρl ∂ Al

∂εl (3.115)

is the swelling pressure. This definition is consistent with that in Achanta and Cushman
(1994). The negative sign takes into account the fact that fluid flows from regions of high
swelling pressure to regions of low swelling pressure. Then Eq. 3.113 can be written as

vl,s = (Rl)−1

⎡

⎣− εl∇(−π l + M lε̇l) + π l∇εl − εlρl ∂ Al

∂εs ∇εs

−εlρl ∂ Al

∂C̄s
: ∇C̄s − εlρl

q∑

n=1

∂ Al

∂

(n)s

C̄

: ∇
(n)s

C̄ −εlρl
p∑

m=1

∂ Al

∂
(m)l
ε

∇ (m)l
ε

⎤

⎦ (3.116)
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where we have assumed that the air pressure is the atmospheric pressure, the gradient of
which vanishes. Simplifying Eq. 3.116, we obtain

vl,s = (Rl)−1

⎡

⎣ − ∇(−π l)εl − εl∇(M lε̇l) + pa∇εs − εlρl ∂ Al

∂C̄s
: ∇C̄s

−εlρl
q∑

n=1

∂ Al

∂

(n)s

C̄

: ∇
(n)s

C̄ −εlρl
p∑

m=1

∂ Al

∂
(m)l
ε

∇ (m)l
ε

⎤

⎦ (3.117)

Here, we have used Eq. 2.81. We assumed that Ms is zero since it denotes the viscosity. In
this case, the swelling pressure reduces to capillary pressure considering the relationship
between swelling pressure and capillary pressure in Achanta and Cushman (1994). Substi-
tuting Eq. 3.117 into 3.112, we obtain

ε̇l + ∇ ·
⎧
⎨

⎩εl(Rl)−1

⎡

⎣ − ∇(−π l)εl − εl∇(M lε̇l) + pa∇εs − εlρl ∂ Al

∂C̄s
: ∇C̄s

−εlρl
q∑

n=1

∂ Al

∂

(n)s

C̄

: ∇
(n)s

C̄ −εlρl
p∑

m=1

∂ Al

∂
(m)l
ε

∇ (m)l
ε

⎤

⎦

⎫
⎬

⎭ + εl∇ · vs = 0 (3.118)

We assume that the resistivity tensor Rl is isotropic. The above equation can then be written
as

ε̇l + ∇ ·
⎧
⎨

⎩εl kl

μ
I

⎡

⎣ − E l∇εl − εl∇(M lε̇l) + pa∇εs − εlρl ∂ Al

∂C̄s
: ∇C̄s

−εlρl
q∑

n=1

∂ Al

∂

(n)s

C̄

: ∇
(n)s

C̄ −εlρl
p∑

m=1

∂ Al

∂
(m)l
ε

∇ (m)l
ε

⎤

⎦

⎫
⎬

⎭ + εl∇ · vs = 0 (3.119)

where

kl

μ
I = (Rl)−1 (3.120)

with kl, the permeability and μ, the viscosity of the liquid phase. We have defined

E l ≡ −∂(π lεl)

∂εl (3.121)

We also define

D ≡ εlkl

μ
E l (3.122)
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which is the Darcian diffusion coefficient. Equation 3.119 is further simplified to

ε̇l − ∇ · (D∇εl) − ∇ ·
⎧
⎨

⎩εl kl

μ
I

⎡

⎣εl∇(M lε̇l) − pa∇εs − εlρl ∂ Al

∂C̄s
: ∇C̄s

+εlρl
q∑

n=1

∂ Al

∂

(n)s

C̄

: ∇
(n)s

C̄ +εlρl
p∑

m=1

∂ Al

∂
(m)l
ε

∇ (m)l
ε

⎤

⎦

⎫
⎬

⎭ + εl∇ · vs = 0 (3.123)

We assume that the free energy of the liquid phase Al is linear in both
(m)l
ε , m = 1, . . . , p

and
(n)s

C̄ , n = 1, . . . , q , and initially, the material is free of strain and all its material time
derivatives. We use the Laplace transform method and merge the term ∇(M lε̇l) with the term

εlρl ∂ Al

∂
(m)l
ε

∇ (m)l
ε . The details of the discussion can be found in Singh et al. (2003b). Here, we

also assume that the air pressure is constant. We thus obtain a differential-integral form of
the fluid transport equation:

ε̇l − ∇ · (D∇εl) − ∇ ·
⎡

⎣ − εl kl

μ
pa∇εs + εl kl

μl ε
lρl ∂ Al

∂C̄s
: ∇C̄s

+
t∫

0

B(t − τ) ˙(∇εl)dτ +
t∫

0

S(t − τ) : ∇ ˙̄Csdτ

⎤

⎦ + εl∇ · vs = 0 (3.124)

where we follow Singh et al. (2003b) and postulate that B(t) and S(t) are related to the bulk
and shear relaxation functions, respectively. According to Eq. 3.94, we work on the third term
and obtain the transport equation:

ε̇l − ∇ · (D∇εl) − ∇ ·
⎧
⎨

⎩ − εl kl

μ
pa∇εs + εl kl

μl

[
μl

2
I + Kl

2
J s(J s − 1)Cs−1 : L

]
: ∇C̄s

+
t∫

0

B(t − τ) ˙(∇εl)dτ +
t∫

0

S(t − τ) : ∇ ˙̄Csdτ

⎫
⎬

⎭ + εl∇ · vs = 0 (3.125)

When the moisture content is moderate to high, namely, when the moisture content is larger
than that occupied by 10 fluid monolayers (Bennethum et al. 1997), the above is simplified
to

ε̇l − ∇ · (D∇εl) − ∇ ·
⎡

⎣−εl kl

μ
pa∇εs +

t∫

0

B(t − τ) ˙(∇εl)dτ

⎤

⎦ + εl∇ · vs = 0 (3.126)

The transport equation is found to be coupled with the other two phases.

3.3 Summary of the Model

The unknowns of the unsaturated problem include εl, εs, and us(vs), which are the volume
fractions of the liquid and solid phase, respectively, and the displacement of the solid phase.
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The initial-boundary value problem is composed of the transport equation (3.125) or (3.126)
for εl, the mass conservation for the solid phase given by (2.19) for εs, the linear momentum
balance of the solid phase given by (3.90) for ts, and appropriate boundary and initial con-
ditions. We also need the constitutive relationship for the Cauchy stress and the strain given
by (3.91) and the strain-displacement relationship:

Es = 1

2
(∇us + ∇usT + ∇us∇usT

) (3.127)

For a saturated system, with εa = 0, the volume fraction of the solid becomes

εs = 1 − εl (3.128)

and J s becomes dependent. Therefore, linear momentum balance for the solid is not needed.
For such a case, only εl is independent, and the transport equation (3.125) or (3.126) alone,
with the air phase volume fraction εa being zero, is sufficient to describe the behavior of the
system. A material that has both saturated and unsaturated regions can potentially be more
challenging, as the saturated region and the unsaturated region will have different number
of independent unknowns. Possible methods to model such systems are (1) to prevent air
phase volume fraction εa from going to zero (i.e., have no-zero residual air fraction); or (2)
to track the interface between fully saturated and unsaturated regions, and have two sets of
unknowns for the two regions. Both the methods have been successfully implemented to
tackle corresponding phase disappearance/appearance issues in rigid porous media (Perre
and Moyne 1991; Pruess 1991).

4 Conclusion

Unsaturated flow in porous materials with nonlinear viscoelastic deformation has a wide
range of applications in biomedical and agricultural engineering. Previous studies to incorpo-
rate both the physics-transport and nonlinear viscoelastic deformation are mostly empirical
with “moisture expansion coefficient” or experimentally fitted parameters. In some fun-
damental theories previously developed, the solid is assumed to be elastic, or only short
memories are considered. Complexities and difficulties arise when modeling unsaturated
swelling systems in a three-scale hybrid mixture theory. The major contribution of this study
is the development of a two-scale mathematical framework to study unsaturated swelling
porous systems with coupled effects of moisture transport and nonlinear viscoelastic defor-
mation.

By applying HMT on a two-scale system, a novel model for unsaturated swelling porous
systems, with a generalized Kelvin–Voigt viscoelastic solid undergoing large deformation,
has been developed in this study. On the basis of the Neo-Hookean model, we have exploited
the stress–strain relationship in detail and obtained a new explicit form of the constitutive
law for the solid phase. By manipulating the mass conservation equation for the liquid phase
and the modified Darcy’s law obtained from HMT, we have developed a differential-integral
form of the transport equation. The transport equation for the liquid is coupled with the linear
momentum balance for the solid, and the momentum transported from the liquid and the air
phases plays the role of the body force for the solid phase. A numerical implementation of
the theory presented in this article, for modeling processing of biopolymers, is in progress,
and will be published later.

The model developed, thus, can be applied to a whole class of problems where viscoelastic
large deformation occurs in a porous medium due to liquid transport. Phenomena such as
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transport in saturated and unsaturated systems, stresses generated, large deformation due to
transport, and effect of viscoelasticity of the solid on fluid transport, for example, drying
of gels, stress-crack predictions, soaking of foodstuffs, consolidation of clays, drug deliv-
ery, etc., hitherto either studied empirically or studied in detail individually only for simpler
systems, can all be brought together under one unified framework.

Acknowledgment This study has been supported by the USDA NRI program under grant number 2008-
35503-18657.

Appendices

A Conservation Equations

Here, we list all the conservation equations at the macroscale, including the conservation of
mass, linear momentum, energy, and entropy. Details of the upscaling procedure are given
in Bennethum and Cushman (1996a).

A.1 Mass Balance

The macroscale mass balance for the j th species in phase α is given as

Dα j (εαρα j )

Dt
+ εαρα j (∇ · vα j ) =

∑

β �=α

êβ
α j

+ r̂α j (A.129)

Summing Eq. A.129 for N species gives the conservation of mass for the bulk phase:

Dα(εαρα)

Dt
+ εαρα(∇ · vα) =

∑

β �=α

êβ
α (A.130)

where the macroscopic species variables and their bulk counterparts are related by

ρα =
N∑

j=1

ρα j (A.131)

vα =
N∑

j=1

Cα j vα j (A.132)

Cα j = ρα j

ρα
(A.133)

êβ
α =

∑

β �=α

êβ
α j

(A.134)

They are subjected to the following restrictions:
∑

α

εα = 1 (A.135)

N∑

j=1

Cα j = 1, α = s, l, a (A.136)
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N∑

j=1

r̂α j = 0, α = s, l, a (A.137)

∑

β �=α

êβ
α j

= 0, j = 1, . . . , N (A.138)

A.2 Linear Momentum Balance

The macroscale linear momentum balance for the j th species in phase α is given as

εαρα j
Dα j vα j

Dt
− ∇ · (εαtα j ) − εαρα j gα j = îα j +

∑

β �=α

T̂β
α j

(A.139)

Summing Eq. A.139 for N species yields the conservation of momentum for the bulk phase:

εαρα Dαvα

Dt
− ∇ · (εαtα) − εαραgα =

∑

β �=α

T̂β
α (A.140)

where the macroscopic species variables and their bulk counterparts are related by

tα =
N∑

j=1

(tα j − ρα j (vα j ,α)2) (A.141)

vα j ,α = vα j − vα (A.142)

gα =
N∑

j=1

Cα j gα j (A.143)

T̂β
α =

N∑

j=1

(T̂β
α j

+ vα j êβ
α j

) (A.144)

The following restrictions apply:

N∑

j=1

(îα j + r̂α j vα j ,α) = 0, α = s, l, a (A.145)

∑

β �=α

(T̂β
α j

+ vα j êβ
α j

) = 0, j = 1, . . . , N (A.146)

A.3 Energy Balance

The macroscale conservation of energy for the j th species in phase α is given by

εαρα j
Dα j eα j

Dt
− ∇ · (εαqα j ) − εαtα j : ∇vα j − εαρα j hα j = Q̂α j +

∑

β �=α

Q̂β
α j

(A.147)

Summing Eq. A.147 for N species yields the conservation of energy for the bulk phase:

εαρα Dαeα

Dt
− ∇ · (εαqα) − εαtα : ∇vα − εαραhα =

∑

β �=α

Q̂β
α j

(A.148)
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where the relationships of the macroscopic species variables and their bulk counterparts are

eα =
N∑

j=1

Cα j

(
eα j

1

2
vα j ,α · vα j ,α

)
(A.149)

qα =
N∑

j=1

[
qα j + tα j · vα j ,α − ρα j

(
eα j + 1

2
vα j ,α · vα j ,α

)
vα j ,α

]
(A.150)

hα =
N∑

j=1

Cα j (hα j + gα j · vα j ,α) (A.151)

Q̂β
α =

N∑

j=1

[
vα j ,α + T̂β

α j
· vα j ,α + êβ

α j

(
eα j ,α

1

2
vα j ,α · vα j ,α

)
vα j ,α

]
(A.152)

They are subjected to the following restrictions:

N∑

j=1

[
Q̂α j + îα j · vα j ,α + r̂α j

(
eα j + 1

2
vα j ,α · vα j ,α

)
vα j ,α

]
= 0, α = s, l, a

(A.153)
∑

β �=α

[
Q̂β

α j
+ T̂β

α j
· vα j ,α + êβ

α j

(
eα j + 1

2
vα j · vα j

)
vα j ,α

]
= 0, j = 1, . . . , N

(A.154)

A.4 Entropy Balance

The macroscale conservation of energy for the j th species in phase α is

εαρα j
Dα j η j

Dt
− ∇ · (εαφα j ) − εαρα j bα j =

∑

β �=α

�̂β
α j

+ η̂α j + �α j (A.155)

Summing Eq. A.155 for N species yields the entropy balance for the bulk phase:

εαρα Dαη j

Dt
− ∇ · (εαφα) − εαραbα =

∑

β �=α

�̂β
α + �α (A.156)

where the macroscopic species variables are related to their bulk counterparts by

ηα =
N∑

j=1

Cα j ηα j (A.157)

φα =
N∑

j=1

(φα j − ρα j vα j ,αηα j ) (A.158)

bα =
N∑

j=1

Cα j bα j (A.159)

�̂β
α =

N∑

j=1

(�̂β
α j

+ êβ
α j

ηα j ,α) (A.160)
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And, the following restrictions hold

N∑

j=1

η̂α j + r̂α j ηα j = 0, α = s, l, a (A.161)

∑

β �=α

(�̂β
α j

+ êβ
α j

ηα j ) = 0, j = 1, . . . , N (A.162)

A.5 Total Entropy Inequality

As we mentioned before, we have assumed that the system is at local thermal equilibrium,
resulting in only one temperature for all the phases and their species:

T s j = T l j = T a j = T s = T l = T a = T (A.163)

Also, we have assumed that the system is thermodynamically simple:

φα j = α j

T
(A.164)

and

bα j = hα j

T
(A.165)

We perform a Legendre transformation to convert the internal energy eα j into the Helmoltz
free energy Aα j :

Aα j = eα j + T ηα j (A.166)

where

Aα =
N∑

j

Cα j Aα j (A.167)

We obtain the total entropy inequality by eliminating hα j from the energy and entropy bal-
ance:

� =
∑

α

⎡

⎣−εαρα

T

(
Dα Aα

Dt
+ ηα DαT

Dt

)
+ εα

T

⎛

⎝
N∑

j=1

tα j

⎞

⎠ : dα

+ εα

T 2 (∇T ) ·
⎡

⎣qα −
N∑

j=1

(
tα j · vα j ,α − ρα j vα j ,α

(
Aα j + 1

2
vα j · vα j

))⎤

⎦

− 1

T

N∑

j=1

[T̂β
α j

+ îα j + ∇(εαρα Aα j )] · vα j ,α

+
N∑

j=1

εα

T
(tα j − ρα j Aα j I) : ∇vα j ,α

− 1

T

∑

β �=α

T̂β
α · vα,s − 1

2T

N∑

j=1

(vα j ,α)2(êβ
α j

+ r̂α j )
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− 1

T

∑

β �=α

(
Aα + 1

2
vα,s · vα,s

)⎤

⎦ ≥ 0 (A.168)

B Complexities with Three-Scale Unsaturated Swelling Systems

We have mentioned before that complexities arise in a three-scale theory when the system
is considered as unsaturated. In order to see this, we need to look at the transport equation
and linear momentum balance of the solid phase in a three-scale theory. In this section, we
present the details of the derivation of the transport equation and linear momentum balance
for the solid phase for a three-scale unsaturated swelling porous system. This is based on
the study by Singh et al. (2003a,b), in which four phases, solid sA, vicinal fluid wA, bulk
phase B, and bulk phase C, are considered. Here, we assume isothermal conditions. The solid
phase is assumed to be incompressible. The vicinal fluid and the bulk fluid B are the same
and assumed to be incompressible. The third phase C is taken as air.

B.1 Vicinal Fluid

The mass conservation of the vicinal fluid is given by (A.5) in Singh et al. (2003a):

DwA(εwAρwA)

Dt
+ εwAρwA∇ · vwA = εwAρwAêwA

l (B.169)

where we have replaced εA by εwA as we have mentioned before that the upscaling technique
is modified slightly (Cushman et al. 2004). The right-hand side is nonzero as mass could be
transferred between the vicinal water and the bulk phase water. We rewrite the above equation
as

ρwA[ε̇wA + ∇ · (εwAvwA,sA) + εwA∇ · vsA] = εwAρwAêwA
l (B.170)

Darcy’s law for the vicinal fluid is simplified as

vwA,sA = RwA−1

⎡

⎣−εwAρwA ∂ AwA

∂εwA ∇εwA − εwAρwA
p∑

m=0

∂ AwA

∂
(m)sA

E

: ∇ (m)sA
E

⎤

⎦ (B.171)

The third term on the right side of Eq. 5.30 in Singh et al. (2003a) is neglected because
the vicinal fluid interacts with the bulk phase water only through the boundaries, and it is
assumed that for such systems the bulk fluid does not affect the free energy of the vicinal fluid.
Gravity and higher order effects are also ignored. The second term in the above represents the
effect of vicinal water concentration on the flow and the coefficient is known as the swelling
potential, while the viscoelastic effect on the flow is accounted for in the third term.

B.2 Bulk Phase Fluid B

Mass conservation of the bulk phase B is given by (A.7) in Singh et al. (2003a) and is written
as

ρl[ε̇l + ∇ · (εlvl,sA) + εl∇ · vsA] = εlρlêl
wA (B.172)
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Darcy’s law is given as

vl,sA = Rl−1
(

−εlρl ∂ Al

∂εl ∇εl
)

(B.173)

The second term is related to the capillary pressure, and this resembles the classical Darcy’s
law.

B.3 Transport Equation

As the mass transferred between the vicinal fluid and the bulk fluid adds up to zero
εwAρwAêwA

l + εlρlêl
wA = 0, we add (B.169) and (B.172) and use the notation

εf = εl + εwA (B.174)

where εf is the total volume fraction of the vicinal fluid and the volume fraction of the bulk
fluid B; we obtain

ε̇f − ∇ ·
⎧
⎨

⎩
kf

μf I
[

K 2εf
(

εwAρwA ∂ AwA

∂εwA

)
+ (1 − K )2εf

(
εlρl ∂ Al

∂εl

)

+εfεA ∂pwA

∂εwA

]
∇εf − K 2εf

⎛

⎝εfρwA
p∑

m=0

∂ AwA

∂
(m)sA

E

: ∇ (m)sA
E

⎞

⎠

⎫
⎬

⎭ + εf∇ · vsA = 0

(B.175)

where

RwA−1 = Rl−1 = kf

μf I (B.176)

and we follow Singh et al. (2003b) to assume a linear relationship between εwA and εf :

εwA = K εf (B.177)

Then,

εl = (1 − K )εf (B.178)

We define the Fickian diffusion coefficient as

D ≡ kf

μf

[
K 2εf

(
εwAρwA ∂ AwA

∂εwA

)
+ (1 − K )2εf

(
εlρl ∂ Al

∂εl

)
+ εfεA ∂pwA

∂εwA K

]

(B.179)

The Laplace transform technique is used to convert the fifth term in (B.175) into an integral
form and (B.175) then becomes

ε̇f − ∇ · (D∇εf ) − ∇ ·
⎛

⎝
t∫

0

B(t − τ) : ˙∇EsAdτ

⎞

⎠ + εf∇ · vsA = 0 (B.180)

where B is defined by

B(t) = kf

μf K 2εf 2
ρwAM(t) (B.181)
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and

M(t) =
p∑

m=0

∂ AwA

∂
(m)sA

E

dδ

dt
(t) (B.182)

Equation B.180 is the transport equation which needs to be solved simultaneously with the
solid phase equations. This is different from Eq. 2.53 in Singh et al. (2003b) because phase
C is not immobile anymore, and relation (2.19) in Singh et al. (2003b) is no longer valid.

We have discussed before that the linearity assumption (B.177) is not justified. However,
without relating the volume fraction of the vicinal fluid and that of the bulk phase B, it is
very difficult to combine the two phases.

B.4 Solid Phase

Linear momentum balance of the solid phase is given below (Here, we ignore gravity and
inertial effects):

∇ · (εAtsA) = −
∑

α �=wA,l,a

εsAρsAT̂sA
α (B.183)

The right-hand side is the linear momentum transferred from other phases to the solid phase
and could not be obtained directly. We use the restriction

εαρα(T̂β
α + êβ

αvα) + εβρβ(T̂α
β + êα

βvβ) = 0, α, β = wA, s A, l, a, α �= β (B.184)

and Eq. B.183 is equivalent to

∇ · (εAtsA) = εwAρwAT̂wA
sA + εlρlT̂l

sA + εaρaT̂a
sA (B.185)

From the linear momentum balance for phase α, α = wA, l, a, the following relationships
can be obtained:

εwAρwA[T̂sA
wA + T̂l

wA + T̂a
wA] = ∇(pwAεwA) (B.186)

εlρl[T̂sA
l + T̂wA

l + T̂a
l ] = ∇(plεl) (B.187)

εaρa[T̂sA
a + T̂wA

a + T̂l
a] = ∇(paεa) (B.188)

Note that the mass transferred between the vicinal fluid and the bulk phase B is nonzero. All
the other mass transfers between phases vanish. Thus, if we add the above three equations
up, terms cancel on the left-hand side except for those that appear on the right-hand side,
as well as εwAρwAT̂l

wA and εlρlT̂wA
l on the left-hand side. This is because in (B.184), êl

wA
and êwA

l are not zero. However, since no information is available for the momentum transfer
between the vicinal fluid and the bulk phase l, we assume that

εwAρwAT̂l
wA + εlρlT̂wA

l = 0 (B.189)

Thus, the linear momentum balance of the solid phase is given as

∇ · (εAtsA) = ∇(pwAεwA) + ∇(plεl) + ∇(paεa) (B.190)

The stress–strain relationship is of the form

tsA = −psAI + tseA + tshA +
p∑

m=0

F(GsA (m)sA
E )FT (B.191)
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The Terzaghi stress tseA and the hydration stress tshA are given respectively by

tseA = ρsAF
∂ AsA

∂EsA FT (B.192)

tshA = ρwAF
∂ AwA

∂EsA FT (B.193)

In Eq. B.190, the volume fraction of the particle A composed of the solid phase sA and the
vicinal fluid wA appears. The solid phase linear momentum balance is difficult to implement
without separation of the volume fraction εsA from εA. It appears difficult to carry out this
separation.
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