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Abstract In this study, creeping and inertial incompressible fluid flows through three-
dimensional porous media are considered, and an analytical–numerical approach is employed
to calculate the associated permeability and apparent permeability. The multiscale homoge-
nization method for periodic structures is applied to the Stokes and Navier–Stokes equations
(aided by a control-volume type argument in the latter case), to derive the appropriate cell
problems and effective properties. Numerical solutions are then obtained through Galerkin
finite-element formulations. The implementations are validated, and results are presented
for flows through cubic lattices of cylinders, and through the dendritic zone found at the
solid–liquid interface during solidification of metals. For the interdendritic flow problem, a
geometric configuration for the periodic cell is built by the approximate matching of experi-
mental and numerical results for the creeping-flow problem; inertial effects are then quantified
upon solution of the inertial-flow problem. Finally, the functional behavior of the apparent
permeability results is analyzed in the light of existing macroscopic seepage laws. The find-
ings contribute to the (numerical) verification of the validity of such laws.

Keywords Permeability · Apparent permeability · Porous media · Homogenization ·
Finite-element method

1 Introduction

Fluid flows through porous media take place in many man-made and natural processes, like
aerosols filtration, heat transfer in compact heat exchangers, air and water clean-up, resin
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transfer molding (Ngo and Tamma 2001), and dendritic solidification (Murakami et al. 1983,
1984; Poirier 1987; Brown et al. 2002), to mention but a few examples. When dealing with
fluid flows through porous media, the most relevant property of interest is the (tensorial)
permeability, which relates the macroscopic pressure drop and the volumetric flow rate as
stated by the well-known Darcy’s law (Bear 1988; Kaviany 1995). For creeping flows at
the pore scale, the permeability depends on the (generally complex) microstructure of the
medium only. Owing to the large number of heterogeneities, direct simulation of the fluid flow
through the intricate paths of a real porous medium is prohibitive, and analytical results for
the permeability are generally restricted to simple geometrical models for the microstructure
(e.g., Zick and Homsy 1982).

The phenomenological Darcy’s law is verified only when the inertial effects on the flow
at the microscale are negligible. However, for many relevant applications, the hypothesis of
creeping flow is not verified, and the permeability is seen to depend on both the microstructure
of the medium and the Reynolds number of the flow (Edwards et al. 1990; Ghaddar 1995a,b;
Kaviany 1995); as a consequence, a nonlinear filtration law rules the fluid seepage at the
macroscale. Since the permeability is no longer solely a property of the medium for inertial
flows, the name apparent permeability is used in the literature (Edwards et al. 1990; Ghaddar
1995a,b). Hereafter, the microstructure-dependent effective property of the porous medium
is termed permeability (Bear 1988), while apparent permeability will denote, the effective
property that depends on both the medium microstructure and flow Reynolds number (Lucas
et al. 2007).

In this study, an analytical–numerical approach is employed to predict numerical values
for the permeability and apparent permeability of three-dimensional porous media, whose
microstructures are known a priori (Rocha 2007). The approach is based on a homogeniza-
tion method for periodic structures (Hornung 1997; Auriault 2001), a control-volume type
argument for the inertial-flow case (Ghaddar 1995a,b), and the finite-element method (Reddy
and Gartling 2001). The main contributions of the present study are twofold. First, a rational,
physically sound, and accurate procedure is provided, to predict the apparent permeability of
a three-dimensional porous medium, whose microstructure is given explicitly, and has been
previously validated in the creeping-flow regime. This methodical calculation route appears
new in the literature. Second, the examination of, and findings about, the functional behav-
ior of the apparent permeability results for the 3-D periodic microstructures of this study
contribute to the numerical verification of the validity of existing porous media macroscopic
seepage laws (Firdaouss et al. 1997; Skjetne and Auriault 1999; Chen et al. 2001; Fourar
et al. 2004; Lucas et al. 2007).

For completeness of the article, the homogenization equations are briefly derived in Sect. 2,
from both the Stokes and Navier–Stokes equations at the pore scale. In Sect. 3, the appropri-
ate cell problems are stated in weak form, and the finite-element solution procedure, based
on a classical Galerkin formulation, is outlined. In Sect. 4, the geometrical configurations of
interest for the solution of the cell problems are presented; among them, the three-dimen-
sional cubic lattices of cylinders of Higdon and Ford (1996), and a microstructure typical of
the so-called “mushy zone”, for simulating the flow through the interdendritic region during
solidification of alloys, are considered. In Sect. 5, (i) the implementations are validated for
both creeping and inertial flows against results available in the literature, (ii) new results for
inertial flow through the cubic lattices of cylinders are obtained, (iii) the dendritic-micro-
structure geometrical configuration for the periodic cell is tested against experimental results
for creeping flow, (iv) inertial effects are quantified for flow parallel to the primary dendrite
arms of the latter microstructure, and (v) an examination of the functional behavior of the
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apparent permeability results in the light of existing macroscopic filtration laws is effected.
Finally, in Sect. 6, the conclusions of the present study are stated.

2 Homogenization

Let � ⊂ R3 be a bounded domain with boundary ∂�;� = � f ∪ �s , where � f is a con-
nected continuous fluid phase, and �s is the dispersed solid phase. The interface between the
fluid and solid phases is denoted by �. The fluid is assumed Newtonian and incompressible,
with density ρ and dynamic viscosity μ. The solid phase consists of a fixed bed of fibers
randomly distributed and oriented in space. A pressure gradient (�P/L)em is imposed over
the macroscale L in the x∗

m-direction; em is the unit vector parallel to the x∗
m-axis. The mul-

tiscale medium is assumed periodic at the microscale l � L in all coordinate directions, so
that the small parameter ε ≡ l/L � 1, and the multiscale homogenization method (Auriault
2001) can be applied.

2.1 Creeping Flow

When inertial effects are negligible, Stokes equations govern the fluid motion,

∂p

∂xi
= μV

L �P

∂2ui

∂x j∂x j
in � f , i = 1, 2, 3, (1)

∂ui

∂xi
= 0 in � f , (2)

and the no-slip condition applies

ui = 0 on � . (3)

In the non-dimensional Eqs. 1–3, summation over repeated indices is implied,

x ≡ x∗

L
, u ≡ u∗

V
, p ≡ p∗

�P
, (4)

x∗ = (x∗
1 , x∗

2 , x∗
3 ) ∈ R3 is the spatial coordinate, u∗ = (u∗

1, u∗
2, u∗

3) is the velocity field,
V is a characteristic velocity, and p∗ is the pressure field. Body forces are neglected. The
homogenization condition to ensure that the velocity has a non-trivial limit when ε → 0
requires μV/L �P = O(ε2) (Hornung 1997; Auriault 2001).

The medium can be partitioned into N = O(ε3) periodic cells Qε
n, n = 1, 2, . . . , N , of

characteristic length l, and � = ⋃N
n=1 Qε

n ; microscopically, each cell Qε
n is mapped onto

a reference periodic cell Q of characteristic length l0 = O(l), such that the geometry of Q
defines the microstructure of the periodic medium completely. Separation of length scales
thus permits one to write both velocity and pressure as

ui (x) = ui (x, y) =
∞∑

k=0

εku(k)
i (x, y), p(x) = p(x, y) =

∞∑

k=0

εk p(k)(x, y), (5)

where x and y = x/ε are the macroscopic (slow) and microscopic (fast) coordinates, respec-
tively. Inserting 5 into 1–3, and collecting the terms of order ε−1 and ε0, one concludes that
(Hornung 1997)

∂p(0)

∂xi
= ∂p(0)

∂xm
= em (6)
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and

u(0)
i (x, y) = −Kim

∂p(0)

∂xm
, (7)

m ∈ {1, 2, 3}. Writing Q f and ∂ Q f for the fluid part of the periodic cell Q and of its bound-
ary ∂ Q, respectively, and �Q for the solid–liquid interface in Q, the fields Kim(y) and �m(y)

are periodic over ∂ Q f , and satisfy

∂2 Kim

∂y j∂y j
= ∂�m

∂yi
− δim in Q f , i = 1, 2, 3, (8)

∂Kim

∂yi
= 0 in Q f , (9)

Kim = 0 on �Q . (10)

In order to ensure uniqueness, the condition �m(ỹ) = 0 is further imposed at an arbitrary
point ỹ of Q f .

Darcy’s law (Bear 1988; Kaviany 1995) relates the dimensional superficial velocity q
and the dimensional pressure gradient G for the creeping flow of a viscous incompressible
Newtonian fluid through a porous medium by the expression

qi = −k∗
im Gm

μ
, (11)

where k∗ = k∗
im is the permeability tensor, strictly a property of the medium. Averaging Eq. 7

over the cell domain, one obtains the following non-dimensional form for Darcy’s law,

1

|Q|
∫

Q
u(0)

i dy = −
(

1

|Q|
∫

Q
Kim dy

)
∂p(0)

∂xm
, (12)

where |Q| = O(l3) is the cell volume. Inspecting Eqs. 11 and 12, the following expression
for the non-dimensional permeability tensor is derived:

kim = k∗
im

l2 = 1

|Q|
∫

Q
Kim dy. (13)

Thus, solution of the periodic cell problem 8–10 for a given medium microstructure, defined
by the cell Q, leads to the permeability tensor given by the expression 13.

2.2 Inertial Flow

Homogenization theory has already been applied to inertial flows. Mei and Auriault (1991)
consider weak inertial effects only, while Marus̆ic-Paloka and Mikelic (2000) and Chen et al.
(2001) assume that the inertial terms have the same order of magnitude as the viscous and
pressure terms; here, the latter approach is followed. Although Marus̆ic-Paloka and Mikelic
(2000) and Chen et al. (2001) present rigorous homogenization procedures to obtain the
periodic cell and homogenized problems, they do not consider the unsteady effects, which
are relevant for moderate Reynolds numbers (Ghaddar 1995a,b). G. Allaire (Hornung 1997,
chap. 3) states, without proof, that convective and unsteady effects combined can indeed be
treated by the homogenization method.

In order to consider both convective and unsteady effects, it thus seems appropriate to
adopt a widely accepted, physically plausible model based on a control-volume type argument
(Ghaddar 1995a,b): the contribution of the external boundary conditions to the microscopic
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flow occurs solely via the macroscopic pressure gradient, as shown for the creeping-flow
cell problem. Based on 8–10, a periodic cell Navier–Stokes problem for the unsteady iner-
tial incompressible flow may then be inferred: given Re′, find the (nondimensional) fields
Kim(y) and �m(y) that are periodic over ∂ Q f , and that satisfy (with m ∈ {1, 2, 3} and no sum
over m)

∂Kim

∂t
+ K jm

∂Kim

∂y j
− 1

Re′
∂2 Kim

∂y j∂y j
+ ∂�m

∂yi
= δim in Q f , i = 1, 2, 3, (14)

∂Kim

∂yi
= 0 in Q f , (15)

Kim = 0 on �Q, (16)

and the uniqueness condition �m(ỹ) = 0. The Reynolds number Re′ in Eq. 14 is defined as

Re′ = ρV d
μ

, where d is the cylinder diameter and V =
√

�P d
ρL .

When inertial effects are not negligible, the pressure gradient and the superficial velocity
are not related linearly, and Darcy’s law is no longer appropriate. Nevertheless, the linear
representation given by Eq. 11 (or by Eq. 12) is still convenient. In order to account for the
non-linear effects, the tensor ka∗ is made to depend not only on the microstructure but also
on the Reynolds number Re′; ka∗ is known as the apparent permeability (Edwards et al.
1990). As an unsteady flow is considered here, the macroscopic (or effective) property—the
apparent permeability—must be time-averaged. It can be shown that the non-dimensional
apparent permeability tensor is given by (Ghaddar 1995a,b)

ka
im = ka∗

im

l2 = 1

T |Q| Re′

∫ T

0

∫

Q
Kim(y, t) dy dt, (17)

where K(y, t) is the solution of the cell problem 14–16, and T is the characteristic time
period of the unsteady flow. In general, due to the complex microstructures of real porous
media, analytical solutions of the cell problem are impractical, and a numerical approach is
required.

3 Finite-Element Formulations

Finite elements (Reddy and Gartling 2001) are well-suited for the generally complex three-
dimensional geometries of typical porous media. In this section, Galerkin finite-element
formulations are presented for solving the cell problems for both creeping (Eqs. 8–10) and
inertial flows (Eqs. 14–16), using unstructured tetrahedral meshes.

3.1 Domain Discretization

The first step to a successful finite-element solution is an appropriate discretization of the
domain. Here, the fluid domain Q f is discretized through an unstructured conforming peri-
odic mesh consisting of Ne tetrahedral elements, constructed by the resourceful third-party
software NETGEN 4.0 (Schöberl 2001).

Since the creeping-flow problem does not require large CPU times, fine uniform meshes
are used throughout the corresponding domains. On the other hand, the inertial-flow prob-
lem does require a substantial amount of CPU time. Therefore, a selective mesh refinement
procedure is needed, such that a first solution of the cell problem on a coarse uniform mesh is
found. A new non-uniform mesh is then constructed with finer elements, where the gradients
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of K pm are higher. Defining g(y) ≡ ∂K pm/∂yp , the characteristic size h of the edge of a
tetrahedron is then given by

h(y) = h0 gref

ζ g(y)
where g(y) > gref , and

h(y) = h0 elsewhere. (18)

In Eq. 18, h0 is the nominal mesh size, ζ is a global refinement parameter, and gref is a
reference value for the gradient, which determines, where the mesh will be refined. Here,
gref = a1 ḡ, a1 ∈ R, where ḡ is the average of g(y) over the domain, and a1 is typically
chosen to be (close to) 1.

3.2 Problems Discretization

3.2.1 Creeping Flow

Let L(Q) be the space of scalar periodic functions that are square-integrable in Q, and H(Q)

the space of scalar periodic functions whose derivatives with respect to yi , i = 1, 2, 3, belong
to L(Q). The weak form of the cell problem 8–10 is written as (Ghaddar 1995a,b): given m ∈
{1, 2, 3}, find (K1m, K2m, K3m,�m) ∈ ([H(Q)]3, L(Q)) such that, for all (v1, v2, v3, w) ∈
([H(Q)]3, L(Q)),

∫

Q

∂vi

∂y j

∂Kim

∂y j
dy −

∫

Q
�m

∂vi

∂yi
dy =

∫

Q
vm dy , (19)

∫

Q
w

∂Kim

∂yi
dy = 0 , (20)

subject to the no-slip boundary condition 10, and the uniqueness condition �m(ỹ) = 0.
In order to satisfy the Ladyzhenskaya–Babuska–Brezzi (LBB) consistency condition for

incompressible flows (Reddy and Gartling 2001), Taylor–Hood isoparametric 10-node tetra-
hedra are used for the finite-element discretization of Eqs. 19–20. Velocity components and
the geometry are thus interpolated quadratically, while the pressure is interpolated linearly.
The discrete global velocity and pressure fields can be written as (superscript h denotes
discrete quantities):

K h
im(y) =

NU∑

a=1

Ui
a�a(y) and �h

m(y) =
NP∑

a=1

Pa�a(y). (21)

In Eq. 21, Ui
a is the unknown value of the i-component of the velocity field Kh

m at node a, a =
1, . . . , Ndof,v; Ndof,v is the number of unknown values (degrees-of-freedom) of K h

im . Analo-
gously, Pa is the unknown value of the pressure field �h

m at node a, a = 1, . . . , Ndof,p; Ndof,p

is the number of unknown values of �h
m . The quadratic and linear finite-element interpolation

functions at node a of a 10-node tetrahedron are �a(y) and �a(y), respectively. In a Galer-
kin formulation, the weighting functions are approximated by the interpolation functions
themselves (Reddy and Gartling 2001), such that

vh
i (y) = �a(y) and wh(y) = �a(y). (22)

Locally, the velocity Km and the pressure are calculated, respectively, at the ten (corner and
midside) nodes and at the four corner nodes of every quadratic tetrahedron.
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The discrete weak form of the cell problem 19–20 can now be written: given m ∈ {1, 2, 3},
find the periodic fields (K h

1m, K h
2m, K h

3m,�h
m) ∈ ([Hh(Q)]3, Lh(Q)) such that, for all

(vh
1 , vh

2 , vh
3 , wh) ∈ ([Hh(Q)]3, Lh(Q)),

∫

Qh

∂vh
i

∂y j

∂K h
im

∂y j
dy −

∫

Qh

�h
m

∂vh
i

∂yi
dy =

∫

Qh

vh
m dy, (23)

∫

Qh

wh ∂K h
im

∂yi
dy = 0, (24)

K h
im = 0 on �h

Q, (25)

subject to �h
m(ỹ) = 0. In Eqs. 23–25, Qh is the finite-element mesh, i.e., the union of all

tetrahedra τe, e = 1, . . . , Ne. The function spaces for velocity and pressure are Lh(Q) =
L(Q) ∩ Y1(τe) and Hh(Q) = H(Q) ∩ Y2(τe), respectively, where Yp(τe) is the space of all
polynomials of degree p defined over element τe. Substituting Eqs. 21–22 into the discrete
cell problem 23–25 and performing numerical integration, one obtains the following system
of linear algebraic equations (Ghaddar 1995a,b):

[A]{Ui } − [Di ]T {P} = [M]{ fi }, i = 1, 2, 3, (26)

[Di ] {Ui } = {0}, (27)

where [A] is the symmetric discrete Laplacian operator, [Di ] is the discrete divergence oper-
ator, [M] is the mass matrix, vector { fi } represents the non-dimensional external pressure
gradient, and vectors {Ui } and {P} comprise, respectively, the i-component of the velocity
and pressure nodal unknowns (see Eq. 21). Here, integration is performed with a 35-point
Gaussian quadrature formula. In order to satisfy Eq. 25, null velocity is imposed at every
node on the interface �h

Q ; these known nodal velocity values are not part of the unknown

vector {Ui }.

3.2.2 Inertial Flow

The discretization procedure for the cell problem of the inertial-flow case is analogous to that
of the creeping-flow case. The weak form of problem 14–15 is written as (Ghaddar 1995a,b):
given m ∈ {1, 2, 3} and Re′, find (K1m, K2m, K3m,�m) ∈ ([H(Q)]3, L(Q)) such that, for
all (v1, v2, v3, w) ∈ ([H(Q)]3, L(Q)),

∫

Q
vi

∂Kim

∂t
dy +

∫

Q
vi K jm

∂Kim

∂y j
dy + 1

Re′

∫

Q

∂vi

∂y j

∂Kim

∂y j
dy

−
∫

Q
�m

∂vi

∂yi
dy =

∫

Q
vm dy, (28)

∫

Q
w

∂Kim

∂yi
dy = 0, (29)

subject to the no-slip boundary condition 16, and the uniqueness condition �m(ỹ) = 0.
Considering the same interpolation rules adopted in the creeping-flow problem (see

Eqs. 21–22) and the discrete spaces Lh(Q) and Hh(Q), the discrete weak form of the
cell problem 28–29 can be stated as: given m ∈ {1, 2, 3} and Re′, find the periodic fields
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(K h
1m, K h

2m, K h
3m,�h

m)∈([Hh(Q)]3, Lh(Q)) such that, for all (vh
1 , vh

2 , vh
3 , wh)∈([Hh(Q)]3,

Lh(Q)),
∫

Qh

vh
i
∂K h

im

∂t
dy +

∫

Qh

vh
i K h

jm
∂K h

im

∂y j
dy + 1

Re′

∫

Qh

∂vh
i

∂y j

∂K h
im

∂y j
dy

−
∫

Qh

�h
m

∂vh
i

∂yi
dy =

∫

Qh

vh
m dy, (30)

∫

Qh

wh ∂K h
im

∂yi
dy = 0, (31)

K h
im = 0 on �h

Q, (32)

subject to �h
m(ỹ) = 0. Substituting Eqs. 21–22 into 30–32, and performing numerical inte-

gration, one obtains the following system of linear algebraic equations (Ghaddar 1995a,b):

[M] d

dt
{Ui } + [C]{Ui } = − 1

Re′ [A]{Ui } + [Di ]T {P} + [M]{ fi }, i = 1, 2, 3, (33)

[Di ] {Ui } = {0}, (34)

where [C] is the non-symmetric non-linear convective operator, which depends on the solu-
tion {Ui }. As mentioned in Sect. 3.2.1, integration is performed with a 35-point Gaussian
quadrature formula.

For a time-stepping solution procedure, the viscous term is integrated through an implicit
backward scheme, and the nonlinear term is treated explicitly by the 3rd-order Adams–
Bashforth scheme, leading to the following symmetric linear system of algebraic equations
(Ghaddar 1995a,b):

(
1

Re′ [A] + 1

�tn
[M]

)

{Ui }n+1 − [Di ]T {P}n+1

= 1

�tn
[M]{Ui }n −

2∑

p=0

αp[C]n−p{Ui }n−p + [M]{ fi }, i = 1, 2, 3, (35)

[Di ] {Ui } = {0}, (36)

where the subscript n refers to the nth iteration, �tn is the time step, and α0, α1, and α2 are
coefficients, which depend on the last three time steps:

α0 = 12�tn−1(�tn−1 + �tn−2) + 6�tn(2�tn−1 + �tn−2) + 4�t2
n

12�tn−1(�tn−1 + �tn−2)
,

α1 = −6�tn(�tn−1 + �tn−2) + 4�t2
n

12�tn−1�tn−2
, (37)

α2 = 6�tn�tn−1 + 4�t2
n

12�tn−2(�tn−1 + �tn−2)
.

The notation [C]n−p indicates that the matrix [C] is evaluated with the solution obtained at
iteration n − p, namely, {Ui }n−p .

3.3 Solution of the Algebraic Systems

In this section, the iterative solution procedures to solve the creeping-flow system 26–27
and the inertial-flow system 35–36 are summarized. As in Ghaddar (1995a,b), the iterative
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procedures are based on the conjugate gradient method (Shewchuk 1994) and on the ele-
ment-by-element evaluation technique, by means of which the global matrices need not be
assembled. The stopping criterion for an iterative solve is based on the norm of the residual,
which has to reach a sufficiently small value; ultimately, the solves yield the significant digits
presented in Sect. 5.

3.3.1 Creeping Flow

The system of algebraic equations 26–27 is solved through the Uzawa saddle-decoupling
algorithm (Maday et al. 1993; Ghaddar 1995a,b): multiplying Eq. 26 on the left by [Di ][A]−1,
and using 27, leads to

[S]{P} = −[Di ][A]−1[M]{ fi }, (38)

where [S] ≡ [Di ][A]−1[Di ]T is a symmetric positive-definite operator; from 26,

[A]{Ui } = [Di ]T {P} + [M]{ fi }, i = 1, 2, 3. (39)

A nested conjugate gradient procedure is adopted to solve Eq. 38 for {P}. Defining {Zi } ≡
[A]−1[M] { fi }, a conjugate gradient iteration is used to find {Zi } from [A]{Zi } = [M]{ fi }.
The right-hand-side of Eq. 38 is then easily obtained,

− [Di ][A]−1[M]{ fi } = −[Di ]{Zi }. (40)

The velocity solutions {Ui } are found by solving Eq. 39 via a simple conjugate gradient
iteration for each i, i = 1, 2, 3.

3.3.2 Inertial Flow

In order to solve the indefinite system 35–36, an operator splitting method is employed
(Maday et al. 1990; Ghaddar 1995a,b), yielding the system:

[H ]{Ũ i }n+1 = [Di ]T {P}n + 1

�tn
[M]{Ui }n −

2∑

p=0

αp[C]n−p{Ui }n−p + [M]{ fi },

i = 1, 2, 3, (41)

[E] {P}n+1 = [E]{P}n − 1

�tn
[Di ]{Ũ i }n+1, (42)

{Ui }n+1 = {Ũ i }n+1 + �tn[M]−1[Di ]T ({P}n+1 − {P}n), (43)

where {Ũ i } is an intermediate (velocity) solution, and [H ] and [E] are the Helmholtz and
Poisson operators, respectively, defined as

[H ] ≡ 1

Re′ [A] + 1

�tn
[M] and [E] ≡ [Di ][M]−1[Di ]T . (44)

The mass matrix [M] is then replaced by the diagonal lumped mass matrix [ML ], defined
locally in the tetrahedral element τe as (no sum over j)

[ML ]τe
j j ≡ [M]τe

j j
|τe|

tr[M]τe
, (45)

where |τe| is the volume of tetrahedron τe. This matrix replacement eliminates the need
for a nested conjugate gradient loop to solve Eq. 43, reducing computational time, and its
associated error vanishes completely at steady-state.
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For the time-stepping procedure, the time step for iteration n+1 is calculated based on the
Courant condition for iteration n. For every edge hk (k = 1, 2, . . . , 6) of every tetrahedron
τe (e = 1, 2, . . . , Ne), a Courant number is defined as

Cr = u�tn/(hk/2), (46)

where u is the projection of the velocity vector on the edge hk , and (hk/2) is used as the refer-
ence mesh size due to the quadratic interpolation. For the finite-difference scheme, described
in Sect. 3.2.2, a stable solution is guaranteed when Crmax < 0.723 over the mesh (Ghaddar
1995a). If, this criterion is not observed, the entire calculation carried out at iteration n is
abandoned, and a new time step �tn , calculated with Cr = 0.5, is considered:

�tn = 0.5
hk

2u
. (47)

The choice Cr = 0.5 will provide stable solutions for the range of Reynolds numbers consid-
ered in the present study. Thus, for iteration n + 1, if the stability criterion (Crmax < 0.723)
is verified, the same time step is used, provided it is larger than the one given in Eq. 47;
otherwise, the value calculated in Eq. 47 is used.

3.4 Calculation of the Permeabilities

3.4.1 Creeping Flow

Once system 38–39 is solved, the permeability tensor kh can be calculated. In this article,
only the most relevant permeability entries kmm are considered, so that, choosing m = 1, the
expression for the numerical (scalar) permeability is

kh ≡ kh,11 = 1

|Qh |
∫

Qh

K h
11 dy. (48)

Alternative expressions to evaluate kh are (sum over i):

kh = 1

|Qh | {U
i }T [A]{Ui } = 1

|Qh | {1}T [M]{U 1}. (49)

Equation 49 serves as a useful check for the implementation, in that it should lead to the
same value for kh as Eq. 48.

3.4.2 Inertial Flow

Analogously to the creeping-flow permeability calculation, once system 41–43 is solved, the
numerical (scalar) apparent permeability is given by (Ghaddar 1995a,b)

ka
h ≡ ka

h,11 = 1

T |Qh |Re′

∫ T

0

∫

Qh

K h
11 dy dt, (50)

or, alternatively,

ka
h = 1

T |Qh |Re′ {Ui }T [A]{Ui } = 1

T |Qh |Re′ {1}T [M]{U 1}. (51)

123



Calculation of the permeability and apparent permeability of three-dimensional porous media 359

For steady-state flows, no averaging in time is needed, and 50–51 reduce, respectively, to

ka
h = 1

|Qh |Re′

∫

Qh

K h
11 dy, (52)

ka
h = 1

|Qh |Re′ {Ui }T [A]{Ui } = 1

|Qh |Re′ {1}T [M]{U 1}. (53)

4 Geometrical Configurations for the Microstructures

As mentioned in Sect. 2, the geometry and distribution of the solid and fluid phases in the
3-D periodic cell Q defines entirely the microstructure of the porous medium of interest. In
this study, four geometrical configurations for Q are employed: (i) the simple cubic array of
spheres, (ii) the square array of infinitely long cylinders, (iii) the cubic lattices of cylinders
introduced by Higdon and Ford (1996), and (iv) a configuration for the dendritic region of a
solidifying alloy.

It is befitting to note that the computational approach laid out in this study is not restricted
to any specific microgeometry configuration. Indeed, the present approach can be applied to
any microstructure, idealized or real, simple or complex, whose geometrical domain may be
adequately meshed by finite elements. Non-intrusive imaging methods exist, for example,
reconstruction techniques and X-ray tomography (Torquato 2002), which permit to charac-
terize the microstructure of an actual porous medium. Faessel et al. (2005) and Maire et al.
(2007) have used X-ray tomography to reveal the complex microstructures of random cel-
lulosic fibrous networks and cellular ceramics materials, respectively. Faessel et al. (2005)
were able to apply finite elements successfully, to study the thermal conductivity behavior
of the fibrous networks. Also, one may speculate that some, though not all, microstructures
shown by Maire et al. (2007) can be dealt with computationally. One expects, however, that
there will be porous microstructures, which are not (yet) amenable to finite-element treat-
ment; such is frequently the case with natural systems (e.g., Neethirajan et al. 2006; Torquato
2002).

4.1 Simple Cubic Array of Spheres

The geometry of Q is composed of a sphere of unitary diameter placed at the center of a cube
of edge λ = (π/6φ)1/3. The solid phase is represented by the sphere, and its volume fraction
is φ. This configuration is used here for validation purposes only, against the creeping-flow
results of Zick and Homsy (1982).

4.2 Square Array of Cylinders

The cell geometry is composed of a circle of unitary diameter placed at the center of a square
of side λ = (π/4φ)1/2; the solid phase is represented by the circle. This is in fact a 2-D con-
figuration, reproduced by the 3-D cell Q by placing a circular cylinder of unitary diameter
(the solid fiber) at the center of a λ × λ × κλ parallelepipedal box. The factor κ is chosen to
save CPU time, while avoiding meshing problems; typically κ = 0.1. The cylinder’s axis is
perpendicular to the pair of λ×λ faces. This configuration is used here for validation purposes
also, against the inertial-flow numerical results of Ghaddar (1995a,b) for flow perpendicular
to the cylinders.
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4.3 Cubic Lattice Configurations

Three cubic lattice arrays are presented, in detail, by Higdon and Ford (1996), denoted by
simple cubic (SC), body-centered cubic (BCC), and face-centered cubic (FCC); it should be
noted that these denominations, and respective acronyms, are used in the literature to refer to
both arrays of cylinders and arrays of spheres (Kaviany 1995). The fibers are straight circular
cylinders that intersect at the points corresponding to the nodes of the arrays. Higdon and Ford
(1996) present numerical results for the permeability of such arrays with no consideration to
inertial effects. While these permeability results will also be compared to the present results,
the main motivation for considering this geometrical configuration is the ability to quantify
the inertial effects in such media. Thus, some new results for the apparent permeability of
the cubic lattice arrays are presented for several Reynolds numbers.

It is important to note that useful physical information is obtained, when analyzing trans-
port phenomena in idealized ordered microstructures. First, different ordered microstruc-
tures are found in several engineering applications, including fluid flow and heat transfer
(Bear 1988; Kaviany 1995; Higdon and Ford 1996; Tian et al. 2004). Second, the structural
parameters and packing characteristics (Kaviany 1995) of the SC, BCC, and FCC arrays are
dissimilar. Thus, for the same porosity, the arrays will present distinct pathways for fluid flow
(and heat transfer), leading to different permeability and apparent permeability (and effec-
tive conductivity) values. Third, ordered microstructure configurations are relatively more
amenable to experimental reproduction, such that they serve for validation of analytical and
numerical models. One then establishes, that it is physically meaningful to consider the
inertial effects and apparent permeability values associated with small to moderate Reynolds
number flows in such microstructures. However, there are other physical scenarios, for which
the SC, BCC, and FCC configurations are not suitable. As a relevant example, described in
the next paragraph, the branching-like structures formed in the solidification of metal alloys
are inherently different from the ordered arrays considered, so far. Therefore, the knowledge
of the macroscopic flow characteristics in these branching structures is a key to warrant the
ultimate quality of the alloy.

4.4 Dendritic Configuration

The solidification of alloys is a typical multiscale phenomenon, and the knowledge of both
micro and macroscopic effects must be integrated to improve casting design (Stoehr 1998).
During the solidification process of metal alloys, a finite two-phase mixture region may form
between the solid and liquid phases, called the mushy region or mushy zone (Kaviany 1995;
Prescott et al. 1991). The mushy zone is a porous material, where solid three-dimensional
dendritic-like shapes form, grow, and fatten through the permeating interdendritic liquid. It
is well-known that the flow of the liquid phase through the dendrites is responsible for many
types of macrosegregation, so that, the permeability of the mushy zone is a key parameter for
the final microstructure of the alloy (Poirier 1987; Heinrich et al. 1996). Since the permeabil-
ity depends strongly on the microstructure of the medium, an adequate three-dimensional
representation of dendrite morphology is thus a natural pursuit (McCarthy 1994). Addition-
ally, although flow through the interdendritic region is, in general, considered to be Stokesian
(Murakami et al. 1984; Poirier 1987), there exist situations for which inertial effects cannot
be neglected (Nagelhout et al. 1995; Bousquet-Melou et al. 2002).

Dendrites may assume several different shapes in the mushy zone; the shape with cruciform
cross-section appears to be the most relevant. In this type of microstructure, primary dendrite
arms grow from the solid–liquid interface toward the liquid phase. Secondary dendrite arms
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grow from the primary ones, forming cruciform structures, when a section perpendicular to
the primary arms is observed. It is remarked that, as the base of the primary dendrite is fixed
to the solid–liquid interface, the entire dendritic structure is immobile and invariant under the
action of the flow. In this study, specifically, it is attempted to represent the microstructure
shown in the micrograph of Fig. 7 of Murakami et al. (1983), where both transverse and
longitudinal sections of a translucent borneol–paraffin binary alloy sample are depicted. The
goal is, therefore, to create a basic geometrical configuration for simulating the samples of
Murakami et al. 1984, by matching approximately numerical results with the experimental
values for the permeability, presented for flow parallel to the primary dendrite arms (the alloy
type, and perhaps even some samples, seem to be the same for both studies of Murakami
et al. (1983, 1984)).

Murakami et al. (1984) consider 32 experimental cases. Clearly, no unique configuration
will be able to reproduce all cases (Rocha 2007). The best geometric solution rendered here
is able to contemplate 17 experimental cases, leading to reasonably good approximations to
the experimental parallel-flow permeability values, for the respective solid volume fractions
(Sect. 5.3.1). When analyzing Fig. 7 of Murakami et al. (1983), one infers that, with respect to
flow parallel to the primary dendrite arms, the disk-like shapes that appear at the end of each
secondary dendrite arm are the main constituent elements of the microstructure. Therefore,
their size and distribution over the space are the main factors that should be accounted for,
when tailoring a geometrical configuration for the periodic cell, that ought to be suited for
flow simulation and permeability calculation.

A simple geometrical configuration is then conceived (Rocha 2007), where the solid
phase is composed of one entire cylinder plus four quarters of a cylinder, as shown in Fig. 1.
As the cell is periodic in all three directions, one can realize that the entire constructed
medium is formed by a three-dimensional ordered array of small cylinders, which repre-
sent the disk-like shapes cited above. These cylinders are disposed in a staggered way, so
that preferential flow paths are minimized. Other tentative configurations (Rocha 2007) that
did not avoid preferential flow paths, had permeability values much higher than the exper-
imental ones. The dimension λ1 is the distance between primary dendrite arms, λ2 is the
distance between secondary dendrite arms, d is the cylinder diameter, and c is the thick-
ness of the secondary dendrite arm (height of the cylinders). In Fig. 7 of Murakami et al.
(1983), one identifies that the thickness of the disk-like shapes is approximately 0.7 times
the secondary dendrite arm spacing. Thus, the ratio r = c/λ2 = 0.7 is imposed in the
geometrical configuration for all cases, except when appropriate cell construction and mesh-
ing require the values r = 0.75 or r = 0.8. The diameter d is then calculated from d =
λ1

√
φ/(rπ). In order to wrap up, given the experimental values (λ1, λ2, and φ), the periodic

cell depicted in Fig. 1 can be constructed, and, therefore, associated permeability values can be
calculated.

5 Results and Discussion

The objectives of this section are: (i) to validate the implementations for both creeping and
inertial flows, against results available in the literature, (ii) to obtain new results for inertial
flow in the cubic lattice arrays of cylinders of Higdon and Ford (1996), (iii) to compare numer-
ical results for (Stokes) permeability of dendritic microstructures with the experimental ones
obtained by Murakami et al. (1984) for flows parallel to the primary dendrite arms, (iv) to
quantify inertial effects for the latter flows and, (v) to analyze the behavior of the numerical
apparent permeability in the light of existing macroscopic laws. It must be remarked that the

123



362 R. P. A. Rocha, M. E. Cruz

(a) (b)

Fig. 1 Periodic cell geometry for the dendritic microstructure: a cross-section, and b longitudinal section.
The solid phase (i.e., the cylinder and four quarters of a cylinder) is immobile and invariant under the action
of the flow

calculated permeability kh and apparent permeability ka
h are normalized with respect to the

diameter d .

5.1 Validation

5.1.1 Creeping Flow

Validation for creeping flow is effected for four different geometries of the periodic cell: (i)
simple cubic array of spheres, (ii) simple cubic array of cylinders, (iii) body-centered cubic
array of cylinders, and (iv) face-centered cubic array of cylinders.

For flow through a simple cubic array of spheres, numerical permeability results are com-
pared to those of Zick and Homsy (1982). Actually, the results of Zick and Homsy (1982)
are in the form of a φ-dependent drag coefficient f = F/(3πμdq), where F is the (dimen-
sional) mean drag force exerted by the fluid on each sphere, q is the superficial velocity of the
flow, and d is the sphere diameter. The drag coefficient f can be related to the non-dimen-
sional scalar permeability k by combining the momentum balance for the fluid with Darcy’s
law, leading to k = 1/(18φ f ). In Table 1, it is possible to observe the very good agreement
obtained between the present numerical results for the permeability kh and the results of Zick
and Homsy (1982) kZH for different values of the solid volume fraction φ.

For the simple (SC), body-centered (BCC), and face-centered (FCC) cubic arrays of cyl-
inders, Higdon and Ford (1996) calculate the permeability numerically using the spectral
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Table 1 Permeability results for creeping flow through the simple cubic array of spheres, for different values
of the solid volume fraction φ

φ kh kZH δk (%)

0.125 0.1036 0.1036 0

0.216 0.03457 0.03456 0.03

0.343 0.01052 0.01052 0

0.450 0.004398 0.004394 0.09

Symbols kh and kZH denote the permeabilities calculated in this study and by Zick and Homsy (1982),
respectively; δk denotes the relative deviation of kh with respect to kZH

Table 2 Permeability results for creeping flow through the simple cubic (SC), body-centered cubic (BCC),
and face-centered cubic (FCC) arrays of cylinders, for different values of the solid volume fraction φ

SC BCC FCC

φ kh kHF δk (%) φ kh kHF δk (%) φ kh kHF δk (%)

0.228 0.1066 0.1066 0 0.557 0.006695 0.006680 0.22 0.235 0.1005 0.1010 0.50

0.348 0.03438 0.03430 0.23 – – – – 0.379 0.02514 0.02528 0.55

0.412 0.01960 0.01955 0.26 – – – – – – – –

0.543 0.006026 0.006035 0.15 – – – – – – – –

Symbols kh and kHF denote the permeabilities calculated in this work and by Higdon and Ford (1996),
respectively; δk denotes the relative deviation of kh with respect to kHF

boundary element method; only the Stokes regime is studied. In Table 2, the present numer-
ical results for the permeability kh of the SC, BCC, and FCC arrays are seen to agree very
well with the results of Higdon and Ford (1996) kHF for different values of φ. Note that, here,
kHF is non-dimensionalized with respect to the diameter, such that it is obtained by dividing
the original results by 4.

5.1.2 Inertial Flow

There seem to be no analytical (exact) solutions for the apparent permeability for moderate
Reynolds number flows, even in the case of simple ordered geometries. Ghaddar (1995a,b)
uses finite elements to compute the apparent permeability for two-dimensional arrays of infi-
nitely long cylinders, while Koch and Ladd (1997) employ a lattice-Boltzmann technique to
compute the non-dimensional mean drag per unit length for such arrays. The non-dimensional
drag coefficient of Koch and Ladd (1997) is given by f = F/(μq), where F is the dimen-
sional mean drag force per unit length. Again, by combining the momentum balance with
Darcy’s law, it can be derived that ka = π/(4φ f ). In order to validate the implementation
for inertial flows against the results of Ghaddar (1995a,b) and Koch and Ladd (1997), three-
dimensional calculations are performed in the ordered cell configuration, where the cylinder
touches a pair of opposing faces, so that the two-dimensional geometry is simulated.

In Table 3, two sets of data are presented. In the first set, the present numerical results for
the apparent permeability ka

h are shown together with those by Ghaddar (1995a,b) ka
G and

by Koch and Ladd (1997) ka
KL (originally in graphical form) for φ = 0.2 and for different

values of the physical Reynolds number Re = ρqd/μ based on the superficial velocity q .
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Table 3 Apparent permeability results for inertial flow through the square array of cylinders, for different
values of the solid volume fraction φ and Reynolds number Re

φ = 0.2 φ = 0.3

Re′ ka
h ka

G δka (%) ka
KL δka (%) Re Re′ ka

h ka
G δka (%) Re

17.2 0.06675 0.06602 1.1 0.068 1.8 19.5 29.9 0.02251 0.02221 1.4 19.9

25.2 0.06231 0.06141 1.5 0.063 1.1 40.0 44.2 0.02078 0.02042 1.8 39.9

30.0 0.06044 0.06055 0.18 0.061 0.92 54.5

Symbols ka
h , ka

G, and ka
KL denote the apparent permeabilities calculated in this study, by Ghaddar (1995a,b),

and by Koch and Ladd (1997), respectively; δka denotes the relative deviation of ka
h with respect to ka

G or ka
KL

The Re number cannot be prescribed a priori, but it can be calculated a posteriori in terms
of the input parameter Re′, through the expression (Ghaddar 1995b; Rocha 2007)

Re = ka
h (Re′)2. (54)

The values of Re, in Table 3, are the ones obtained by Ghaddar (1995a). In the second set of
data, results are shown for φ = 0.3 and different values of Re′; Koch and Ladd (1997) do
not present results for the square array for any solid volume fraction other than 0.2.

Table 3 shows that the present results, ka
h , are in good agreement with the ones by Ghaddar

(1995a), ka
G; the maximum discrepancy between them is lower than 2%. In particular, for

φ = 0.2, good agreement is also verified when ka
h is compared to ka

KL. For a given solid
volume fraction φ, one observes that the higher the Reynolds number, the lower is the appar-
ent permeability. This behavior means, physically, that the resistance to flow increases when
more inertia is present in the flow.

5.2 Cubic Arrays of Cylinders

In this section, some new apparent permeability results for inertial flow through the three-
dimensional cubic arrays of cylinders detailed in the study of Higdon and Ford (1996) are
presented. In Table 4, the numerical results, ka

h , are shown for the SC, BCC, and FCC arrays
of cylinders, for different solid volume fractions φ and Reynolds numbers Re. The results
for Re = 0, already shown in Table 2, are repeated for convenience. As expected, for a given
array type and solid volume fraction, the apparent permeability decreases as the Reynolds
number increases, due to increased resistance as the flow is more inertial. Also, the appar-
ent permeability decreases as the solid volume fraction increases. This is due to increased
resistance in the narrower paths for fluid flow at higher values of φ.

5.3 Dendritic Microstructure

5.3.1 Comparison with Experimental Results

Murakami et al. (1984) present experimental results for creeping flow through dendritic
microstructures in borneol–paraffin binary alloy samples, the flow being parallel to the pri-
mary dendrite arms; the authors assert that inertial effects are negligible in their experiments.
Using the creeping-flow formulation of Sect. 3.2.1, together with the geometrical configura-
tion, depicted in Sect. 4, for the periodic cell, numerical results for kh are obtained, shown
in Table 5. Also shown in Table 5 are the experimental results of Murakami et al. (1984)
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Table 4 Apparent permeability results for inertial flow through the simple cubic (SC), body-centered cubic
(BCC), and face-centered cubic (FCC) arrays of cylinders, for different values of the solid volume fraction φ

and Reynolds number Re

SC array BCC array FCC array

φ Re ka
h φ Re ka

h φ Re ka
h

0 0.1066 0 0.006695 0 0.1005

0.228 8.7 0.0903 0.7 0.00668 0.235 4.2 0.0858

9.7 0.0893 0.557 2.6 0.00655 7.4 0.0736

0 0.03438 5.7 0.00634 0 0.02514

0.348 3.2 0.0323 9.8 0.00613 0.379 2.4 0.0241

11.3 0.0283 – – – 8.0 0.0201

0 0.01960 – – – – – –

0.412 1.9 0.0191 – – - – – –

6.8 0.0170 – – – – – –

0 0.006026 – – – – – –

0.543 4.8 0.00537 – – – – – –

11.9 0.00475 – – – – – –

Symbol ka
h denotes the apparent permeability calculated in this study

Table 5 Dimensional numerical permeability results kh for creeping flow through the dendritic microstructure
of Fig. 1, for different values of the solid volume fraction φ

case serie φ kM(μm2) kh(μm2) kDT(μm2)

2 A 0.566 10.4 14.5 844

6 A 0.502 15.2 29.1 1230

7 B 0.475 13.3 21.5 838

9 B 0.504 12.9 17.7 708

13 B 0.500 11.1 18.2 724

16 B 0.573 10.1 8.64 470

17 B 0.573 8.98 8.64 470

18 B 0.482 17.8 30.3 805

19 B 0.482 20.4 30.3 805

20 B 0.500 17.1 18.2 724

21 B 0.514 21.0 16.6 667

22 B 0.517 19.7 15.0 656

23 C 0.476 30.7 18.6 1440

25 C 0.504 22.1 15.3 1220

27 C 0.483 27.9 17.7 1380

29 C 0.578 17.8 6.49 785

32 C 0.394 62.3 36.4 2310

Symbols kM and kDT denote the permeabilities measured by Murakami et al. (1984) in the experiments indi-
cated by “serie” and “case”, and calculated by Drummond and Tahir (1984) for fluid flow parallel to a square
array of infinite cylinders, respectively.
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kM for each triplet (λ1, λ2, φ). The “serie” indication in the table refers to the pair (λ1, λ2):
series A, B, and C are used to designate (λ1, λ2) equal to (420, 115)µm, (320, 90)µm, and
(420, 90)µm, respectively. The “case” indication refers to the experimental case label given
by Murakami et al. (1984); as already mentioned in Sect. 4, only 17 of the 32 original cases
are considered. For reference purposes, in Table 5, are also displayed the permeability results
of Drummond and Tahir (1984) for fluid flow parallel to a square array of infinite cylinders
kDT with the corresponding volume fraction φ.

From Table 5, one may decide that the geometrical configuration developed is indeed
appropriate for simulating the dendritic microstructure, since (i) the results obtained with the
configuration is in reasonable agreement with the experimental values (in fact, much closer
than the results obtained with the simpler model of Drummond and Tahir (1984) for fibrous
media kDT), and (ii) the proposed geometrical configuration includes the main components
of the real dendritic microstructure of Murakami et al. (1984).

5.3.2 Evaluation of Inertial Effects

Based on the numerical prediction of the Stokes permeability for the dendritic microstructure,
the inertial effects are now quantified through the calculation of the apparent permeability.
According to Nagelhout et al. (1995), inertial effects are relevant in the mushy zone, when
the solid volume fractions are smaller than 0.3. In fact, the solid volume fraction in the mushy
zone is not constant in space, varying from 0 to 1 as the liquid or solid phase is approached,
respectively. Thus, one can infer that, although Murakami et al. (1984) have studied portions
of the mushy zone with φ > 0.3, there probably exist other portions of the same mushy
zone that have φ < 0.3, where inertial effects should not have been negligible. Hence, using
the same geometrical configuration, described in Sect. 4, for the dendritic microstructure, a
periodic cell is built with φ = 0.250, λ1 = 420 µm, λ2 = 90 µm, and r = 0.7, so as to
represent those portions of the mushy zone where inertial effects may be relevant.

In order to determine the appropriate range of Reynolds numbers to be considered, typical
values for the velocity (v) and kinematic viscosity (ν) must be evaluated for mushy zone
applications. From Bousquet-Melou et al. (2002) and references therein, 1 < v < 10 mm/s,
typically. Considering metallic alloys solidification, a suitable value for ν is that of mercury,
ν ≈ 1.0×10−7m2/s (The Engineering ToolBox 2008). The characteristic length is the diam-
eter of the cylinder, which is calculated as d = λ1

√
φ/rπ ≈ 142 µm. Therefore, it is easy to

conclude that the appropriate range of Reynolds numbers is 1.4 < Re < 14, approximately.
Some Reynolds numbers within this range are thus selected, and the corresponding results
obtained for the nondimensional permeability and apparent permeability are plotted in the
graph of Fig. 2. As expected, the apparent permeability decreases as the Reynolds number
increases. In the range 0 < Re < 14.7, ka

h decreases by 7%, i.e., when neglecting inertial
effects for the triplet (λ1, λ2, φ) considered, one may overestimate k by approximately 7%.
Indeed, this value can be even higher for other triplets (λ1, λ2, φ), specially for smaller values
of φ.

5.4 Comparison of Numerical Results with Existing Macroscopic ‘Laws’

In this section, the apparent permeability results of Sects. 5.2 and 5.3 for inertial flows through
the cubic arrays of cylinders and the dendritic microstructure, respectively, are analyzed in
the light of existing porous media macroscopic seepage laws, namely, the Forchheimer law
and the cubic law (Firdaouss et al. 1997; Skjetne and Auriault 1999; Chen et al. 2001; Fourar
et al. 2004; Lucas et al. 2007). It is worthwhile to remark that, in the literature, one may use the
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Fig. 2 Results for the numerical permeability and apparent permeability for flow through the dendritic micro-
structure of Fig. 1, for different Reynolds numbers Re. The solid volume fraction is φ = 0.250, and the
geometrical parameters are λ1 = 420 μm, λ2 = 90 μm, and r = c/λ2 = 0.7

expression ‘cubic law’ when referring to parallel-plate-flow permeability of fractured media
(e.g. in geophysical studies, Sisavath et al. 2003), or when referring to a cubic correction to
Darcy’s law; here, the expression is used in the latter sense.

In order to simplify the presentation, for a one-directional steady flow through a porous
medium in the absence of gravity, Darcy’s law is first written algebraically as

− �P

L
= μ

k∗ q , (55)

where �P is the pressure drop across the medium macroscale L , through which a New-
tonian fluid with constant viscosity μ (and density ρ) flows with seepage velocity q; k∗ is
the medium dimensional permeability. Based on Eq. 55, the Forchheimer law may then be
written as

− �P

L
= μ

k∗ q + β∗ρq2 , (56)

where β∗ (in m−1) is the (‘rock-dependent’) inertial resistance coefficient. For the ranges of
Reynolds number investigated here, the modified Forchheimer equation with a Forchheimer’s
permeability (Skjetne and Auriault 1999; Fourar et al. 2004) is not considered. The cubic
law, in turn, may be expressed as

− �P

L
= μ

k∗ q + γ ′ρ2

μ
q3 , (57)

where γ ′ is a non-dimensional (‘rock-dependent’) weak inertia coefficient. Following Lucas
et al. (2007) (an equivalent formulation is presented by Firdaouss et al. 1997), a velocity-
dependent apparent permeability may be defined as

ka∗ = μ

−(�P/L)
q , (58)

such that Eqs. 56 and 57 can be rewritten, respectively, as

1

ka∗ = 1

k∗ + β∗ρ
μ

q , (59)

1

ka∗ = 1

k∗ + γ ′ρ2

μ2 q2 . (60)
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Finally, Eqs. 59 and 60 can be made nondimensional by choosing the cell size l as the micro-
scopic length scale and q as the velocity scale, such that after some manipulation those
equations, respectively, become

ln

(
1

ka
− 1

k

)

= ln(Re) + ln(β) , (61)

ln

(
1

ka
− 1

k

)

= 2 ln(Re) + ln(γ ) , (62)

where ka = ka∗/ l2 and k = k∗/ l2 are the nondimensional permeabilities, Re = ρqd/μ is
the microscopic Reynolds number, d is the characteristic grain size, and β = β∗(l2/d), γ =
γ ′(l2/d2). Clearly, from Eqs. 61 and 62, when one displays the difference (1/ka − 1/k)
against the Reynolds number on a log–log plot (the so-called Forchheimer plot), a straight
line with slope 1 results when Forchheimer law applies, whereas a straight line with slope 2
results when the cubic law applies.

For 2-D and 3-D unbounded periodic porous media, which satisfy the flow reversibil-
ity condition (termed Hypothesis H), Firdaouss et al. (1997) demonstrate, mathematically,
that there are two zones of dependence of the pressure gradient with respect to the seepage
velocity: in the asymptotic Darcy zone, as Re → 0 (Re is the microscopic Reynolds number
based on grain size), the first nonlinear correction term to Darcy’s law is cubic with respect
to the seepage velocity (or quadratic in terms of Re); in the second zone (high-Re flows),
inertia dominates and the first correction term to Darcy’s law is quadratic with respect to the
seepage velocity (or linear in terms of Re). Therefore, according to the study of those authors,
in the Darcy zone the cubic law applies, and as Re increases beyond this zone, Forchheimer
law applies. It is noted that for 1-D flows in porous media or for homogeneous isotropic
porous media, Mei and Auriault (1991) prove that the same two zones exist, just as long as
the fluid is incompressible. In order to substantiate their analytical results, Firdaouss et al.
(1997) reinspect classical filtration experimental results, and perform numerical calculations
for 2-D steady-state Navier-Stokes flows. For the 2-D cells, which satisfy Hypothesis H, the
calculations show that the Darcy zone extends up to Re = O(10).

Skjetne and Auriault (1999) use the homogenization technique to model the nonlinearities
in laminar flows through porous media, and show that the cubic weak-inertia regime is valid
for any degree of anisotropy of the porous matrix, when ε1/2 � Re � 1. They, thus, relax
the flow reversibility condition of Firdaouss et al. (1997). Skjetne and Auriault (1999) further
indicate the flow regimes for geometrically simple and geometrically complex porous media,
however, they do not provide explicit definitions of these two classes of media. For geomet-
rically simple media, the flow regimes are Darcy, weak inertia, strong inertia, and turbulence.
For geometrically complex media, the flow regimes are Darcy, weak inertia, transition from
weak to strong inertia (pore-geometry dependent), strong inertia, transition from strong iner-
tia to turbulence, and turbulence. The authors also point out that a spline may be applied to
the weak-to-strong inertia transition regime.

Fourar et al. (2004) refer to a controversy related to experimental and theoretical predic-
tions, when inertial effects are present in single-phase laminar flows through porous media.
They propose to explain the differences by investigating computationally, the influence of the
flow dimension on the flow patterns and the behavior of the pressure and shear stress at the
fluid/solid interface. Fourar et al. (2004), thus, perform 2-D and 3-D numerical simulations
of steady-state flows through periodic porous media cells, respectively, with cylindrical and
spherical inclusions. They compute the individual contributions of the form drag and viscous
drag to the deviations from Darcy’s law, and conclude that the total drag depends on the flow

123



Calculation of the permeability and apparent permeability of three-dimensional porous media 369

10-1 100 101 102
10-2

10-1

100

101

102

Fig. 3 Forchheimer plot, difference (1/ka
h − 1/kh ) versus microscopic Reynolds number Re = ρqd/μ,

corresponding to calculated apparent permeability results for inertial flows through the SC cubic array of
cylinders with solid volume fractions φ = 0.228 and φ = 0.557, the BCC array with φ = 0.557, and the
dendritic microstructure with φ = 0.250

dimension. Consequently, for 3-D, Fourar et al. (2004) identify the following zones: Darcy
for very low Re (roughly Re < 2, Reynolds number Re based on seepage velocity and grain
size), transition or weak inertia (roughly 2 ≤ Re < 4, a very short zone in 3-D), and strong
inertia (roughly Re ≥ 4). In the latter zone, Forchheimer law applies.

Lucas et al. (2007) state that the physical explanation for the nonlinear deviation from
Darcy’s law is still an issue. Differently from the previous studies, they explore the influence
of the flow periodicity or non-periodicity on the functional form of the macroscopic seepage
law. Lucas et al. (2007) perform numerical simulations of high velocity flows through 2-D
crenellated-channel porous media. Since their simulations are two-dimensional, and because
Fourar et al. (2004) had proved the influence of the flow dimensionality upon the deviation
from Darcy’s law, the conclusions of Lucas et al. (2007) are not directly applicable to the
present study.

In order to contribute to the (numerical) verification of the validity of the macroscopic
porous media filtration laws, calculated apparent permeability results for inertial flows through
the 3-D periodic microstructures of this study are now examined with the aid of Eqs. 61 and
62. Specifically, the functional behavior of the difference (1/ka

h − 1/kh) with respect to the
microscopic Reynolds number is analyzed, for the SC cubic array of cylinders with solid vol-
ume fractions φ = 0.228 and φ = 0.557, the BCC array with φ = 0.557, and the dendritic
microstructure with φ = 0.250. The Forchheimer log–log plot is thus constructed, displayed
in Fig. 3, by graphing (1/ka

h − 1/kh) against Re. It is noted that, for the sake of this analysis,
values of the Reynolds number up to O(10) only have been considered; also, for the cubic
arrays, more data points are plotted in Fig. 3 than entries are shown in Table 4.

From the analysis of Fig. 3 and the corresponding data, to within the numerical discretiza-
tion errors, one may verify that all microstructures seem to fall in the class of geometrically
complex media of Skjetne and Auriault (1999), in the sense that they induce the existence
of three distinct laminar-flow zones of dependence of the difference (1/ka

h − 1/kh) with
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Table 6 Approximate ranges of validity for the cubic and Forchheimer laws, for the 3-D periodic SC cubic
array of cylinders with solid volume fractions φ = 0.228 and φ = 0.557, the BCC array with φ = 0.557, and
the dendritic microstructure with φ = 0.250

Configuration and solid Weak inertia (Re → 0) Weak-to-strong Strong inertia
Volume fraction φ Cubic law inertia transition Forchheimer law

SC, φ = 0.228 Re < 2 2 ≤ Re < 3.5 Re ≥ 3.5

SC, φ = 0.557 Re < 2 2 ≤ Re < 7 Re ≥ 7

BCC, φ = 0.557 Re < 2.5 2.5 ≤ Re < 7.5 Re ≥ 7.5

5 ≤ Re;

Dendritic, φ = 0.250 Re < 5 upper limit
not evaluated

−

respect to the Reynolds number Re. The first zone corresponds to very low Reynolds number
flows, and is well-fitted by a straight line of slope 2. The third zone corresponds to the higher
Reynolds number flows, and is well-fitted by a straight line of slope 1. The second zone is a
transition from the first to the third zone, and is fitted by a spline. It is then verified numer-
ically, that the cubic law is valid in the asymptotic (Re → 0) weak-inertia zone, and that
the Forchheimer law is valid in the strong-inertia zone. In Fig. 3, the dendritic microstructure
displays the first two zones only, up to Re = 15. The approximate ranges of validity for each
law may be estimated from the data, and are indicated in Table 6. Clearly, the range of validity
for each law depends on the microstructure configuration and on the solid volume fraction.
It appears that the range of validity is more sensitive to the nature of the microstructure than
to the solid volume fraction. In agreement with the observation by Fourar et al. (2004), and
given the 2-D results of Firdaouss et al. (1997), it is manifest that the range of validity for
the cubic law is much shorter in 3-D than in 2-D. Finally, regarding the transition zone, its
microstructure-dependent extent in 3-D is such that Forchheimer law begins ruling much
sooner than in 2-D.

6 Conclusions

In this study, an analytical–numerical approach has been employed to predict numerical
values for the permeability and apparent permeability of three-dimensional porous media,
whose microstructures are given explicitly. The approach is based on the homogenization
method for periodic structures, a control-volume type argument for inertial flows, and the
finite-element method. Validation of the implementation, for both creeping and inertial flows,
has been realized by comparison to results available in the literature.

Some new results for the apparent permeability of three-dimensional ordered arrays of
cylinders have been obtained. The calculations indicate that, for a given array type and solid
volume fraction, the apparent permeability decreases as the Reynolds number increases.
Also, it decreases as the solid volume fraction increases. Physically, these trends are due to
an increased flow resistance as the medium becomes less porous and the flow becomes more
inertial, with more separated regions. Although expected qualitatively, the reported behavior
of the apparent permeability has been here quantified accurately.

A rational, physically sound, and seemingly novel calculation route has been put forth
to predict the apparent permeability of three-dimensional dendritic microstructures. First, a
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geometrical microstructural configuration is proposed, based on experimental observations of
the solidification process of metal alloys. Second, the geometrical configuration is validated
through comparison between experimental and numerical permeability results for the creep-
ing-flow regime. Finally, inertial flows are considered for some typical Reynolds number
values. Due to the inertial effects, the apparent permeability is again seen to decrease as the
Reynolds number increases; quantitatively in the range investigated, it drops by a significant
amount.

Perhaps most importantly, the rate of increase of an appropriate (numerical) difference
function for the apparent permeability with respect to the microscopic Reynolds number is
investigated via a Forchheimer plot. Several important facts are then numerically verified.
First, the present 3-D microstructures are geometrically complex, and induce the appearance
of three distinct laminar-flow zones of functional dependence: the asymptotic (Re → 0)
weak-inertia zone where the cubic law holds, the transition zone from weak inertia to strong
inertia, and the strong inertia zone where the Forchheimer law holds. Second, the approximate
ranges of validity for each law are indicated, and they depend on the solid volume fraction
and, more strongly, on the microstructure configuration. Third, in view of available results
in the literature, it is observed that the range of validity for the cubic law is much shorter in
3-D than in 2-D. Finally, the extent of the transition zone is microstructure-dependent, and
is such that Forchheimer law begins ruling much sooner in 3-D than in 2-D.

In summary, this study successfully shows, through the utilization of complete continuous
and discrete formulations for both creeping and inertial flows in three-dimensional porous
media, and through permeability and apparent permeability quantitative evaluations, that oft-
ignored inertial effects may, indeed, be relevant in many important engineering applications.
Furthermore, for the 3-D periodic microstructures analyzed, the validity of existing porous
media macroscopic seepage laws has been established. The analytical–numerical approach,
due to its geometrical flexibility and its ability to predict the macroscopic flow properties of
porous media with three-dimensional microstructures, thus presents itself as a valuable aid
to experimental investigations.
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