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Abstract Variational methods have been successfully used in modelling thin liquid films
in numerous theoretical studies of wettability. In this article, the variational model of the
disjoining pressure is extended to the general case of a two-dimensional solid surface. The
Helmholtz free energy functional depends both on the disjoining pressure isotherm and on
the shape of the solid surface. The augmented Young–Laplace equation (AYLE) is a nonlin-
ear second-order partial differential equation. A number of solutions describing wetting films
on spherical grains have been obtained. In the case of cylindrical films, the phase portrait
technique describes the entire variety of mathematically feasible solutions. It turns out that
a periodic solution, which would describe wave-like wetting films, does not satisfy Jacobi’s
condition of the classical calculus of variations. Therefore, such a solution is nonphysical.
The roughness of the solid surface significantly affects liquid film stability. AYLE solutions
suggest that film rupture is more likely at a location where the pore-wall surface is most
exposed into the pore space, and the curvature is positive.

Keywords Interfacial tension · Disjoining pressure · Capillary pressure · Wettability

1 Introduction

Wettability is the property of solid materials to contact preferentially, one fluid relative to
the other. Oil recovery mechanisms strongly depend on the wettability of the reservoir rock
(Austad et al. 1998; Kovscek et al. 1993; Morrow et al. 1986).
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Many natural rocks are water wet. In the presence of oil and water, the molecular forces
acting between the solid and the fluids in a thin water film on the solid surface develop a
disjoining pressure. This disjoining pressure results from the interaction between the elec-
trostatic double-layer and van der Waals forces. It is characterized by a disjoining pressure
isotherm. This isotherm is affected by the temperature, chemical composition of the flu-
ids, and the solid mineralogy (Churaev et al. 1982; Derjagin et al. 1987; Hirasaki 1988;
Israelachvili 1992; Starov 1992; Yeh et al. 1999a). At a given temperature, the magnitude of
the disjoining pressure depends on the thickness and the geometry of the film.

Stability of the water liquid film on the solid surface means that the latter remains water-
wet. However, the reservoir evolution can create conditions for film rupture and creation of
a direct contact between the oil and the solid. Consequently, the rock can become oil-wet,
or mixed-wet. Water film stability under various temperature and salinity conditions has
been the focus of a number of recent studies (Hiorth and Virnovsky 2005; Schembre et al.
2006; Skauge et al. 2004; Zhang et al. 2007). In the laboratory, alteration of the wettability is
modelled by ageing rock samples (Kovscek et al. 1993; Morrow et al. 1986; Schembre et al.
2006). In enhanced oil recovery, wettability alteration is achieved by injection of a surfactant
or steam.

A typical thickness of the liquid film is in the range of tens of nanometers. Therefore,
the roughness of the solid surface or the smallness of the grains (as in chalk) also has an
impact on the wettability alteration. Unlike the temperature and chemical composition of the
reservoir fluids, the pore space geometry is hardly modifiable in an enhanced oil recovery
project.

At thermodynamic equilibrium, the shape of the fluid–fluid interface and the thickness of
the wetting fluid film can be described as a minimum of the Helmholtz free energy (Churaev
et al. 1982; Derjagin et al. 1987; Israelachvili 1992; Starov 1992; Yeh et al. 1999a). Mathe-
matically, a small variation of an equilibrium configuration film can only increase the value
of the energy functional. The augmented Young–Laplace equation (AYLE) is a necessary
condition for a minimum of the energy functional. If the fluid-fluid interface is far enough
from the solid surface, the influence of the disjoining pressure vanishes and the AYLE reduces
to the classical Young–Laplace equation.

The wettability can be quantified by the contact angle formed by the interface between
two fluids at the solid surface. Assuming that the solid surface is ideally flat and that one
of the main curvatures of the film surface is negligibly small relative to the other, Frumkin
(1938) and Derjagin (1940) employed a variational approach to expresse the contact angle
through the disjoining pressure isotherm.

This article presents a theoretical study of how the solid-surface geometry impacts the
shape and stability of the thin liquid film. We assume that the chemical compositions of the
fluids and the solid, as well as the temperature, are fixed. The new element here is the depen-
dence of the energy functional on the shape of the solid surface. We extend the variational
model to the general case of a liquid film on a two-dimensional solid surface. We obtain
analytical or semi-analytical solutions to the AYLE assuming simple geometric shapes of
the underlying solid. Even such a simplified analysis provides valuable insights into how the
roughness of the pore walls influences wettability alteration. Experimental measurements of
the disjoining pressure isotherm are very difficult and published data are sparse. In this study,
we use the parameterized curves proposed by Yeh et al. (1999b).

In a general case, the AYLE is a nonlinear Laplace equation. However, an assumption of
flat or cylindrical film geometry reduces the dimensionality of the problem and transforms
the AYLE into a second-order ordinary differential equation (ODE). Several studies present a
number of solutions to the ODE version of AYLE (Kagan and Pinczewki 1996, 1998, 1999,
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2000; Kagan et al. 1995; Yeh et al. 1999a, b; Zhang and Neogi 2002; Zhang et al. 2002).
Rigorously speaking, a cylindrical film surface cannot be a least-energy surface (Pomeau
and Villermaux 2006). However, the relative simplicity of the solution makes a cylindrical
approximation reasonable if the contrast between the main curvatures of the fluid interface is
large. This approximation has been extensively used in pore-network multiphase flow studies
(Blunt 2001; Blunt and King 1991; Patzek 2001).

The AYLE is only a necessary condition for a weak minimum of the energy functional, so
not every solution to the AYLE corresponds to a minimum of free energy. A solution, which
does not correspond to a minimum of energy, is physically meaningless. We demonstrate
that a periodic solution to AYLE describing a film surface in the form of periodical waves
(Starov 1992, 2004) does not provide a local minimum to the energy functional since it does
not satisfy Jacobi’s condition (Gelfand and Fomin 1963; Goursat 1918). Therefore, such a
periodical solution is nonphysical.

The paper is organized as follows. In Sect. 2, we present a general variational model of
water film on a two-dimensional solid surface in space. The formulation employs the termi-
nology of differential geometry, which is summarized in Appendix A. In Sect. 3, we consider
films on cylindrical surfaces. Section 4 analyzes the variety of all solutions to an ODE version
of AYLE using a phase portrait (Pontryagin 1962). We demonstrate that the oscillating films
fail to satisfy Jacobi condition for a minimum, which renders such solutions nonphysical.
Appendix B summarizes the facts of the classical calculus of variations used in this study.

Gravity is neglected in all the calculations.

2 A General Variational Model of the Disjoining Pressure

Away from the solid surface, the shape of the water–oil interface is determined by the interfa-
cial tension and the capillary pressure. In such a case, the classical Young–Laplace equation
provides a necessary condition of thermodynamic equilibrium. It assumes that the thickness
of interface can be neglected. In fact, this interface is the transition zone between the two
fluid phases and has a finite thickness. If the latter is comparable to the thickness of the liquid
film on the solid surface, then the zones of the interfacial forces acting at the solid–fluid and
fluid–fluid interfaces overlap. This overlap generates additional forces increasing or decreas-
ing the pressure inside the liquid film on the solid surface (Derjagin et al. 1987). This pressure
increment is called disjoining pressure.

At thermodynamic equilibrium, the shape of a thin liquid film between the solid sur-
face and the nonwetting fluid phase is characterized by a local minimum of the Helmholtz
free energy. This observation leads to a problem of the classical calculus of variations. The
usual assumption is that the solid surface is ideally flat and that one of the main curvatures
of the film surface is negligibly small relative to the other. In such a case, the variational
problem is one-dimensional, and the AYLE, which is the Euler–Lagrange equation of the
energy functional (see Appendix B for the terminology of the calculus of variations), is an
ordinary differential equation. Numerous theoretical studies of wettability are based on this
assumption (Churaev et al. 1982; Starov 1992; Churaev 1993; Basu and Sharma 1996; Yeh
et al. 1999a, b; Kagan and Pinczewki 1996, 1998, 1999, 2000; Zhang et al. 2002; Schembre
et al. 2006).

The main objective of this section is to extend the one-dimensional variational model to
a more general case of a thin film on a two-dimensional nonflat solid surface. The curvature
of the solid surface is not too large, so that the assumption that the disjoining pressure,�, is
a function of the thickness of the film (Derjagin et al. 1987; Israelachvili 1992), h, remains

123



488 D. Silin, G. Virnovsky

valid. The thickness of the film is the shortest distance between the film surface and the solid.
Therefore, it is measured along the normal. A normal projection of a solid surface element
of area dA on the film surface has a different area, �(h)dA, which depends on the thickness
of the film. Clearly, for any surface, �(h) = 1 if h = 0. Moreover, for a uniform liquid film
over a flat solid surface, �(h) = 1 for all h ≥ 0. For a uniform film on a spherical solid of
radius R, one has �(h) = (1 + h/R)2. In general, the factor �(h) may also depend on the
location on the surface (see Eq. 54 in Appendix A).

The differential of the work of the disjoining pressure corresponding to an infinitesimal
increment of the film thickness, dh, can be expressed through the variation of a disjoining
pressure potential, P:

dP(h) = −�(h)�(h) dh (1)

Note the factor �(h) accounting for the dependance of the surface area on the thickness of
the film. The total work of the disjoining pressure on changing the thickness of the film is
evaluated by the integral of the expression in Eq. 1. A potential is determined up to a constant
additive term. By putting the potential equal to zero at infinity, one obtains

P(h) =
∞∫

h

�(ξ)�(ξ) dξ (2)

The upper limit of integration is infinite for compatibility with the definition of the potential
for a flat solid surface (Derjagin et al. 1987; Israelachvili 1992). Rigorously speaking, the
normal directions of a nonconvex solid surface intersect each other, which may lead to an
ambiguity in Eq. 2. Consequently, the definition of the potential in terms of differentials,
Eq. 1, rather than finite increments, is more general.

Consider a parametrization of a portion of the solid surface by a radius vector r = r(u, v),
where the local coordinates u, v are bounded by a two-dimensional domain �. The integral

J [h] =
∫
�

L(x, y, h,∇h) dudv (3)

where

L(x, y, h,∇h) = σ
√

EG − F2 +
√

E0G0 − F2
0 (σSW − σSO + P(h))

+ pc

√
E0G0 − F2

0

h∫

0

�(ξ)dξ (4)

evaluates the excess Helmholtz free energy in the water film over the corresponding portion
of the solid surface. In Eq. 4, pc is the capillary pressure, and σ , σSW, and σSO are (respec-
tively) the interfacial tension coefficients for water–oil, solid–water and solid–oil interfaces.
The functions E0, F0, G0, and E , F , and G characterize the solid surface and liquid film
geometry—see Eqs. 38 and 51–53 in Appendix A. The first term on the right-hand side in
Eq. 4 accounts for the excess energy of the water–oil interface. The second term on the right
is the sum of excess energy which is due to replacement of one fluid with another at the
solid surface, and the disjoining pressure potential. The last term is the contribution of the
capillary pressure, which is the difference between oil and water pressures. An equilibrium
film configuration corresponds to a minimum of the excess energy functional in Eq. 3. The

123



A Variational Model of Disjoining Pressure 489

Euler–Lagrange equation, a necessary condition for minimum, has the form

∇ · ∇ξ L(x, y, h,∇h)− ∂L

∂h
= 0 (5)

where ∇ξ denotes the gradient of function L with respect to its fourth argument. If the
film thickness at the boundary of the domain � is known, then one arrives at a Dirichlet
boundary-value problem:

h|∂� = h0(x, y) (6)

Equation 5 is a second-order nonlinear partial differential equation. It is the AYLE in the
most general form. For a one-dimensional film on a flat solid surface, Eq. 5 reduces to the
one-dimensional ODE version of AYLE presented e.g. in Starov (1992); Yeh et al. (1999a).

Even for a relatively simple underlying solid surface, obtaining a solution to Eq. 5 is dif-
ficult. As a compromise between complexity and generality, we consider an axisymmetric
film on spherical grains. As an example, let us describe a film on a spherical surface as a
solution to the AYLE.

Consider a spherical surface of radius R parameterized by u and v:

r0(u, v) = R sin u cos v i + R sin u sin v j + R cos u k (7)

where 0 ≤ u ≤ π , 0 ≤ v < 2π , r = (x, y, z) is the radius vector, and i, j, and k are unit
coordinate vectors. The outer unit normal vector is parameterized by

n = sin u cos v i + sin u sin v j + cos u k = 1

R
r0(u, v) (8)

Let h = h(u, v) be the thickness of the liquid film measured in the direction of the normal
to the solid surface. Then r = r0 + hn parameterizes the surface of the film. Equivalently,

r(u, v) =
(

1 + h

R

)
r0(u, v) (9)

The elements of the first quadratic form on a sphere (see Eq. 46, Appendix A) are

E0 = R2 (10)

F0 = 0 (11)

G0 = R2 sin2 u (12)

For the surface of the film, using Eqs. 51–53 of Appendix A one obtains

E = (R + h)2 + ∂h

∂u

2

(13)

F = ∂h

∂u

∂h

∂v
(14)

G = (R + h)2 sin2 u + ∂h

∂v

2

(15)

For an axisymmetric film, the thickness h is a function of u only. Hence, the derivative
∂h

∂v
vanishes. Therefore, F = 0, and, by virtue of Eq. 56 of Appendix A, the film surface area
and volume differentials are
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dA = (R + h) sin u

√(
∂h

∂u

)2

+ (R + h)2 dudv (16)

dV = 1

3

[
(R + h)3 − R3] sin u dudv (17)

Let us introduce a dimensionless film thickness

η(u) = h(u)

R
(18)

After cancelling a common factor of 2πR2, the integral energy functional becomes equal to

J [η] =
u1∫

u0

L

(
u, η(u),

dη(u)

du

)
du (19)

where

L(u, η, ξ) =
[
σ(1 + η)

√
ξ2 + (1 + η)2

+ σSW − σSO + PR(ηR)+ 1

3
pc

[
(1 + η)3 − 1

]
R

]
sin u (20)

By virtue of Eq. 56 of Appendix A, the disjoining pressure potential is defined as

PR(h) =
∞∫

h

�(ζ)

(
1 + ζ

R

)2

dζ (21)

The augmented Young–Laplace equation takes on the following form:

σ
η′′(1 + η)3 − 3η′ 2(1 + η)2 − 2(1 + η)4

(η′ 2 + (1 + η)2)3/2
+ σ

(1 + η)η′√
ξ2 + (1 + η)2

cot u (22)

+�(ηR)(1 + η)2 R − pc(1 + η)2 R = 0

For a uniform film, the derivatives vanish and one obtains

− 2σ

(1 + η)R
= pc −�(ηR) (23)

Figure 1 shows an example of a liquid bridge at a grain-to-grain contact calculated by
solving Eq. 22. As the boundary condition, common for both solutions, we have used the
thickness of the film at the junction point, and the fact that the tangential plane to the film at
the junction is parallel to the line connecting the centres.

Figure 2 shows another solution to AYLE: a bubble at a contact with a solid spherical
grain, deformed by the disjoining pressure. The AYLE equation is solved for each grain
individually. As the boundary conditions, we have used the minimal film thickness and the
zero derivative of the thickness at minimum. Although a sphere is the most symmetric ideal
geometric shape, its parametrization, Eq. 7, includes two poles: u = 0 and u = π . At these
poles, the cotangent function in Eq. 22 blows up into infinity. However, this singularity can be
resolved in the following way. An axisymmetric solution must satisfy the condition η′(0) = 0
at both poles. Thus, the Taylor expansion of η(u) near each pole skips the linear term. For
example, at the pole u = 0:

η(u) = η(0)+ αu2 + o(u2) (24)
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Fig. 1 Two examples of a liquid
bridge between two spherical
grains: most of the film is
controlled by the surface tension
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where α = 0.5η′′(0). Let us express α through the dimensionless thickness of the film at the
pole, η(0). By substituting this expression into Eq. 22 and by passing to the limit as u → 0,
one obtains

σ
2α(1 + η(0))3 − 2(1 + η(0))4

((1 + η(0))2)3/2
+ (�(η(0)R)− pc)(1 + η(0))2 R = 0 (25)

Consequently,

α = 1 + η(0)+ R(pc −�(η(0)R))

2σ
(1 + η(0))2 (26)

Equations 24 and 26, valid for a small u, determine the thickness of the film near the pole.
Each solution shown in Fig. 2 has been obtained as an extension of this asymptotic solution
by solving the AYLE Eq. 22.

3 A Variational Model of a Film on a Round Cylindrical Surface

In this section, we assume that the solid surface is cylindrical. It means that one of the main
curvatures is much smaller than the other one and can be assumed to be equal to zero. Let the
axis of a solid cylinder of radius R be aligned with the coordinate z in a Cartesian coordinate
system x, y, z. The surface of this cylinder can be parameterized by the equation
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(x0(u), y0(u)) = R(cos u, sin u), 0 ≤ u < 2π (27)

Water forms a film covering (may be, only partially) the surface of the solid. Oil fills the
space outside the cylinder beyond this film. Denote by h = h(u) the film thickness in the
radial direction. Then, the equation

(x(u), y(u)) = (R + h(u))(cos u, sin u) (28)

parameterizes the water–oil interface (Fig. 3).
Assume that the water film covers the entire solid surface of the cylinder between the

bounding angles u1 and u2. Then, by virtue of Eqs. 3–4, the excess Helmholtz free energy
functional has the form

J [h] = π

u2∫

u1

{
σ
√

[R + h(u)]2 + h′(u)2 + [σSW − σSO + PR(h)]R

+ 1

2
pc[(R + h)2 − R2]

}
du (29)
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Fig. 2 Deformation of a bubble by a spherical grain

Fig. 3 A liquid film on a cylindrical surface
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Note that the boundaries, u1 and u2, are not necessarily fixed. From Eqs. 2 and 55, the disjoin-
ing pressure potential, PR(h), is defined through the disjoining pressure � by the equation

PR(h) =
∞∫

h

�(ξ)

(
1 + ξ

R

)
dξ (30)

At R → ∞, this formula reduces to the expression for the disjoining pressure potential for a
flat solid surface, P(h), defined in Churaev et al. (1982); Starov (1992); Yeh et al. (1999a).
After dividing by πR, Eq. 29 takes on the form

J [η] =
u2∫

u1

{
σ

√
(1 + η)2 + (η′)2 + σSW − σSO + PR(ηR)

+ 1

2
pc(η

2 + 2η)R

}
du (31)

The Euler–Lagrange equation for this integral functional is

σ

R

η′′(1 + η)− 2η′2 − (1 + η)2

[(1 + η)2 + η′2]3/2
+�(Rη)− pc = 0 (32)

which is the AYLE for a cylindrical interface. For a uniform thickness film, h(u) = Const ,
Eq. 32 yields

�(h) = pc + σ

R + h
(33)

Since the integrand in Eq. 31 does not depend explicitly on the angle u, the order of the
Euler–Lagrange equation can be reduced (Gelfand and Fomin 1963; Goursat 1918):

σ
(1 + η)2√

(1 + η)2 + (η′)2
+ σSW − σSO + PR(ηR)+ 1

2
pc(η

2 + 2η)R = C (34)

The constant C must be determined from the boundary conditions. For example, if the bound-
ary conditions include a known thickness of the film, say, at u = u2, but the angle u2 is not
fixed, then the transversality condition (see Eq. 63 in Appendix B) yields C = 0. By mak-
ing η an independent variable, the first-order ODE (34) can be integrated explicitly, and the
solution can be obtained in the form u = u(η).

Figure 4 illustrates the qualitative difference between the liquid films on flat and nonflat
surfaces. It shows an example of a disjoining pressure isotherm based on parametrization
from Yeh et al. (1999a) plotted versus the thickness of the film, along with the right-hand
side of Eq. 33, and a similar expression for a surface of negative curvature (the inner surface
of a cylinder). The top dashed line plots the difference between the capillary pressure and
the surface tension versus the film thickness h for a film on the outer surface of a cylinder.
The dashed line in the middle is the capillary pressure for a uniform liquid film on a flat
surface. Finally, the bottom dashed curve is the difference between the capillary pressure and
the surface tension versus h for a liquid film on the inner surface of a cylinder. This curve
is plotted just to illustrate the role of the sign of the solid surface curvature. The difference
between the flat and cylindrical cases is that in the latter, the curvature of the solid surface
explicitly enters the equations.
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Fig. 4 The disjoining pressure�(h), capillary pressure pc , and the hyperbolas pc + σ

R + h
and pc − σ

R − h
corresponding to the liquid films on the surfaces of a grain and pore, respectively, plotted against the thickness
of the film, h

4 The Phase Portrait of AYLA for a Cylindrical Surface

The input data for solving AYLE are subject to uncertainty. Therefore, a qualitative descrip-
tion of the entire variety of all possible solutions can be very helpful for describing all feasible
geometries of liquid films. To obtain such a description, we employ the phase portrait of a
second-order dynamic system Pontryagin (1962), focusing on the cylindrical approximation,
Eq. 32. The variables

ζ1(u) = η(u) and ζ2(u) = η′(u) (35)

transform the single second-order ordinary differential equation (32) into an equivalent non-
linear system of two first-order ordinary differential equations⎧⎨

⎩
ζ ′

1 = ζ2

ζ ′
2 = 1

1 + ζ1

[
2ζ 2

2 + (1 + ζ1)
2 + R

σ
(pc −�(Rη))(ζ 2

2 + (1 + ζ1)
2)3/2

]
(36)

A solution plotted in a coordinate ζ1, ζ2 phase plane is called a trajectory (Pontryagin
1962) of the system defined by Eq. 36. The phase portrait is the variety of all trajectories
(Pontryagin 1962). By virtue of Eq. 35, a phase portrait shows the relationship between
η and η′. For example, a constant-thickness film, η(u) ≡ η0, is displayed as a single point
(η0, 0), called an equilibrium point of the system (36). The corresponding solution in the form
η = η(u) plotted versus u is a straight line parallel to the axis u. A periodic trajectory is called
a cycle and is displayed in the phase portrait as a loop. A cycle describes a wave-like surface.

Figure 5 displays the phase portrait of the system described by Eq. 36. The arrows show the
vector field defined by the right-hand side. The large dots A, B and C show three equilibrium
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Fig. 5 The phase portrait of the system (36) for σ = 30 × 10−3 N/m, pc = 6 kPa, and the radius R = 5 µm

points, which are constant-thickness solutions η(u) = Const. These three points, in turn,
correspond to the three intersections of the disjoining pressure curve and the hyperbola

p(h) = pc + σ

R + h
(Fig. 4). The entire classification of equilibrium points includes a focus,

a node, a saddle point, and a centre (Pontryagin 1962). In Fig. 5, the points A and C are
saddle points, whereas the point B is a centre. No phase trajectory can reach an equilib-
rium point on a finite interval u. This means that either the entire solution corresponds to a
constant-thickness film, or the thickness cannot be constant on a nonzero interval. A solution
to the system (36) may approach a constant-thickness solution asymptotically, but the two
can never partially coincide. This fact of the classical theory of ordinary differential equations
is in contradiction with the conclusion derived in Kagan and Pinczewki (1998), where some
solutions are partially constant-thickness and partially not.

Some phase trajectories crossing the abscissa to the right of the equilibrium point A are
cycles, some are not. Figure 6 shows a few examples of the noncycling trajectories plotted in
a coordinate plane x, y. The shape of the water–oil interface resembles a deformed bubble of
oil. In particular, one observes an alteration of the sign of the curvature due to the interaction
between disjoining pressure and surface tension. The farther from the solid the interface is,
the more the bubble shape is close to circular.

The film shapes corresponding to the trajectories crossing the abscissa to the left from
point A look like droplets. The corresponding thickness of the film is smaller than that of the
uniform film corresponding to point A. Such nanodroplets, which have flat pancake shapes,
have been discussed in Brochard-Wyart et al. (1991) from the standpoint of the Derjaguin,
Landau, Verwey and Overbeek (DLVO) theory. Tyrrell and Attard (2001) experimentally
observed nanobubbles using atomic-force microscopy.

One interesting type of trajectories is the cycles near point B (Fig. 5). Each cycle corre-
sponds to a wave-like surface of the liquid film, Fig. 7. The existence of oscillating periodic
solutions to the AYLE in the case of a flat solid surface has been mentioned in Starov (1992).
However, as is demonstrated in Appendix B, such a profile does not satisfy Jacobi’s condition.
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Fig. 6 A circular bubble of oil deformed by disjoining pressure. The rightmost film profile is practically
undistorted bubble whose round shape is determined by the capillary pressure and surface tension. Note the
change of the sign of the curvature

Fig. 7 A periodically oscillating solution to the AYLE. The amplitude of the thickness variation has been
amplified for visualization

Therefore, a periodic solution does not provide a local minimum of the energy functional
and is nonphysical.

At a negative capillary pressure, the phase portrait may significantly depend on the dimen-
sionless group Pc R/σ . For some values, it may include only two equilibrium points: the
saddle point, corresponding to the broken film, and the centre, corresponding to the peri-
odically oscillating solutions (Fig. 8). An oscillating solution does not minimize the energy
functional and does not describe a physically feasible liquid film. If the radius of the solid
surface is small enough, there can be an intermediate region where the shape of the film is
determined mostly by the interaction between surface tension and disjoining pressure. The
disjoining pressure prevails in very thin films. In Figs. 5 and 8, the parts of the phase portraits
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Fig. 8 The phase portrait for a negative capillary pressure: pc = −10 kPa, R = 5 µm

Fig. 9 A liquid film on a rough surface

corresponding to η < 0.002 are similar for both positive and negative capillary pressures. In
both cases, the trajectories correspond to nanodroplets. The noncycling trajectories crossing
the abscissa to the right from point B in Fig. 8 describe droplets on the cylinder surface.

Figure 9 shows a calculated film profile for a rough surface, where the roughness is mod-
elled as a sequence of round bumps. This solution to the AYLE is composed of several
segments, each of which corresponds to a single grain. The junction between any two adja-
cent segments is at the midpoint between the centres of the grains. Boundary conditions at
each junction point impose a smooth transition between the segments. Figure 9 shows that
the locations of most likely film rupture are at the tops of the grains, where the film is the
thinnest. Since the curvature of the surface of each bump is constant, we conclude that the
local shape of the surface does not solely determine the stability of the film.

5 Summary and Conclusions

Variational methods have been successfully used in wettability studies over past few decades.
At equilibrium, the shape of a thin water film on a water-wet solid surface corresponds to
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a minimum of the Helmholtz free energy of the system. The energy functional includes
three components—the surface tension energy, the work of the capillary pressure, and the
work of disjoining pressure in the form of an increment of the potential. The film sur-
face is characterized by an advanced Young–Laplace equation, which generalizes the clas-
sical Young–Laplace equation to account for the disjoining pressure. The latter is a result
of interaction between molecular electrostatic double-layer and van der Waals forces. The
presence of the disjoining pressure may result in an alteration in the sign of the water–
oil interface curvature without changing the sign of the capillary pressure. A number of
solutions to the AYLE reported in the literature are valid under the assumption that both
the liquid film and the solid surface are cylindrical, i.e., invariant with respect to a transla-
tion parallel to one of the coordinate axes. The present work has extended the variational
approach to films on arbitrary solid surfaces. This extension in particular has required a
modification of the disjoining pressure potential definition. Besides the disjoining pres-
sure isotherm, the new definition explicitly involves the shape of the underlying solid
surface.

The general AYLE is a nonlinear second-order partial differential equation. We have
obtained a number of solutions characterizing axisymmetric liquid films on spherical sur-
faces and films at the contact areas between spherical grains.

For a cylindrical liquid film on a cylindrical solid surface, the AYLE reduces to a
second-order ordinary differential equation. The entire variety of solutions has been charac-
terized using the phase-portrait technique. For example, the equilibrium points characterize
constant-thickness liquid films.

Not every solution to the AYLE necessarily provides a minimum to the energy functional.
We have demonstrated that the periodic solutions, which would describe wave-shaped liquid
film surfaces, fail Jacobi’s condition of the classical calculus of variations and therefore are
nonphysical.

Alteration of the wettability involves, in particular, destabilization and a rupture of the
liquid film. Calculations on the basis of the AYLE show that the roughness of the solid sur-
face significantly affects liquid film stability. Breakage in the film is more likely to occur at
the most exposed parts of the solid surface having a positive curvature. In order to arrive at
this conclusion, a solution to the AYLE has been obtained for a film on a regular pack of
cylindrical grains of equal radii. Although the results of this work are basic and qualitative,
they provide valuable insights into the role of disjoining pressure and the impact of the solid
surface roughness on the mechanisms of wettability alteration.
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Appendix A: Differential Geometry

In this Appendix, we briefly summarize the concepts and facts of the differential geometry
used in this study.
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Basic Definitions

Let a surface in 3D space be parameterized by two parameters, u and v:

r0(u, v) = X (u, v)i + Y (u, v)j + Z(u, v)k (37)

where r0(u, v) is the radius vector and i, j, and k are the vectors of an orthonormal basis.
The geometry of the surface can be expressed through the so-called first quadratic form. The
entries of this form are defined pointwise, through the derivatives of the radius vector

E0 = ∂r0

∂u
· ∂r0

∂u
, F0 = ∂r0

∂u
· ∂r0

∂v
, and G0 = ∂r0

∂v
· ∂r0

∂v
(38)

An elementary surface area can be expressed as

dA0 =
√

E0G0 − F2
0 dudv (39)

The unit normal vector at a point r0(u, v) can be determined from the relationship

n(u, v) = ±
∂r0

∂u
× ∂r0

∂v√
E0G0 − F2

0

(40)

where ‖ · ‖ denotes the Euclidean norm. The sign in the last equation is subject to the orien-
tation convention. Both partial derivatives of the normal vector with respect to u and v are
tangential to the surface. Therefore, they can be expressed as

∂n
∂u

= W11(u, v)
∂r0

∂u
+ W12(u, v)

∂r0

∂v (41)
∂n
∂v

= W12(u, v)
∂r0

∂u
+ W22(u, v)

∂r0

∂v

The symmetric matrix of coefficients {Wi j (u, v)} is called the Weingarten mapping of the
surface r = r0(u, v) Thorpe (1979). The eigenvalues of this matrix are the main curvatures
of the surface.

For a cylindrical surface, r0(u, v) = (x(u), y(u), v), where 0 ≤ u < 2π , one obtains

E0 = (x ′2(u)+ y′2(u)), F0 = 0, G0 = 1, and
(42)

n(u, v) = 1√
x ′2(u)+ y′2(u)

(−y′(u), x ′(u), 0)

The matrix W (u, v) has two eigenvalues:

κ = y′′x ′ − y′x ′′

(x ′2(u)+ y′2(u))
3
2

(43)

which is the curvature of the curve (x(u), u(u)), and zero. The surface area element is equal
to

dA0 =
√

x ′2(u)+ y′2(u) du dv (44)

For a sphere of radius R centred in the origin,

r0(u, v) = R(sin u cos vi + sin u sin vj + cos uk) (45)
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u

v

du

dv

dA

dVh
dA0

r0

Fig. 10 Mapping u, v → r0(u, v) and surface variation in the normal direction

where 0 ≤ u ≤ π and 0 ≤ v < 2π , the elements of the first quadratic form and the unit
normal vector are

E0 = R2, F0 = 0, G0 = R2 sin2 u, and n = sin u cos vi + sin u sin vj + cos uk

(46)

The surface area element and the Weingarten matrix are equal to

dA0 = R2 sin ududv and W = 1

R
I (47)

where I is an identity matrix. Thus, both main curvatures of a sphere are reciprocal to the
radius.

Surface Variations

Let the surface parameterized by Eq. 37 be perturbed in the normal direction. Then, for the
perturbed surface,

r(u, v) = r0(u, v)+ h(u, v)n(u, v) (48)

Here n(u, v) is the normal unit vector and h(u, v) is the magnitude of the perturbation
(Fig. 10). We will assume that h(u, v) > 0. We will also assume that the perturbed surface
is smooth and has no self-intersections. From Eq. 41,

∂r(u, v)
∂u

= ∂r0(u, v)

∂u
+ ∂h(u, v)

∂u
n(u, v)+ h(u, v)W (u, v)

∂r(u, v)
∂u

(49)

∂r(u, v)
∂v

= ∂r0(u, v)

∂v
+ ∂h(u, v)

∂v
n(u, v)+ h(u, v)W (u, v)

∂r(u, v)
∂v

(50)
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For the elements of the first quadratic form for perturbed surface, one obtains

E =
(
(I + hW )

∂r0

∂u

)
·
(
(I + hW )

∂r0

∂u

)
+

(
∂h

∂u

)2

(51)

F =
(
(I + hW )

∂r0

∂u

)
·
(
(I + hW )

∂r0

∂v

)
+ ∂h

∂u

∂h

∂v
(52)

G =
(
(I + hW )

∂r0

∂v

)
·
(
(I + hW )

∂r0

∂v

)
+

(
∂h

∂v

)2

(53)

Denote by dA(h) the elementary surface area of the perturbed surface evaluated for a
constant h. Let us evaluate the correcting factor �(h) defined by the relationship: dA(h) =
�(h) dA0. Straightforward, but lengthy, calculations yield

�(h) =
{ [

∂r0

∂u
· (I + hW )2

(
∂r0

∂u

)] [
∂r0

∂v
· (I + hW )2

(
∂r0

∂v

)]

−
[
∂r0

∂u
·
(
(I + hW )2

∂r0

∂v

)]2
}1/2/ √

E0G0 − F2
0 (54)

For example, for a round cylindrical surface of radius R,

�(h) = 1 + h

R
and dA(h) =

(
1 + h

R

)
dA0 (55)

For a spherical surface of radius R, one obtains

�(h) =
(

1 + h

R

)2

and dA(h) =
(

1 + h

R

)2

dA0 (56)

For a volume element between the original and perturbed surface, one obtains

dV (h) =
∫ h

0
d�(ξ)dξ dudv (57)

Appendix B: Calculus of Variations

Numerous models in mechanics, physics, and engineering can be formulated in a variational
form, where the solution is a minimum of an energy functional (Mikhlin 1964; Weinstock
1952). Here, we briefly review some concepts and results of the classical calculus of variations
used in this study.

Let η(u) be a smooth function defined on an interval [u1, u2] and L(u, η, ξ) be a smooth
function of three variables. The variables are not necessarily scalar. Put

J [η] =
u2∫

u1

L(u, η(u), η′(u)) dx (58)

The objective is to find an admissible curve z = η(u) providing a minimum of the functional
defined by Eq. 58. The set of admissible curves may consist, for example, of all smooth
functions η(u) satisfying Dirichlet boundary conditions:

η(u1) = η1, η(u2) = η2 (59)
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A function η(u) is a weak local minimum of the functional (58) if J [η] is the least value of
the integral for all admissible curves, which only slightly differ from the curve η(u) both by
the value and by the derivative. If a curve η(u) is a local weak minimum of the functional
(58), then it satisfies the Euler–Lagrange equation

d

du

∂

∂ξ
L(u, η(u), ξ)

∣∣∣∣
ξ=η′(u)

− ∂

∂η
L(u, η, η′(u))

∣∣∣∣
η=η(u)

= 0 (60)

In general, the Euler–Lagrange equation is a second-order differential equation. Its solu-
tions are called extremals. In many cases, the boundary conditions (59) determined a unique
extremal. If the integrand does not depend explicitly on the first argument, L(u, η, ξ) =
L(η, ξ), then Eq. 60 is equivalent to

η′(u) ∂

∂ξ
L(η(u), ξ)

∣∣∣∣
ξ=η′(u)

− L(η(u), η′(u)) = C (61)

The latter is a first-order differential equation involving a constant C . A solution and constant
C can be determined from the boundary conditions, Eq. 59.

The classical calculus of variations also considers problems, in which the endpoints of
an admissible curve are not fixed by the boundary conditions (59), but are constrained by
a curve or, perhaps, are not constrained at all. In such a case, the Euler–Lagrange equation
is complemented with transversality conditions. For example, if the right-end point is con-
strained by the equation η(u2) = ψ(u2), where ψ is a known function, then the respective
transversality condition has the following form:

[η′(u2)− ψ ′(u2)] ∂

∂ξ
L(η(u2), ξ)

∣∣∣∣
ξ=η′(u2)

− L(η(u2), η
′(u2)) = 0 (62)

If ψ(u) = Const, then the value of an admissible curve, η(u2), is fixed, whereas the end of
the interval, u2, is not. In such a case, Eq. 62 reads

η′(u2)
∂

∂ξ
L(η(u2), ξ)

∣∣∣∣
ξ=η′(u2)

− L(η(u2), η
′(u2)) = 0 (63)

In particular, this transversality condition implies a zero constant C on the right-hand side of
the reduced-order differential equation (61).

The Euler–Lagrange equation provides only a first-order necessary condition for a local
minimum (Gelfand and Fomin 1963; Goursat 1918). Not every extremal provides a mini-
mum or maximum of the functional. Additional criteria may be needed to figure out whether
a given solution to the Euler–Lagrange equation is indeed a minimum of a functional. For
example, the problem of the shortest path connecting two distinct points on a sphere can
be formulated as a problem of calculus of variations. It can be demonstrated that any arc of
a circle, which is the intersection of the spherical surface and a plane passing through the
centre, is an extremal. Any two distinct points on a spherical surface can be connected by
two such arcs. However, unless these two points are polar-opposite, only one of these arcs is
the shortest connection.

In this section, we formulate second-order conditions by Jacobi and Legendre, which help
to filter out extremals not providing a minimum to the functional. Moreover, Jacobi’s condi-
tion in conjunction with the strengthened Legendre condition is sufficient for a minimum of
the functional (Gelfand and Fomin 1963; Goursat 1918).
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First, based on the integral functional (58), we define two functions

S(u) = 1

2

∂2 L

∂ξ2 and Q(u) = 1

2

(
∂2 L

∂u2 − d

dx

∂2 L

∂u∂ξ

)
(64)

Here, the expressions are evaluated at η = η(u) and ξ = η′(u). The second-order linear
differential equation

− d

du
(Sχ ′)+ Qχ = 0 (65)

where χ = χ(u) is the unknown function, is called Jacobi equation. A value ũ, u1 < ũ < u2,
is called a conjugate point if there exists a nonzero solution to Eq. 65, such that χ(u1) =
χ(̃u) = 0. The necessary Jacobi condition says that if η(u) provides a minimum to the inte-
gral functional (58), then there exists no conjugate point on the interval u1, u2. In addition to
the Jacobi necessary condition, an extremal η(u) providing a minimum satisfies Legendre’s
necessary condition of the second order; that is, S ≥ 0 for η = η(u). The Legendre condition
is called strengthened if the inequality is strict: S > 0. If a function η(u) is an extremal, for
which the strengthened Legendre condition is satisfied, and there exists no conjugate point,
then η(u) provides a local minimum to the functional (58) (Gelfand and Fomin 1963; Goursat
1918).

Assume that the integrand L does not depend explicitly on the first argument: L(u, η, ξ) =
L(η, ξ). This assumption is satisfied in Eqs. 29 and 31. A differentiation of both sides of the
Euler–Lagrange equation (60) with respect to u yields

d

du

[
∂2 L(η, η′)
∂η′2 η′′ + ∂2 L(η, η′)

∂η′∂η
η′

]
− ∂2 L(η, η′)

∂η′∂η
η′′ − ∂2 L(η, η′)

∂η2 η′ = 0 (66)

After denoting ξ(u) = η′(u) and making some rearrangements, one obtains

d

du

(
∂2 L(η, η′)
∂η′2 ξ ′

)
−

[
∂2 L(η, η′)
∂η2 − d

du

(
∂2 L(η, η′)
∂η′∂η

)]
ξ = 0 (67)

One can verify by a straightforward calculations that if η = η(u) is an extremal, that is, if
it satisfies the Euler–Lagrange, then ξ(u) = η′(u) satisfies the Jacobi equation. Therefore,
if the derivative η′(u) is equal to zero at an end point, say, u = u1, and if the function
η(u) attains either minimum or maximum value somewhere inside the interval between u1

and u2, then this maximum or minimum is a conjugate point. Thus, the extremal η = η(u)
does not satisfy Jacobi’s condition and therefore is not a local minimum of the functional. In
particular, if η(u) is a nonconstant periodic function and the u2 −u1 is greater or equal to the
period, then such an extremal is not a minimum of the functional. Indeed, since the problem
is invariant with respect to a translation in u, the end point u1 can be moved to a minimum
of η(u), so that η′(u1) = 0. Since the length of the interval exceeds one period, the function
η(u) must attain a maximum at some u = ũ, u1 < ũ < u2. Thus, χ(u) = η′(u) vanishes
at u = ũ and ũ is a conjugate point. Starov (2004) has derived the Jacobi equation for the
functional (29) assuming that the solid surface is flat.
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