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Abstract The onset of convection in a horizontal layer of a porous medium saturated by
a nanofluid is studied analytically. The model used for the nanofluid incorporates the effects
of Brownian motion and thermophoresis. For the porous medium, the Brinkman model is
employed. Three cases of free–free, rigid–rigid, and rigid–free boundaries are considered.
The analysis reveals that for a typical nanofluid (with large Lewis number), the prime effect
of the nanofluids is via a buoyancy effect coupled with the conservation of nanoparticles,
whereas the contribution of nanoparticles to the thermal energy equation is a second-order
effect. It is found that the critical thermal Rayleigh number can be reduced or increased by
a substantial amount, depending on whether the basic nanoparticle distribution is top-heavy
or bottom-heavy, by the presence of the nanoparticles. Oscillatory instability is possible in
the case of a bottom-heavy nanoparticle distribution.
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g Gravitational acceleration vector
H Dimensional layer depth
km Effective thermal conductivity of the porous medium
K Permeability of the porous medium
Le Lewis number, defined by Eq. 15c
NA Modified diffusivity ratio, defined by Eq. 19
NB Modified particle-density increment, defined by Eq. 20
p∗ Pressure
p Dimensionless pressure, p∗K/µαm

Pr Prandtl number, defined by Eq. 15a
Ra Thermal Rayleigh–Darcy number, defined by Eq. 16
Rm Basic-density Rayleigh number, defined by Eq. 17
Rn Concentration Rayleigh number, defined by Eq. 18
t∗ Time
t Dimensionless time, t∗αm/σ H2

T ∗ Temperature

T Dimensionless temperature, T ∗−T ∗
c

T ∗
h −T ∗

c

T ∗
c Temperature at the upper wall

T ∗
h Temperature at the lower wall

(u, v, w) Dimensionless Darcy velocity components, (u∗, v∗, w∗)H/αm

v Dimensionless Darcy velocity, Hv∗
D/αm

v∗
D Dimensional Darcy velocity, (u∗, v∗, w∗)

(x, y, z) Dimensionless Cartesian coordinates, (x∗, y∗, z∗)/H ; z is the
vertically upward coordinate

(x∗, y∗, z∗) Cartesian coordinates

Greek symbols

αm Thermal diffusivity of the porous medium, km
(ρc)f

β Volumetric expansion coefficient of the fluid
ε Porosity
λi Parameter that takes value 0 for the case of a rigid boundary and ∞ for a free

boundary, i = 1, 2
µ Viscosity of the fluid
µ̃ Effective viscosity of the porous medium
ρf Fluid density
ρp Nanoparticle mass density
(ρc)f Heat capacity of the fluid
(ρc)m Effective heat capacity of the porous medium
(ρc)p Effective heat capacity of the nanoparticle material
σ Heat capacity ratio, defined by Eq. 8
φ∗ Nanoparticle volume fraction

φ Relative nanoparticle volume fraction,
φ∗−φ∗

0
φ∗

1 −φ∗
0

Superscripts
∗ Dimensional variable
′ Perturbation variable
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Subscripts

b basic solution

1 Introduction

The term “nanofluid” refers to a liquid containing a suspension of submicronic solid particles
(nanoparticles). The term was coined by Choi (1995). The characteristic feature of nanofl-
uids is thermal conductivity enhancement, a phenomenon observed by Masuda et al. (1993).
This phenomenon suggests the possibility of using nanofluids in advanced nuclear systems
(Buongiorno and Hu 2005).

A comprehensive survey of convective transport in nanofluids was made by Buongiorno
(2006) who says that a satisfactory explanation for the abnormal increase of the thermal
conductivity and viscosity is yet to be found. He focused on the further heat transfer enhance-
ment observed in convective situations. Buongiorno notes that several authors have suggested
that convective heat transfer enhancement could be due to the dispersion of the suspended
nanoparticles, but he argues that this effect is too small to explain the observed enhance-
ment. Buongiorno also concludes that turbulence is not affected by the presence of the
nanoparticles; therefore, it cannot explain the observed enhancement. Particle rotation has
also been proposed as a cause of heat transfer enhancement, but Buongiorno calculates
that this effect is too small to explain the effect. With dispersion, turbulence, and particle
rotation ruled out as significant agencies for heat transfer enhancement, Buongiorno pro-
posed a new model based on the mechanics of the nanoparticle/base-fluid relative velocity.
Buongiorno (2006) noted that the nanoparticle absolute velocity could be viewed as the sum
of the base fluid velocity and a relative velocity (that he calls the slip velocity). He considered,
in turn, seven slip mechanisms: inertia, Brownian diffusion, thermophoresis, diffusiophore-
sis, Magnus effect, fluid drainage, and gravity settling. After examining each of these in turn,
he concluded that in the absence of turbulent effects, it is the Brownian diffusion and the
thermophoresis that will be important. Buongiorno proceeded to write down conservation
equations based on these two effects.

The Bénard problem (the onset of convection in a horizontal layer uniformly heated from
below) for a nanofluid was studied by Tzou (2008a,b) and Nield and Kuznetsov (2009a)
on the basis of the transport equations of Buongiorno (2006). The corresponding problem
for flow in a porous medium (the Horton–Rogers–Lapwood problem) was studied by Nield
and Kuznetsov (2009b) using the Darcy model. In this article, that study is extended to the
Brinkman model. This necessitates the introduction of an additional parameter, namely, a
Darcy number.

2 Analysis

It is assumed that nanoparticles are suspended in the nanofluid using either surfactant or
surface charge technology. This prevents the particles from agglomeration and deposition
on the porous matrix. We select a coordinate frame in which the z-axis is aligned vertically
upward. We consider a horizontal layer of a porous medium confined between the planes
z∗ = 0 and z∗ = H . Asterisks are used to denote the dimensional variables. Each boundary
wall is assumed to be impermeable and perfectly thermally conducting. The temperatures
at the lower and upper wall are taken to be T ∗

h and T ∗
c , the former being the greater. The
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Oberbeck–Boussinesq approximation is employed. The reference temperature is taken to be
T ∗

c . In the linear theory being applied here, the temperature change in the fluid is assumed
to be small in comparison with T ∗

c .
Homogeneity and local thermal equilibrium in the porous medium are assumed. We are

aware that thermal lagging between the particles and the fluid has been proposed as an expla-
nation of the increased thermal conductivity that has been observed in nanofluids (see, for
example, Vadasz 2005, 2006), but this is not our concern here. The extra complication of
local thermal non-equilibrium could well be the subject of future research.

We consider a porous medium whose porosity is denoted by ε and permeability by K . The
Darcy velocity is denoted by vD. The following four field equations embody the conservation
of total mass, momentum, thermal energy, and nanoparticles, respectively. The field variables
are the Darcy velocity vD, the temperature T ∗, and the nanoparticle volume fraction φ∗.

∇∗ · v∗
D = 0, (1)

ρf

ε

∂v∗
D

∂t∗
= −∇∗ p∗ + µ̃∇∗2vD − µ

K
v∗

D

+ [
φ∗ρp + (1 − φ∗)

{
ρf (1 − β(T ∗ − T ∗

c ))
}]

g,

(2)

(ρc)m
∂T ∗

∂t∗
+ (ρc)f v∗

D · ∇∗T ∗ = km∇∗2T ∗ + ε(ρc)p
[
DB∇∗φ∗ · ∇∗T ∗

+ (DT/T ∗
c )∇∗T ∗ · ∇∗T ∗] , (3)

∂φ∗

∂t∗
+ 1

ε
v∗

D · ∇∗φ∗ = DB∇∗2φ∗ + (DT/T ∗
c )∇∗2T ∗. (4)

We write v∗
D = (u∗, v∗, w∗).

Here ρf , µ, and β are the density, viscosity, and volumetric volume expansion coefficient
of the fluid, while ρp is the density of the particles. The gravitational acceleration is denoted
by g. We have introduced the effective viscosity µ̃, the effective heat capacity (ρc)m, and the
effective thermal conductivity km of the porous medium. The coefficients that appear in Eqs. 3
and 4 are the Brownian diffusion coefficient DB and the thermophoretic diffusion coefficient
DT. Details of the derivation of Eqs. 3 and 4 are given in the articles by Buongiorno (2006);
Tzou (2008a,b), and Nield and Kuznetsov (2009a,b). The flow is assumed to be slow so that
an advective term and a Forchheimer quadratic drag term do not appear in the momentum
equation.

We assume that the temperature and the volumetric fraction of the nanoparticles are con-
stant on the boundaries. Thus, the boundary conditions are

w∗ = 0,
∂w∗

∂z∗ + λ1 H
∂2w∗

∂z∗2 = 0, T ∗ = T ∗
h , φ∗ = φ∗

0 at z∗ = 0, (5)

w∗ = 0,
∂w∗

∂z∗ − λ2 H
∂2w∗

∂z∗2 = 0, T ∗ = T ∗
c , φ∗ = φ∗

1 at z∗ = H. (6)

The parameters λ1 and λ2 each take the value 0 for the case of a rigid boundary and ∞ for a
free boundary.

We introduce dimensionless variables as follows. We define

(x, y, z) = (x∗, y∗, z∗)/H, t = t∗αm/σ H2, (u, v, w) = (u∗, v∗, w∗)H/αm,

p = p∗K/µαm, φ = φ∗ − φ∗
0

φ∗
1 − φ∗

0
, T = T ∗ − T ∗

c

T ∗
h − T ∗

c
, (7)
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Thermal Instability in a Porous Medium Layer 413

where

αm = km

(ρc)f
, σ = (ρc)m

(ρc)f
. (8)

Then Eqs. 1–6 take the form:

∇ · v = 0 (9)
Da

Pr

∂v
∂t

= −∇ p + Da∇2v − v − Rmêz + RaT êz − Rnφêz (10)

∂T

∂t
+ v · ∇T = ∇2T + NB

Le
∇φ · ∇T + NA NB

Le
∇T · ∇T (11)

1

σ

∂φ

∂t
+ 1

ε
v · ∇φ = 1

Le
∇2φ + NA

Le
∇2T (12)

w = 0,
∂w

∂z
+ λ1

∂2w

∂z2 = 0, T = 1, φ = 0 at z = 0, (13)

w = 0,
∂w

∂z
− λ2

∂2w

∂z2 = 0, T = 0, φ = 1 at z = 1. (14)

Here

Pr = µ

ρfαm
, Da = µ̃K

µH2 , Le = αm

DB
, (15a,b,c)

Ra = ρgβK H(T ∗
h − T ∗

c )

µαm
, (16)

Rm = [ρpφ
∗
1 + ρ(1 − φ∗

1 )]gK H

µαm
, (17)

Rn = (ρp − ρ)(φ∗
1 − φ∗

0 )gK H

µαm
, (18)

NA = DT (T ∗
h − T ∗

c )

DBT ∗
c (φ∗

1 − φ∗
0 )

, (19)

NB = ε(ρc)p

(ρc)f
(φ∗

1 − φ∗
0 ). (20)

The parameter Pr is the Prandtl number and Da is the Darcy number modified by the viscosity
ratio, while Le is the Lewis number and Ra is the familiar thermal Rayleigh–Darcy number.
The new parameters Rm and Rn may be regarded as the basic-density Rayleigh number and
the concentration Rayleigh number, respectively. The parameter NA is a modified diffusivity
ratio and is somewhat similar to the Soret parameter that arises in cross-diffusion phenomena
in solutions, while NB is a modified particle-density increment.
In the spirit of the Oberbeck–Boussinesq approximation, Eq. 10 has been linearized by the
neglect of a term proportional to the product of φ and T . This assumption is likely to be valid
in the case of small temperature gradients in a dilute suspension of nanoparticles.

2.1 Basic Solution

We seek a time-independent quiescent solution of Eqs. 9–14 with temperature and nanopar-
ticle volume fraction varying in the z-direction only, which is a solution of the form

v = 0, T = Tb(z), φ = φb(z).
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Equations 11 and 12 reduce to

d2Tb

dz2 + NB

Le

dφb

dz

dTb

dz
+ NA NB

Le

(
dTb

dz

)2

= 0 (21)

d2φb

dz2 + NA
d2Tb

dz2 = 0 (22)

Using the boundary conditions (13) and (14), Eq. 22 may be integrated to give

φb = −NATb + (1 − NA)z + NA, (23)

and substitution of this into Eq. 21 gives

d2Tb

dz2 + (1 − NA)NB

Le

dTb

dz
= 0. (24)

The solution of Eq. 24 satisfying Eqs. 13 and 14 is

Tb = 1 − e−(1−NA)NB(1−z)/Le

1 − e−(1−NA)NB/Le
. (25)

The remainder of the basic solution is easily obtained by first substituting in Eq. 23 to obtain
φb and then using integration of Eq. 10 to obtain pb.

According to Buongiorno (2006), for most nanofluids investigated so far Le is large, of
the order of 105–106, while NA is not greater than about 10. Then, the exponents in Eq. 25
are small, and so to a good approximation, one has

Tb = 1 − z, (26)

and so,

φb = z. (27)

2.2 Perturbation Solution

We now superimpose perturbations on the basic solution. We write

v = v′, p = pb + p′, T = Tb + T ′, φ = φb + φ′, (28)

substitute in Eqs. 9–14, and linearize by neglecting the products of primed quantities. The
following equations are obtained when Eqs. 26 and 27 are used.

∇ · v′ = 0, (29)
Da

Pr

∂v′

∂t
= −∇ p′ + Da∇2v′ − v′ + RaT ′êz − Rnφ′êz, (30)

∂T ′

∂t
− w′ = ∇2T ′ + NB

Le

(
∂T ′

∂z
− ∂φ′

∂z

)
− 2NA NB

Le

∂T ′

∂z
, (31)

1

σ

∂φ′

∂t
+ 1

ε
w′ = 1

Le
∇2φ′ + NA

Le
∇2T ′, (32)

w′ = 0,
∂w

∂z
+ λ1

∂2w

∂z2 = 0, T ′ = 0, φ′ = 0 at z = 0. (33)

w′ = 0,
∂w

∂z
− λ2

∂2w

∂z2 = 0, T ′ = 0, φ′ = 0 at z = 1. (34)
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Thermal Instability in a Porous Medium Layer 415

It will be noted that the parameter Rm is not involved in these and subsequent equations. It
is just a measure of the basic static pressure gradient.

For the case of a regular fluid (not a nanofluid) the parameters Rn , NA, and NB are zero,
the second term in Eq. 32 is absent because dφb/dz = 0 rather than 1, and then, Eq. 32
is satisfied trivially. The remaining equations are reduced to the familiar equations for the
Brinkman extension of the Horton–Roger–Lapwood problem.

The six unknowns u′, v′, w′, p′, T ′, and, φ′ can be reduced to three by operating on Eq. 30
with êz · curlcurl and using Eq. 29. The result is

Da

Pr

∂

∂t
∇2w′ − Da∇4w′ + ∇2w′ = Ra∇2

HT ′ − Rn∇2
Hφ′. (35)

Here ∇2
H is the two-dimensional Laplacian operator on the horizontal plane.

The differential Eqs. 31, 32, and 35 the boundary conditions (33) and (34) constitute a
linear boundary-value problem that can be solved using the method of normal modes.

We write

(w′, T ′, φ′) = [W (z),	(z),
(z)] exp(st + ilx + imy), (36)

and substitute into the differential equations to obtain
[

Da(D2 − α2)2 −
(

1 + s Da

Pr

)
(D2 − α2)

]
W − Raα2	 + Rnα2
 = 0, (37)

W +
(

D2 + NB

Le
D − 2NA NB

Le
D − α2 − s

)
	 − NB

Le
D
 = 0, (38)

1

ε
W − NA

Le
(D2 − α2)	 −

(
1

Le
(D2 − α2) − s

σ

)

 = 0, (39)

W = 0, DW + λ1 D2W = 0,	 = 0, 
 = 0 at z = 0.

(40)

W = 0, DW − λ2 D2W = 0,	 = 0, 
 = 0 at z = 1,

(41)

where

D ≡ d

dz
and α = (l2 + m2)1/2. (42)

Thus, α is a dimensionless horizontal wavenumber.
For neutral stability, the real part of s is zero. Hence, we now write s = iω, where ω is

real and is a dimensionless frequency.
We now employ a Galerkin-type weighted residuals method to obtain an approximate

solution to the system of Eqs. 37–41. We choose as trial functions (satisfying the boundary
conditions) Wp,	p,
p; p = 1, 2, 3, . . ., and write

W =
N∑

p=1

ApWp, 	 =
N∑

p=1

Bp	p, 
 =
N∑

p=1

C p
p, (43)

substitute into Eqs. 37–39, and make the expressions on the left-hand sides of those equa-
tions (the residuals) orthogonal to the trial functions, thereby obtaining a system of 3N linear
algebraic equations in the 3N unknowns Ap, Bp, C p; p = 1, 2, . . . , N . The vanishing of the
determinant of coefficients produces the eigenvalue equation for the system. One can regard
Ra as the eigenvalue. Thus, Ra is found in terms of the other parameters.
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3 Results and Discussion

3.1 Free–Free Boundaries

For this case, the boundary conditions are

W = 0, D2W = 0, 	 = 0, 
 = 0 at z = 0 and at z = 1, (44)

and the trial functions can be chosen as

Wp = 	p = 
p = sin pπ z; p = 1, 2, 3, ... (45)

3.1.1 Non-Oscillatory Convection

First, we consider the case of non-oscillatory instability, when ω = 0.
For a first approximation, we take N = 1. This produces the result

Ra = Da
(
π2 + α2

)3 + (
π2 + α2

)2

α2 −
(

Le

ε
+ NA

)
Rn. (46)

For the case when Da = 0, the minimum is attained with α = π , and the minimum value is

Ra = 4π2 −
(

Le

ε
+ NA

)
Rn. (47)

On the other hand, in the case where Da is large compared with unity, the minimum being
attained at α = π/

√
2, and the minimum value is

Ra = 27π4

4
Da −

(
Le

ε
+ NA

)
Rn. (48)

One recognizes that in the absence of nanoparticles, one recovers the well-known results
that the critical Rayleigh–Darcy number is equal to 4π2 when Da = 0, and that the critical
value of the fluid Rayleigh number is 27π4/4 = 657.5 in the case where Da tends to infinity.
Usually when one employs a single-term Galerkin approximation in this context, one gets
an overestimate; however, in this case, the approximation happens to give the exact result.

As noted above, for a typical nanofluid, Le is of the order of 105–106, and NA is not much
>10. Hence, the coefficient of Rn in Eq. 46 is large and negative. Thus, under the approxima-
tions we have made so far, we have the result that the presence of nanoparticles lowers the
value of the critical Rayleigh number, usually by a substantial amount, in the case when Rn
is positive, that is, when the basic nanoparticle distribution is a top-heavy one.

It will be noted that in Eq. 46, the parameter NB does not appear. The instability is almost
purely a phenomenon due to buoyancy coupled with the conservation of nanoparticles. It
is independent of the contributions of Brownian motion and thermophoresis to the thermal
energy equation. Rather, the Brownian motion and thermophoresis enter to produce their
effects directly into the equation expressing the conservation of nanoparticles, so that the
temperature and the particle density are coupled in a particular way, and that results in the
thermal and concentration buoyancy effects being coupled in the same way. It is useful to
emphasize this by rewriting Eq. 46 in the form

Ra +
(

Le

ε
+ NA

)
Rn = Da

(
π2 + α2

)3 + (
π2 + α2

)2

α2 , (49)
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Thermal Instability in a Porous Medium Layer 417

Fig. 1 Plots of Roc , the minimum of the right-hand sides of Eqs. 49, 67, 71, respectively, as functions of the
Darcy number Da

and noting that the left-hand side is a linear combination of the thermal Rayleigh number Ra
and the concentration Rayleigh number Rn. The problem is analogous to the familiar double
diffusive problem (Nield and Bejan 2006). It is also analogous to a bioconvection problem
discussed in Kuznetsov and Avramenko (2004). We have defined Rn in a way so that it is
positive when the applied particle density increases upward (the destabilizing situation). We
note that Ra takes a negative value when Rn is sufficiently large. In this case, the destabilizing
effect of concentration is so great that the bottom of the fluid layer must be cooled relative
to the top to produce a state of neutral stability.

Let us denote by Ro the expression on the right-hand side of Eq. 49. Its minimum value
(Roc) and the value of α that gives the minimum (αc) are plotted in Figs. 1 and 2, respectively,
as functions of Da. We observe a smooth transition from the values (4π2, π) for Da = 0 to
the values ([27π4/4]Da, π/

√
2) as Da → ∞.

It is emphasized that the simple expression in Eq. 46 arises because the Lewis number has
been assumed to be large. In order to estimate the contribution of the terms involving NB,
the 2-term Galerkin result has been investigated. The expression in the eigenvalue equation
is now complicated, and it is difficult to make a statement that is simultaneously precise,
simple, and general. However, it is clear that the functions of NB are of second degree. We
conclude that for practical purposes, Eq. 46 is a good approximation.

3.1.2 Oscillatory Convection

We now consider the case ω �= 0. We confine ourselves to the one-term Galerkin approxi-
mation. The eigenvalue equation now takes the form

Raα2
(

J

Le
+ iω

σ

)
+ Rnα2

(
NA J

Le
+ J + iω

ε

)

= J

(
Da J + 1 + iωDa

Pr

)
(J + iω)

(
J

Le
+ iω

σ

)
, (50)
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Fig. 2 Plots of αc , the critical dimensionless wavenumber, for various sets of boundary conditions, as functions
of the Darcy number Da

where for shorthand, we have written

J = π2 + α2. (51)

The real and imaginary parts of Eq. 50 yield

Ra +
(

Le

ε
+ NA

)
Rn = J 2(Da J + 1)

α2 − ω2

α2

[
(Da J + 1)

Le

σ
+ Da J

Pr
+ DaLeJ

Prσ

]
,

(52)

Le

σ
Ra + Le

ε
Rn = J 2

α2

[
(Da J + 1)

(
1 + Le

σ

)
+ Da J

Pr

]
− ω2 DaLeJ

Prσα2 = 0. (53)

Elimination of ω2 between the last two equations gives

{
LePr

σ
(Da J + 1) + Le

σ
Da J

}
Ra +

{
LePr

ε
(Da J + 1) +

(σ

ε
− NA

)
Da J

}
Rn

= J 2

α2

{[
(Da J + 1)

(
1 + Le

σ

)
+ Da J

Pr

] [
Pr (Da J + 1) +

(
1 + σ

Le

)
Da J

]

− Da J (Da J + 1)

}
. (54)

One observes from Eq. 52 that in order for ω to be real, it is necessary that

Ra +
(

Le

ε
+ NA

)
Rn ≤ J 2(Da J + 1)

α2 . (55)
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Thermal Instability in a Porous Medium Layer 419

Hence, Eq. 54 gives the oscillatory stability boundary when Eq. 55 holds, and the angular
frequency ω of the oscillation is then given by

ω2 = J 2(Da J + 1) − Raα2 − ( Le
ε

+ NA
)

Rnα2

(Da J + 1) Le
σ

+ Da J
Pr + DaLeJ

Prσ

. (56)

3.2 Rigid–Rigid Boundaries

We confine our analysis to the one-term Galerkin approximation. Appropriate trial functions
satisfying the boundary conditions, which are now

W = 0, DW = 0, 	 = 0, 
 = 0 at z = 0 and at z = 1, (57)

are

W1 = z2(1 − z)2, 	1 = z(1 − z), 
1 = z(1 − z). (58)

With this choice of trial functions, the eigenvalue equation takes the form
[
µ̃ + iω

Le

σ

]
Ra +

[
µ̃

(
Le

ε
+ NA

)
+ iω

Le

ε

]
Rn

= 1

ρ̃

[
λ̃Da + ν̃

(
1 + iω

Da

Pr

)]
(µ̃ + iω)

(
µ̃ + iω

Le

σ

)
, (59)

where

λ̃ = 504 + 24α2 + α4, µ̃ = 10 + α2, ν̃ = 12 + α2, ρ̃ = 27α2

28
. (60)

The real and imaginary parts of Eq. 59 yield

Ra +
(

Le

ε
+ NA

)
Rn = (λ̃Da + ν̃)µ̃

ρ̃
− ω2

ρ̃

[
(λ̃Da + ν̃)Le

µ̃σ
+ ν̃

(
DaLe

σ Pr
+ Da

Pr

)]

,

(61)

ω

{
Le

σ
Ra + Le

ε
Rn − 1

ρ̃

[
µ̃2ν̃Da

Pr
+ (λ̃Da + ν̃)µ̃

(
1 + Le

σ

)
− ω2ν̃

DaLe

σ Pr

]}
= 0.

(62)

Hence, either ω = 0 and

Ra +
(

Le

ε
+ NA

)
Rn = (λ̃Da + ν̃)µ̃

ρ̃
, (63)

or one has the pair of equations

ω2

[
(λ̃Da + ν̃)Le

µ̃σ
+ ν̃

(
DaLe

σ Pr
+ Da

Pr

)]

= (λ̃Da + ν̃)µ̃ − ρ̃

[
Ra +

(
Le

ε
+ NA

)
Rn

]
,

(64)

ω2ν̃
DaLe

σ Pr
= µ̃2ν̃Da

Pr
+ (λ̃Da + ν̃)µ̃

(
1 + Le

σ

)
− ρ̃

(
Le

σ
Ra + Le

ε
Rn

)
. (65)
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Elimination of ω2 then gives
(

λ̃Da + ν̃

µ̃ν̃σ 2 + Da

σ 2 Pr

)

Ra +
(

λ̃Da + ν̃

µ̃ν̃εσ
+ Da(σ − εNA)

εσ LePr

)

Rn

= 1

ρ̃

{[
(λ̃Da + ν̃)µ̃

(
1

σ
+ 1

Le

)
+ µ̃2ν̃Da

LePr

][
λ̃Da + ν̃

µ̃ν̃σ
+ Da

σ Pr
+ Da

LePr

]

− (λ̃Da + ν̃)µ̃Da

σ LePr

}

. (66)

The boundary for non-oscillatory instability is given by Eq. 63, namely,

Ra +
(

Le

ε
+ NA

)
Rn = 28

27α2 [(504 + 24α2 + α4)Da + 12 + α2](10 + α2). (67)

When Da is very large compared with unity the right-hand side of this equation takes a
minimum when α = 3.12, and its minimum value is 1,750. We recognize that the value
1,750 obtained using the one-term Galerkin approximation is about 3% greater than the
well-known exact value 1707.762 for the critical Rayleigh number for the classical Raleigh–
Bénard problem.

When Da = 0, the right-hand side of Eq. 67 takes a minimum when α = 3.31 and the
minimum value is 43.91, something that is 11% greater than the exact value 4π2 for the
classical Horton–Rogers–Lapwood problem. For comparison, it may be noted that Platten
and Legros (1984) conclude that in a determination of the critical Rayleigh number using the
Schmidt–Milverton method, it is difficult to reduce the experimental error to a value 7%. A
plot of Roc, the minimum of the right-hand side of Eq. 67 is shown in Fig. 1, and a plot of
αc, the minimizing value of α is shown in Fig. 2.

The oscillatory instability boundary is given by Eq. 66 when the right-hand side of Eq. 64
is positive, so that the equation yields a real value for ω. When Le is large, this requires that
Rn is negative, so that the basic nanoparticle distribution is stabilizing.

3.3 Rigid–Free Boundaries

The analysis for this case is the same as that for the rigid–rigid case, except that now the
boundary conditions on W become

W = 0, DW = 0 at z = 0,

W = 0, D2W = 0 at z = 1,
(68)

so that a suitable trial function is now,

W1 = z2(1 − z)(3 − 2z). (69)

Instead of Eq. 60, one now has

λ̃ = 4536 + 432α2 + 19α4, µ̃ = 10 + α2, ν̃ = 216 + 19α2, ρ̃ = 507α2

28
. (70)

Hence, instead of Eq. 67 one now has

Ra +
(

Le

ε
+ NA

)
Rn = 28

507α2

[
(4536 + 432α2 + 19α4)Da + 216 + 19α2] (10 + α2).

(71)
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When Da is very large compared with unity, the right-hand side of this equation takes a
minimum when α = 2.67, and its minimum value is 1,139. We recognize that the value
1139 obtained using the one-term Galerkin approximation is about 3.5% greater than the
well-known exact value 1100.65 for the critical Rayleigh number for the classical Raleigh–
Bénard problem.

When Da = 0, the right-hand side of Eq. 71 takes a minimum when α = 3.27, and the
minimum value is 48.01, something that is 22% greater than the exact value 4π2 for the clas-
sical Horton–Rogers–Lapwood problem. The relatively poor accuracy in this case is expected
since the asymmetric (about the horizontal midline) trial function W1 significantly differs in
shape from the symmetric exact function W = sin π z. A plot of Roc, the minimum of the
right-hand side of Eq. 71 is shown in Fig. 1, and a plot of αc, the minimizing value of α, is
shown in Fig. 2. As one would expect, the values for the rigid–free case are about half way
between the corresponding values for the free–free and the rigid–rigid cases, except when
Da is very small.

4 Conclusions

We have studied analytically using linear instability theory the onset of convection in a hor-
izontal layer of a porous medium saturated by a nanofluid, employing a model used for the
nanofluid that incorporates the effects of Brownian motion and thermophoresis and employ-
ing the Brinkman momentum equation. We found that for a typical nanofluid (for which the
Lewis number is large), the primary contribution of the nanoparticles is via a buoyancy effect
coupled with the conservation of nanoparticles, with the contribution of nanoparticles to the
thermal energy equation being a second-order effect. The analysis predicts that oscillatory
instability is possible in the case of a bottom-heavy nanoparticle distribution.
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