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Abstract A linear stability analysis is performed for mono-diffusive convection in an
anisotropic rotating porous medium with temperature-dependent viscosity. The Galerkin
variant of the weighted residual technique is used to obtain the eigen value of the problem.
The effect of Taylor–Vadasz number and the other parameters of the problem are consid-
ered for stationary convection in the absence or presence of rotation. Oscillatory convection
seems highly improbable. Some new results on the parameters’ influence on convection in
the presence of rotation, for both high and low rotation rates, are presented.

Keywords Anisotropy · Rotation · Porous medium · Variable viscosity ·
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List of symbols
a Horizontal wave number
ac Critical wave number
BrD Brinkman–Darcy number, �Da
c Specific heat
cp Specific heat at a constant pressure

Da−1 Inverse Darcy number (porous parameter), d2

kv
d Height of the porous layer
�g Gravitational acceleration (0, 0, −g)
k Permeability
k Permeability tensor, 1

kh
î î + 1
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ĵ ĵ + 1
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k̂k̂
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k̂ Unit vector in the vertical direction
(kh, kh, kv) Permeability along x, y and z-direction
l,m Wave numbers
p Pressure
p∗ Hydrostatic pressure
pH Basic state pressure
Pr Prandtl number, ν�

χT v�q (u, v, w), velocity vector
�q ′ Velocity of the perturbed state

R Rayleigh number, α g�T d3

ν χT v

RD Darcy–Rayleigh number,RDa
t Time
T Temperature field

Ta Taylor number, 4�2d4

�2ν2

Tb Basic state temperature
TR Reference temperature
u, v, w Dimensional horizontal and vertical velocity components
u∗, v∗, w∗ Dimensionless velocity components
V Linear variable viscosity parameter, ��T
Va Vadasz or Prandtl–Darcy number, PrDa
V aD (Taylor–Vadasz number), T aDa2

x Horizontal coordinate
x∗ Dimensionless horizontal coordinate
z Vertical coordinate
z∗ Dimensionless vertical coordinate
(x, y, z) Cartesian coordinates with z-axis vertically upward

Greek symbols
α Coefficient of thermal expansion
(χT h, χT v) Thermal conductivities in x- and z-directions
ε Mechanical anisotropy parameter, kh

kv
� Porosity of the media
η Thermal anisotropy parameter, χT h/χT v

γ Heat capacity ratio, (ρR cp)m/(ρR cp) f

τ Scaled dimensionless time, t Da−1

�T Temperature gradient
∇ î ∂

∂x + ĵ ∂
∂y + k̂ ∂

∂z (vector differential operator)

∇2 ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 (three-dimensional Laplacian operator)

∇2
1

∂2

∂x2 + ∂2

∂y2 (two-dimensional Laplacian operator)

� Brinkman number, µp
µ f

µ Dynamic viscosity
µp Effective viscosity
µ f Viscosity of the fluid
ν Kinematic viscosity,

µ f
ρR
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ρ Density
ρb Basic state density
ρR Density of the liquid at reference temperature T = Tm

ψ Stream function
σ Growth rate of perturbation
�� Angular velocity of rotation
ω Scaled frequency of oscillation

ζ z- component of vorticity,
(
∂v
∂x − ∂u

∂y

)

Subscripts
b Basic state
c Critical quantity
f Fluid

Superscripts
′ Dimensional quantities
∗ Dimensionless quantities
o Oscillatory
s Stationary

1 Introduction

Thermal convection in a rotating porous medium is a phenomenon relevant to many fields. It
has various applications in geophysics, food processing, engineering, and nuclear reactors.
Many authors have investigated the effect of external constraint such as rotation on convection
in a porous medium. Cellular convection in a rotating, fluid-saturated porous medium was
studied by Rudraiah and Rohini (1975) and Rudraiah and Srimani (1976). Stability of finite
amplitude and overstable convections of a conducting fluid through a fixed porous bed were
studied by Rudraiah and Vortmeyer (1978). Palm and Tyvand (1984) investigated thermal
convection in a rotating porous layer. The effect of Coriolis force and non-uniform temper-
ature gradient on Rayleigh–Bénard convection was established by Rudraiah and Chandna
(1985). Jou and Liaw (1987) studied the thermal convection in a porous medium subject to
transient heating and rotation. Vadasz (1993, 1994, 1997, 1998a,b) extensively studied the
flow through a porous medium with rotational effects such as three-dimensional free con-
vection in a long rotating porous box, stability of free convection in a narrow porous layer
subject to rotation, stability of free convection in a rotating porous layer distant from the
axis of rotation, flow in a rotating porous medium, Coriolis effect on gravity-driven convec-
tion in a rotating porous layer heated from below, and free convection in a porous medium.
Transition and chaos in free convection in a rotating porous layer were studied by Vadasz
and Olek (1998). Straughan (2000) established a sharp non-linear stability threshold in rotat-
ing porous convection. Govender and Vadasz (2002) made a moderate time linear study of
moderate Stephan number convection in rotating mushy layers. Riahi (2003, 2006) studied
stationary and oscillatory modes of flow instability in a rotating porous layer during alloy
solidification, and non-linear convection in a rotating mushy layer. Govender (2006) studied
the effect of anisotropy on stability of convection in a rotating porous layer distant from the
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center of rotation. Riahi (2007a,b) analyzed the inertial effects on the rotating fluid flow in
a porous layer, and inertial and Coriolis effects on oscillatory flow in a horizontal dendrite
layer. Combined effect of thermal modulation and rotation on the onset of stationary convec-
tion in a porous layer was studied by Malashetty and Mahantesh Swamy (2007) . Govender
and Vadasz (2007) studied the effect of mechanical and thermal anisotropy on the stability
of gravity-driven convection in a rotating porous medium in the presence of thermal non-
equilibrium. Effect of temperature modulation on the onset of Darcy convection in a rotating
porous medium was studied by Bhadauria (2008). Linear stability of solutal convection in
rotating, solidifying mushy layers with permeable mush–melt interface was established by
Govender (2008).

Most of the above investigators have studied convection in a low-porosity, rotating, and
isotropic porous medium with constant viscosity. Temperature dependence of viscosity gives
rise to temperature-dependent Darcy and Brinkman frictions. Patil and Vaidyanathan (1983)
analyzed setting up of convection currents in a rotating porous medium under the influence of
variable viscosity. Richardson and Straughan (1993) studied the non-linear stability and the
Brinkman effect on convection with temperature-dependent viscosity (linear dependence) in
a porous medium. Effect of radiation on non-Darcy free convection from a vertical cylin-
der embedded in a fluid-saturated porous medium with a temperature-dependent viscosity
was studied by El-Hakiem and Rashad (2007). A good account of convection problems in a
porous medium is given in Vafai and Hadim (2000); Ingham and Pop (2002), and Nield and
Bejan (2006).

The object of this article is to study the effect of rotation on mono-diffusive convection
in a high-porosity, anisotropic porous medium with temperature-dependent viscosity.

2 Mathematical Formulation

Consider a rotating porous layer of infinite horizontal extent occupied by a Boussinesquian
fluid with temperature-dependent viscosity, confined between rigid isothermal boundaries at
z = 0 and z = d at which the temperatures are T0 and T1, respectively. Let �� denote the
angular velocity of rotation of the medium. The porous medium is assumed to have high
porosity and hence the fluid flow is governed by the Brinkman model with effects of Coriolis
force and centrifugal acceleration included. An appropriate single-phase heat transport equa-
tion is chosen with effective heat capacity ratio and effective thermal diffusivity. Thus, the
governing equations for the Rayleigh–Bénard situation in a fluid, with the non-Boussinesq
effect of temperature-dependent viscosity, occupying a rotating porous layer are

Conservation of mass

∇ · �q = 0, (2.1)

Conservation of linear momentum

ρR

�

∂ �q
∂t

+ ρR

�2 (�q · ∇)�q = −∇ p + ρ �g − µ f k · �q
+2

ρR

�

(
�q × ��

)
+ ∇ ·

[
µp

(
∇�q + ∇�qT r

)]
, (2.2)

Conservation of energy

γ
∂T

∂t
+ �q · ∇T = χT v

[
η

(
∂2T

∂x2 + ∂2T

∂y2

)
+ ∂2T

∂z2

]
, (2.3)
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Equation of state

ρ = ρR [1 − α(T − T0)] , (2.4)

Thermorheological equations

µ f (T ) = µ1

1 − �(T − T0)
, (2.5)

µp(T ) = µ2

1 − �(T − T0)
, (2.6)

where

p = p∗ − ρR

2�
∇

(∣∣∣ ��× �r
∣∣∣
2
)
.

The thermorheological Eqs. 2.5 and 2.6 have been used, following Nield (1996).

2.1 Basic State

The quiescent basic state of the liquid is described by

∂()

∂t
= 0, �qb = (0, 0, 0), T = Tb(z),

ρ = ρb(z), µ f = µ fb (z), µp = µpb (z). (2.7)

The pressure pb, temperature Tb, density ρb, and the viscosities satisfy

dpb

dz
= −ρbg, (2.8)

d2Tb

dz2 = 0 (2.9)

ρb = ρR [1 − α(Tb − T0)] , (2.10)

µ fb (T ) = µ1

1 − � (Tb − T0)
, (2.11)

and

µpb (T ) = µ2

1 − �(Tb − T0)
. (2.12)

Solving Eq. 2.9 for Tb using the boundary conditions

Tb = T0 +�T at z = 0,

Tb = T0 at z = 1,

we get

Tb − T0 = �T (1 − z), (2.13)

ρb = ρR [1 + α�T (1 − z)] , (2.14)

µ fb (T ) = µ1

1 + ��T (1 − z)
, (2.15)

and

µpb (T ) = µ2

1 + ��T (1 − z)
. (2.16)
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2.2 Linear Stability Analysis

Let the basic state be disturbed by an infinitesimal thermal perturbation. We now have

�q = �qb + �q ′, Tb = Tb(z)+ T ′, pb = pb(z)+ p′, ρb = ρb(z)+ ρ′,
µ f = µ fb (z)+ µ′

f , µp = µpb (z)+ µ′
p. (2.17)

The prime indicates that the quantities are infinitesimal perturbations. Substituting Eq. 2.17
into Eqs. 2.1–2.3, and using the basic-state solution, we get the linearized equations governing
the infinitesimal perturbations in the form:

∇ · �q ′ = 0, (2.18)
ρR

�

[
∂ �q ′

∂t

]
= −∇ p′ + αρR gT ′k̂ + 2

ρR

kv

(
�q ′ × ��

)

−µ fbk · �q ′ + ∇µpb ·
(
∇�q ′ + ∇ �q ′T r

)
+ µpb∇

2 �q ′, (2.19)

γ
∂T ′

∂t
= −�T

d
w′ + χT v

[
η

(
∂2T ′

∂x2 + ∂2T ′

∂y2

)
+ ∂2T ′

∂z2

]
. (2.20)

Operating curl twice on Eq. 2.19, to eliminate the pressure, we get

−ρR

�

∂

∂t

(∇2
1w

′) = −αρR g∇2
1 T ′ − µpb∇4w′ − 2

∂µpb

∂z
∇2

(
∂w′

∂z

)

+µ fb

kv
∇2

1w
′ + µ fb

kv

1

ε

∂2w′

∂z2 + 1

kv

1

ε

∂µ fb

∂z

∂w′

∂z

+∂
2µpb

∂z2

[
∇2

1w
′ − ∂2w′

∂z2

]
+ 2

ρR

�
�
∂ζ

∂z
, (2.21)

where
ζ =

(
∂v′
∂x − ∂u′

∂y

)
is the z-component of the vorticity, �ω′ = ∇ × �q ′.

Now the equation for ζ can be obtained by differentiating x- and y-components of Eq. 2.17
partially w.r.t. y and x, respectively, and then subtracting the resulting equations from one
another. This gives us the vorticity transport equation:

ρR

�

∂ζ

∂t
= 2

ρR

�
�
∂w′

∂z
− µ fb

kv

1

ε
ζ + ∂µpb

∂z

∂ζ

∂z
+ µpb∇2ζ. (2.22)

We now non-dimensionalize Eqs. 2.20–2.22 using the following definitions:

(x∗, y∗, z∗) =
( x

d
,

y

d
,

z

d

)
, w∗ = w′

(χv/d)
, T ∗ = T ′

�T
,

ζ ∗ = ζ(
χv/d2

) , t∗ = t(
d2/ν

) . (2.23)

Substituting Eq. 2.23, along with Eqs. 2.11 and 2.12, in Eqs. 2.20–2.22, we get the follow-
ing equation on dropping the asterisks
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∂

∂τ
(∇2w) = RD∇2

1 T + g(z)

[
BrD∇4w −

(
∇2

1w + 1

ε

∂2w

∂z2

)]

+V [g(z)]2
[

2BrD∇2
(
∂w

∂z

)
− 1

ε

∂w

∂z

]
− √

V aD
∂ζ

∂z

−2BrD V 2 [g(z)]3
(

∇2
1w − ∂2w

∂z2

)
, (2.24)

∂ζ

∂τ
= √

V aD
∂w

∂z
+ g(z)

(
BrD∇2 − 1

ε

)
ζ + V BrD [g(z)]2 ∂ζ

∂z
(2.25)

V a
∂T

∂τ
= w +

[
η

(
∂2T

∂x2 + ∂2T

∂y2

)
+ ∂2T

∂z2

]
, (2.26)

where g(z) = {1 + V (1 − z)}−1. In the above equations, the dimensionless quantities τ, V a,
V aD, RD, BrD, ε, η and � are introduced as done by Vadasz (1998a,b). Equations 2.24–2.26
are three equations in the three unknowns w, ζ , and T. Equations 2.24–2.26 are solved subject
to the conditions

w = Dw = Dζ = T = 0 at z = 0, 1. (2.27)

The choice of rigid boundaries is to bring in the boundary effect modeled by the Brinkman
term.

The infinitesimal perturbations w, T, and ζ are assumed to be periodic waves, and hence
these permit normal mode solutions in the form (see Chandrasekhar 1961)

⎡
⎣
w

ζ

T

⎤
⎦ = eστ

⎡
⎣
w(z)
ζ(z)
T (z)

⎤
⎦ ei(lx+my) (2.28)

where the imaginary part of σ is the scaled frequency, w(z), ζ (z), and T(z) are the amplitudes,
and l and m are the horizontal components of the wave number such that a2 = l2 + m2.

The amplitudes must satisfy the boundary conditions of Eqs. 2.27. Substituting Eq. 2.28 into
Eqs. 2.24–2.26, we get

g(z)

[
BrD

(
D2 − a2)2 + a2 − 1

ε
D2

]
w − σ

(
D2 − a2)w

−RDa2T + V [g(z)]2
(

2BrD
(
D2 − a2) − 1

ε

)
Dw (2.29)

−√
V aD Dζ + 2BrD V 2 [g(z)]3 (

D2 + a2)w = 0,

g(z)

[
BrD

(
D2 − a2) − 1

ε

]
ζ − σζ + √

V aD Dw

+BrD V [g(z)]2 Dζ = 0, (2.30)(
D2 − ηa2) T − V aσT + w = 0, (2.31)

where σ is, in general, complex and D = d
dz . We discuss marginal stability considering both

stationary and oscillatory convections. The boundary conditions for solving Eqs. 2.29–2.31
are obtained from Eq. 2.27, on using Eq. 2.28, in the form

w = Dw = Dζ = T = 0 at z = 0, 1. (2.32)
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3 Application of Galerkin Variant of Weighted-Residuals Technique

Equations 2.29–2.31 are solved using the Galerkin variant of weighted-residuals technique
(Finlayson 1972). This method gives quite general results on the eigen value of the problem
using the trial functions for the lowest eigen value. We obtain an approximate solution of the
differential equations with the given boundary conditions by choosing trial functions for the
velocity and temperature perturbations that may satisfy the boundary conditions but may not
exactly satisfy the differential equations. This leads to residuals when the trial functions are
substituted into the differential equations. The method requires the residual to be orthogonal
to each individual trial function. In the Galerkin variant of the weighted-residuals procedure,
we expand the velocity and temperature in the form

w(z, τ ) =
∑

Ai (τ )wi (z),

ζ(z, τ ) =
∑

Bi (τ )ζi (z), (3.1)

T (z, τ ) =
∑

Ci (τ )Ti (z),

where wi (z), ζi (z) and Ti (z) are trial functions that have to satisfy the boundary condi-
tions (2.32). For the purpose of illustration, we present below the single-term version of the
technique.

Multiplying Eqs. 2.29–2.31 by w, ζ , and T, respectively, and integrating the resulting
equations by parts with respect to z between 0 and 1, and taking w = Aw1, T = BT1, and
ζ = Cζ1, in which A, B, and C are constants, andw1, T1, and ζ1 are trial functions that satisfy
the boundary conditions, yield the following equations for the Darcy–Rayleigh number, RD :

RD = (G3 − V aσ E2) [V aD F1 D11 − (G1 − σG2)(G4 − σ F5)]

a2 D2
10(G4 − σ F5)

, (3.2)

where

G1 = BrD
(
D1 + a4 D2 − 2a2 D3

) + 2BrD V
(
D4 − a2 D5

) + 2BrD V 2 (
D6 + a2 D7

)

+ a2 D2 − 1

ε
(D3 + V D5) ,

G2 = (D8 + a2 D9),G3 = E1 − ηa2 E2,G4 = BrD
(
F2 − a2 F3

) + BrD V F4 − 1

ε
F3,

D1 = 〈
w1 D4w1g(z)

〉
, D2 = 〈

w2
1g(z)

〉
, D3 = 〈

w1 D2w1g(z)
〉
, D4 = 〈

w1 D3w1 [g(z)]2〉 ,
D5 = 〈

w1 Dw1 [g(z)]2〉 , D6 = 〈
w1 D2w1 [g(z)]3〉 , D7 = 〈

w2
1 [g(z)]3〉 , D8 = 〈

w1 D2w1
〉
,

D9 = 〈
w2

1

〉
, D10 = 〈w1T1〉, D11 = 〈w1 Dζ1〉 , E1=

〈
T1 D2T1

〉
, E2 = 〈

T 2
1

〉
, F1 = 〈ζ1 Dw1〉,

F2 = 〈
ζ1 D2ζ1g(z)

〉
, F3 = 〈

ζ 2
1 g(z)

〉
, F4 = 〈

ζ1 Dζ1 [g(z)]2〉 , F5 = 〈
ζ 2

1

〉
,

〈· · · 〉 denotes integration with respect to z between z=0 and z=1.We note here that RD

in Eq. 3.2 is a functional and the Euler–Lagrange equations for the extremization of RD are
Eqs. 2.29–2.31.

For stationary convection, we set σ = 0 and then Eq. 3.2 becomes

Rs
D = G3(V aD F1 D11 − G1G4)

a2G4 D2
10

. (3.3)
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For oscillatory instability, we set σ = iω in Eq. 3.2, which gives

Ro
D =
G3G4(V aD F1 D11−G1G4)+ω2

(
V aE2

{
F1 F5 D11V aD+G2G2

4+ω2 F2
5 G2

}
− G1G3 F2

5

)
+iωN

a2 D2
10

(
G2

4 + ω2 F2
5

) ,

(3.4)

where

N = (
G3G4 + ω2V aE2 F5

)
(G2G4 + G1 F5)

+ (G3 F5 − V aE2G4)
(
V aD F1 D11 + ω2G2 F5 − G1G4

)
. (3.5)

Since RD is a real quantity, either ω = 0 (stationary) or N = 0 (ω �= 0, oscillatory).
The latter condition, on simplification, yields the frequency of oscillations and the oscillatory
Rayleigh number in the form:

ω2 = −G2G3G2
4 + G3 F1 F5 D11V aD + V aE2G4 (G1G4 − V aD F1 D11)

F2
5 (V aE2G1 + G2G3)

, (3.6)

Ro
D =

G3G4(V aD F1 D11 − G1G4)+ω2
(

V aE2

{
F1 F5 D11V aD + G2G2

4+ω2 F2
5 G2

}
− G1G3 F2

5

)

a2 D2
10

(
G2

4 + ω2 F2
5

) .

(3.7)

In evaluating Rs
D and Ro

D , we have assumed w1 = z2(z − 1)2, T1 = Sinπ z and ζ1 =
Cosπ z.

4 Results and Discussions

In this article, a study is made of the effects on temperature-dependent viscosity and rigid-
body rotation on the onset of convection in a fluid-saturated anisotropic porous medium. It is
important to note that the viscosity µ decreases with increase in temperature T and that the
µ–T curve is concave upward. This aspect is well covered by the thermorheological Eqs. 2.5
and 2.6. With control of convection as the motivation for the problem, the following effects
on the classical Rayleigh–Bénard problem are considered:

(i) porous medium inhibition of convection,
(ii) anisotropy of the medium,

(iii) variable viscosity, and
(iv) Coriolis force.

These four effects are, respectively, represented by the inverse Darcy number Da−1, the
anisotropy parameters (ε, η), the variable viscosity parameter (also called thermorheological
parameter) V, and the Taylor–Vadasz number V aD . The formulation of the problem involves
several assumptions (Knobloch 1998)—the lateral boundaries are far enough not to influ-
ence rotating convection and that the Froude number is quite small. The latter assumption
facilitates the restoration of the conduction state as an equilibrium solution. Experimentally,
the lateral boundary effect and the centrifugal effect have been shown by Ecke et al. (1992)
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Fig. 1 Plot of critical
Darcy–Rayleigh number RDc
(stationary) versus variable
viscosity parameter V for
different values of Taylor–Vadasz
number V aD

0.0 0.1 0.2 0.3 0.4 0.5
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V

Fig. 2 Plot of critical wave
number ac (stationary) versus V
for different values of V aD .
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3.4

3.5

3.6

5

3=DVa

ca

V

.0.12, 1.2= = =DBr η ε
10

to be quite important, but in a theoretical study to keep the problem manageable and focus
on Bénard-like situations, it is common practice to exclude these effects. In order to conform
to standard practices in a porous medium, we have used the Darcy–Rayleigh number rather
than the viscous Rayleigh number that is used in the Chandrasekhar (1961) formulation
of the problem in a clear fluid. The main emphasis of this study is to consider the effect
of temperature-dependent viscosity on the onset of convection via the stationary mode, as
oscillatory convection is found to be highly improbable. Before embarking on a discussion
of the results depicted by the Figs. 1, 2, 3, 4, 5, 6, 7 and 8, we note that, unlike the case of
a clear fluid, critical convection is always stationary for all considered values of the Vadasz
and Taylor–Vadasz numbers.

Figure 1 reveals that the effect of increasing thermorheological parameter V is to desta-
bilize the system. Figure 2 reveals that the effect of increasing V aD is to decrease the cell
size at the onset of convection. This result can be seen from the fact that the wave length is
inversely proportional to the wave number.
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Fig. 3 Plot of RDc versus V for
different values of mechanical
anisotropy parameter ε
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Fig. 4 Plot of ac versus V for
different values of ε
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Fig. 5 Plot of RDc versus V for
different values of thermal
anisotropy parameter η
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Fig. 6 Plot of ac versus V for
different values of η
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Epherre (1975) concluded that the effects of mechanical anisotropy and thermal anisot-
ropy parameters are opposite in their influences on the critical Darcy–Rayleigh number. In
so far as the critical wave number is concerned, the two anisotropy effects superpose on each
other while influencing the cell size. This observation by Epherre (1975) in the absence of
rigid-body rotation continues to be observed in the case when rotation is present. We see
that increase in the value of ε is to decrease RDc and the opposite is seen with η. We also
find that the observations made by Epherre (1975) on RDc and ac hold good in the case of
variable-viscosity fluids also. The above results can be seen in Figs. 3, 4, 5 and 6.

Givler and Altobelli (1994) in their pioneering article have discussed the need to have
actual viscosity and effective viscosity in modeling a porous medium using the Brinkman–
Darcy model. In view of the fact that boundary effects can be seen only when we have a
rigid boundary, appropriate boundary conditions have been used to bring in this effect. In a
medium in which the Brinkman term is important, ratio� of actual and effective viscosities
appears in the governing equations. When scaled with the Darcy number, this can be called
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Fig. 8 Plot of ac versus V for
different values of BrD
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the Brinkman–Darcy number, BrD . In the light of the observation made by Givler and Al-
tobelli (1994) that the viscosity ratio can take values less than as well as greater than unity,
in the article we have taken values of BrD to be slightly lesser than or greater than 0.1. The
effect of BrD is to stabilize the system. It is also seen that the effect of increasing BrD is to
increase the cell size. These results on the effects of BrD on RDc and ac as discussed above
can be seen in Figs. 7 and 8, respectively.

We now focus attention on Eq. 3.6 to conclude that oscillatory convection is improbable
in a rotating porous medium. Notice that by inspecting Eq. 3.6 we find that the only way by
which ω2 can take a positive value is when G1G4 − V aD F1 D11 > 0. We also note that the
Ei’s, the Fi’s, the Gi’s, and D11 are all positive. The above line of thought suggests that by
merely evaluating the ratio r = V aD F1 D11

G1G4
we can comment on the possibility or otherwise

of oscillatory convection. For all parameter combinations, we found on computation that r is
less than unity which thus precludes the possibility of oscillatory motions in the present prob-
lem. Computations further reveal that the effect of increasing V is to diminish the magnitude
of r.

5 Conclusions

Stationary convection is preferred to oscillatory convection in the case of a rotating high-
porosity medium occupied by a variable viscosity liquid. It is found that for all rotation rates
temperature-dependent viscosity destabilizes the system. The effect of anisotropy parameters
on the onset of convection in a rotating medium is qualitatively similar to that in the non-
rotating case. Our results for a constant viscosity liquid occupying a low-porosity isotropic
medium coincide with those of Vadasz (1998a,b) due to the fact that when BrD = 0, V = 0
and ε = η = 1 the equations reduce to those reported by the author. One can easily verify
that in this case the stationary and oscillatory Rayleigh numbers are given by

Rs
D = δ2

[
δ2 + V aDπ

2
]

a2 , (5.1)
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Ro
D = δ4

(
ω2 + 1

) − V aω2
(
δ2(ω2 + 1)− V aD

)
V aDδ

2

a2(ω2 + 1)
, (5.2)

where the frequency of oscillations is given by

ω2 = (δ2 − V a)V aD(
δ4 + V aδ2

) − 1, (5.3)

where δ2 = π2 + a2.

At this point we note that our results and discussions, and conclusions are based on the
choice of T0 (temperature of the upper boundary) as the reference temperature. As pointed out
by Nield (1996), the study can be carried out with Tm = (T0+�T )+T0

2 (average temperature
of the two boundaries) as the reference temperature. With T0 replaced by Tm in the above
analysis we conclude the following:

(a) RDc increases as V increases, but the variation is very weak as pointed out by Nield
(1996).

(b) ac decreases as V increases, but changes are observed only in the third decimal digit.
(c) The effect of BrD and V aD on RDc and ac is the same as that when T0 is used.
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