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Abstract We consider upscaling of non-Darcy flow in heterogeneous porous media. Our
approach extends the pressure-based numerical homogenization procedure for linear Darcy
flow, due to Durlofsky, to the nonlinear case. The effective coefficients are not constants
but rather mildly varying functions of prevailing gradients of pressure. The upscaled model
approximates the fine grid model accurately and, in some cases, more accurately than what is
expected for Darcy flow; this is due to the non-Darcy effects which suppress heterogeneity.
We provide comparisons of alternative approaches as well as consider several variants of
numerical realizations of the non-Darcy flow model. Numerical results show effectiveness
of the upscaling procedure.

Keywords Non-Darcy flow · Upscaling · Numerical homogenization · Finite differences ·
Mixed finite elements

1 Introduction

When modeling flow and transport in heterogeneous porous media using numerical methods,
one often needs to consider a scale H coarser than the h scale at which the data are given.
Over the last two or three decades, various techniques of upscaling from scale h to H , also
called numerical homogenization, have been defined and critically evaluated [see original
articles (Durlofsky 1991), review (Renarda and de Marsily 1997), and recent work (Zijl and
Trykozko 2002; Holden and Nielsen 2000; Chen et al. 2003; Chen and Durlofsky 2006)].
While methods of upscaling for linear single equation models are reasonably well under-
stood, upscaling nonlinear models or systems, beyond the progress made for multiphase flow
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(Durlofsky 2002; Efendiev et al. 2006; Chen and Durlofsky 2006), remains, in general, an
open field.

In this article, we are concerned with upscaling of non-Darcy model of single-phase
incompressible fluid flow in saturated porous medium � ⊂ IRd , d = 1, 2, 3, in the form

(K−1 + βI|u|)u = −∇ p. (1)

This extends the linear Darcy’s law

u = −K∇ p, (2)

with p denoting pressure or potential, K denoting the hydraulic conductivity tensor, I ∈ IRd×d

the identity matrix, and where u is the velocity (volumetric flux) of the fluid. Here, β is
the nonnegative scalar known as the Forchheimer coefficient, and the model (1) is due to
Forchheimer (1901). Clearly, if β = 0, then (1) reduces to (2). Other formulations are avail-
able in literature; we develop these and the notation in Sect. 2.

The conservation of mass is given by

∇ · u = 0, (3)

or, more generally, with a distributed source q by

∇ · u = q. (4)

The central issue addressed in this article concerns heterogeneous porous media when
K = K(x), x ∈ �. We assume β ≡ const or β = β(x) which occurs for example when β is
correlated to K via some relationship β = g(K ).

Specifically, the natural question that arises is how to upscale the model (1) and (3). That
is, given values of Kh and βh at a scale h, what values of KH and βH should one use in a
numerical model at a scale H � h? In particular, if βh is constant, is it appropriate to assume
so for βH ? Similar questions arise when βh is not constant but rather correlated to Kh ; the
answers are not straightforward due to nonlinearity of (1).

For the linear case, i.e., Darcy’s flow (2) and (3), various upscaling and numerical homog-
enization methods have been shown to be very effective (see Durlofsky 1991; Renarda and
de Marsily 1997; Chen et al. 2003; Holden and Nielsen 2000). Combine (2) and (3) and
consider a numerical approximation on grid parametrized by h of the resulting elliptic PDE,
−∇h ·(Kh∇h ph) = 0. Upscaling to scale H means we want to solve −∇H ·(KH ∇H pH ) = 0,
where the upscaled coefficient KH is obtained from one of the known methods (see details
in Sect. 4).

Upscaling of nonlinear models presents a challenge. In particular, consider a nonlinear
PDE of the form

∇ · K(∇ ph) = 0,

where K(ξh) = K(θh; ξh) is a general nonlinear function of ξ parameterized by some param-
eters θ , both given at scale h. In general, there is no guarantee that the nonlinearity K∗ in the
upscaled model

∇ · K∗(∇ pH ) = 0,

is parameterized in the same way as K is in the original model, and even if so, that these
parameters are equal to some upscaled θH . In other words, in general it is not true that one has
K∗(ξH ) = K(θH ; ξH ). Rather, to identify K∗, one has to consider a collection of nonlinear
upscaled maps; these follow from solutions to local cell problems posed at the scale h with
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Fig. 1 Schematic difference between linear and nonlinear upscaling. Left: linear upscaling of Kh delivers a
constant upscaled value KH . Right: nonlinear upscaling of βh delivers a map βH (α) where α represents a
local boundary condition value

cells of size H but, in general, are not decoupled from the global equation (see Efendiev and
Durlofsky 2002; Chen and Durlofsky 2006; Efendiev and Pankov 2004). Additional difficul-
ties in using θH arise for systems even if they are linear (Peszyńska and Showalter 2007; see
Fig. 1 for illustration).

In the problem of interest to this article, in the nonlinear PDE obtained from (1) and (3),
we have K(ξh) = K(Kh, βh; ξh). In what follows we show that upscaling of K gives a sat-
isfactory upscaled model with K∗(ξH ) = K(KH , βH ; ξH ), where the upscaled coefficients
KH , βH are computed numerically via solutions to cell problems. It turns out that βH is, in
general, not constant but varies mildly with the average flow rates. We focus primarily on
pressure-based upscaling after Durlofsky (1991).

As a result, we obtain an efficient and accurate method of upscaling (1). We believe that
the success of this nonlinear upscaling procedure is due to the fact that the inertia effects
appear to suppress heterogeneity of K for large β, which of course helps in the process of
upscaling. In addition, we show that in some cases it is reasonable to use a simpler upscaled
model with K∗(ξH ) ≈ K(KH , β

g
H ; ξH ) where βg

H does not require nonlinear upscaling.
Nonlinear upscaling methods with applications to porous media have been applied to

multiphase flow problems. There, in addition to deriving KH , one considers upscaling of
nonlinear multiphase flow properties such as saturation-dependent relative permeabilities
and/or capillary pressure relationships. The use of pseudo-functions (Barker and Thibeau
1996; Chen et al. 2005) is considered an effective yet not always fully satisfactory approach.
Difficulty in upscaling multiphase models is associated with large heterogeneity contrasts,
with dependence of multiphase flow properties on rock-type, as well as with the nonlinear
coupled nature of systems of PDEs that have to be solved. For ongoing research, see Chen
et al. (2003) and Chen and Durlofsky (2006).

On the other hand, there has been considerable research devoted to analysis (Fabrie and
Langlais 1992) and numerical approximation (Douglas et al. 1993; Park 2005) of non-Darcy
flow in homogeneous porous media. To our knowledge, however, not much work has been
done for non-Darcy flow in heterogeneous media or devoted to the effects the Forchheimer
correction has on the flow in heterogeneous case. In non-Darcy case, the only considerations
known to us are in Narayanaswamy et al. (1999) where a scalar case is considered and recent
work in Frih et al. (2008) where a separate approach applicable to fractured media is consid-
ered. In this article, we take a first step toward upscaling of non-Darcy flow for flow driven
by boundary conditions only. When q �≡ 0, for example, when wells are present, non-Darcy
flow in homogeneous media was considered in Ewing et al. (1999a); upscaling around wells
for Darcy or for multiphase flow has been considered in Zijl and Trykozko (2001) and Chen
and Yue (2003). Upscaling of non-Darcy flow around wells is outside the present scope.

The plan of the article is as follows. In Sect. 2 we give details of the model (1); we also
provide analytical bounds and examples which show the connection between K, β, and u,
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and effects of inertia associated with β on heterogeneity. These results help to explain the
success of our upscaling procedure to be developed. In Sect. 3 we define the numerical dis-
cretization, with technical details deferred to Appendix. In Sect. 4 we define our upscaling
approach, and in Sect. 5 we present results of the upscaling method.

Throughout the article we assume the nondimensional form of (1)–(3) so that �,K,u
are represented in computational experiments by simple nondimensional quantities. In the
presentation, we also assume d = 2 and � 	 x = (x1, x2) and u = (u1, u2), with natural
simplifications or extensions used when d = 1, 3. Gravity effects are not included in this
article explicitly but are easily accounted for in the numerical implementation.

Let K = K(x), x ∈ � be a symmetric, bounded, and positive definite uniformly in x
conductivity coefficient. We assume K is diagonal: K = diag(K1, . . . Kd), i.e., the prin-
cipal axes of permeability variation are aligned with the coordinates x. We note that some
pressure-based upscaling methods deliver a nondiagonal KH even if the original Kh is diag-
onal; however, restriction to diagonal Kh makes the current exposition manageable, and we
drop the off-diagonal terms in KH , should they arise. Henceforth, we assume that each of
components satisfies Km(x) ≥ κ,m = 1, . . . d for some κ > 0. In the isotropic case, we
have K = K I.

2 Non-Darcy Model, Analytical Solutions, and Bounds for (1)

Various formulations of non-Darcy models exist and have been argued as valid in various
regimes of flow. In general, it is recognized (Ergun 1952; Ergun and Orning 1949; Lake 1989;
Bear 1972; Dullien 1979) that the non-Darcy flow effects are important in regions of high
pressure gradients/high velocity, are due to inertia effects, and were originally connected to
the onset of turbulence at porescale level. Specifically, for 1 < Re < 100 the Darcy equation
(2) should be replaced by its extended form including additional terms polynomial in velocity
modeling inertia.

In most early works, an extended model for the scalar case proposed first by Forchheimer
(1901) was used and validated in the laboratory

K −1u + β|u|u = −dp

dx
. (5)

However, there is no uniform agreement on how this equation should be extended to two or
three dimensions, how to account for anisotropy, or for multiphase flow. Porescale explana-
tions of non-Darcy phenomena via averaging Navier–Stokes or Oseen flows (Ruth and Ma
1992; Bennethum and Giorgi 1997; Chen 1998; Dullien 1979; Marusić-Paloka and Mikelić
2000; Peszynska et al. 2009) suggest that the form (1) is appropriate, with a possible enhance-
ment of the inertia term to include a full tensor. Our upscaling method does not depend on
the particular form of (1), and the form of upscaled βH suggests a tensor form more general
than βI|u| (see Sect. 5). However, at this point we do not know how successful our upscaling
method is when applied to nonlinearities other than those in (1); this is subject of current and
future research.

As concerns heterogeneity of porous media, it is one of its most distinctive properties, and
it accounts for difficulties in analysis and numerical simulation not encountered in man-made
materials science. Most of the heterogeneity in flow models is reflected by dependence of
K = K(x). As concerns β, the experiments in which the values of β were calculated for
a given isotropic rock sample suggest that β may be correlated with various powers of K
(Geertsma 1976). Also, β is high for carbonate rocks such as limestone and sandstone and
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generally higher for vugular than for nonvugular rocks (Jones 1987). In general, it is rea-
sonable to conclude that in heterogeneous nonisotropic porous media, β = β(x) whenever
K = K(x).

In this article, we report, for simplicity, only on two variants of β, indexed by B, which
for isotropic K = K I read

β = gB(β0, K ) =
{
β0, B = 0
β0√

K
, B = 1 . (6)

More (Geertsma 1976; Jones 1987) can be easily incorporated. However, a special case
of nonsmooth g, such as the one for fracture systems where inertia terms are neglected in the
matrix, will not be considered here but is a topic of future work. See also Sect. 5.3.4 on our
computational results regarding correlation. In general, β may actually vary with pressure
and/or composition of fluids, and some formulations of (1) account for this (Douglas et al.
1993; Ewing et al. 1999a,b; Fabrie and Langlais 1992). For simplicity throughout this arti-
cle, we consider a fixed single phase fluid and, hence, we lump the viscosity and density
coefficients along with K, β.

For nonisotropic diagonal K, the correlations (6) should be considered componentwise;
we find it therefore natural to allow for β = (β1, β2) to be a vector. Nonisotropic β may also
arise in the process of upscaling; a vector form of β does not introduce additional difficul-
ties in a numerical model. With this, we rewrite (1) componentwise, with the coupling term

between components given by |u| =
√∑d

m=1 u2
m ,

(K −1
m + βm |u|)um = − ∂p

∂xm
, m = 1, . . . d. (7)

A simplified version, in which the nonlinearity in velocity components is decoupled, is the
one adapted in Ewing et al. (1999a), and it is a multidimensional analogue of (5),

(K −1
m + βm |um |)um = − ∂p

∂xm
, m = 1, . . . d. (8)

Since (7) is more general, it will be used as a basis for numerical models. Interestingly, in
some numerical discretizations, a discrete version of (8) arises on its own from discretization
of (7).

2.1 Analytical Solution and Bounds

It is not difficult to find an analytical solution u to (5). In the multidimensional case, it may no
more be directly possible. Below, we derive bounds which are helpful in scalar and nonscalar
cases.

2.1.1 Estimates for Scalar Case

Let D = − d p
dx . Rewrite (5) as

u = K(D), (9)

where K(D) = K(K , β; D). Solving (5) gives the following

u = K(K , β; D) =

⎧⎪⎨
⎪⎩

0, D = 0,
K D, β = 0,

sgn(D)−K −1+
√
(K −1)2+4β|D|
2β , β �= 0, D �= 0,

(10)
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Fig. 2 Analytical solution u = K(K , β; D). Left: we show u = K(1, β; D) for a fixed β in function of
D. Note the deviation of non-Darcy velocity from linear Darcy velocity (β = 0). Middle and right: plot of
u = K(1, β; 1) versus β and zoom of the figure. Both exact values and asymptotic bounds are shown

where sgn(D) denotes the sign of D. One can also write

u = K(K , β; D) = 2D

K −1 + √
(K −1)2 + 4β|D| , (11)

from which it readily follows that K(K , β; D) is continuous in all arguments and param-
eters. Also, K is increasing in D but decreasing in β. See Fig. 2 for typical behavior of
u = K(K , β; D). The calculation

∂K
∂D

= sgn(D)√
(K −1)2 + 4|D|β (12)

with ∂K
∂D |β=0 = K for Darcy flow, is useful in Jacobian (see Sects. 3 and 7.1).

2.1.2 Bounds for u

An expression equivalent to (11) is

u = K(K , β; D) = sgn(D)

(
−c +

√
c2 + |D|

β

)
, c = K −1

2β
, β �= 0. (13)

Clearly, since −c +
√

c2 + |D|
β

≤ K D, we have K(D) ≤ K D; i.e., the non-Darcy veloci-

ties do not exceed the Darcy velocities for the same pressure gradients. We recall that K−1

is sometimes called a resistance parameter which grows with increasing β or |u| (Dullien
1979).

On the other hand, from 1√
2
(r + q) ≤ √

r2 + q2 ≤ r + q for any r, q ≥ 0, we see that,
for β �= 0

K(K , β; D) ≤
√

|D|
β

(14)

K(K , β; D) ≥
√

|D|
2β

− K −1

2β

(
1 − 1√

2

)
(15)
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and that for large β ≥ βcrit = 2
|D|K 2 , one actually has

K(K , β; D) ≥
√

|D|
2β
, β ≥ βcrit. (16)

For β ≥ βcrit , since K(K , β; D) decreases with β, we additionally have

K(K , β; D) ≤ K(K , βcrit; D) = DK

2
, β ≥ βcrit. (17)

These bounds are useful in numerical calculations since they help to select a good initial
guess for a local nonlinear solver.

More importantly, we obtain the asymptotics for large β which follows from (14) and
(16),

u = K(K , β; D) ≈ θ

√
|D|
β
, θ ≈ 1. (18)

This approximation is quite revealing; it demonstrates that for really large inertia effects,
the flux u is essentially independent of K . While u computed for realistic values of K , β, D
found in porous media may not necessarily be in this asymptotic regime, (18) shows that the
qualitative nature of u may be only mildly affected by heterogeneity of K , if large inertia
effects are present. This is illustrated by numerical experiments shown in Fig. 3 where we
see that with increasing β one obtains more smoothing of d p

dx .
For a given boundary condition, one can solve for p by integrating (10); we skip the

calculation. This is not in general possible for the nonscalar case.
It is convenient to define the transmissibility (Peaceman 1977)

T (K , β, γ, u) = 1

K −1 + β
√
γ 2 + u2

, (19)

and rewrite (5) in an implicit form as

u = D

K −1 + β|u| = T (K , β, 0, u)D. (20)

Fig. 3 Effects of inertia on
heterogeneity. Shown is pressure
solution for cross flow in a
layered medium where K varies
from 1 (left and right) to 10−4 in
the middle part, for various
values of β. Notice a sharp jump
of pressure gradient for the case
β = 0; the jump becomes smaller
with larger β

123



408 C. R. Garibotti, M. Peszyńska

2.1.3 Non-Scalar Case

Now we set Dm = − ∂p
∂xm

, and use γ 2 = ∑
n �=m(un)

2 which combines all components of
velocity other than m, and we rewrite (7)(

K −1
m + βm

√
γ 2 + (um)2

)
um = Dm . (21)

We then have

um = T

⎛
⎝Km, βm,

√∑
n �=2

u2
n, um

⎞
⎠ Dm .

Note that T (Km, βm,
√∑

n �=2 u2
n, um) = T (Km, βm, 0, |u|); this simplifies the forthcoming

numerical calculations discussed in Sect. 7.1.
Given (un)n �=m , i.e., γ , one can find um explicitly from (21) and/or derive estimates sim-

ilar to those for the scalar case. In general of course, γ itself is unknown. However, given
Dm,m = 1, . . . d , one can solve (21) by fixed point or Newtonian iteration. Difficulties
arise in numerical calculations because the discrete form of (21) involves a large stencil (see
Sects. 3 and 7.2).

3 Numerical Discretization

Here, we formulate a discrete version of (3) and (1) as a cell-centered finite difference method
(CCFD) in several variants depending on discretization of |u| in (7). These variants and dis-
cretization are motivated using mixed finite elements in Sect. 7.2; this development has a
theoretical value in that the convergence results proved in Park (2005) for mixed FE methods
apply to our discretization. Additionally, we obtain insight into why a particular discrete
version of (7) is justified. From the point of view of upscaling, we show later that all the
variants behave similarly; in other words, the success of upscaling is not tied to a particular
variant of discretization.

Let the region� be decomposed into rectangular elements or cells�i j on a Cartesian grid
with natural notation of xi j = (x1,i j , x2,i j ) denoting cell centers. The elements �i j are of
size xi × y j . The edge Ei+1/2, j between �i j and �i+1, j has a center at (x1,i+1/2, j , y j ),
and so on. The distances between cell centers are denoted by xi+1/2, j , etc. The parameter
h is the maximum of either xi ,y j . When coarse grid with parameter H is used, we index
the cells using I, J .

The discrete pressures ph ≡ (pi j )i, j=1 are associated with cell centers. The normal com-
ponents of velocities are associated with midpoints of cell edges; on the cell�i j the velocity
in direction x1 is defined by its values u1,i−1/2, j on the left and u1,i+1/2, j on the right edges.
The discrete velocities uh can be then considered to be a tensor product of piecewise linear
polynomials in x1 direction and piecewise constant polynomials in the x1 direction and oppo-
site in the x2 direction. The notation is standard (see Peaceman 1977; Russell and Wheeler
1983; Brezzi and Fortin 1991 for details).

Recall (Peaceman 1977; Russell and Wheeler 1983) the standard discrete counterpart
of (3)

∇h · uh = 0, (22)
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and of (2), which we develop now. In the direction x1 we have

u1,i+1/2, j = K1,i+1/2, j
pi, j − pi+1, j

xi+1/2, j
= T1,i+1/2, j

(
pi, j − pi+1, j

)
, (23)

where transmissibility T1,i+1/2, j = K1,i+1/2, j
xi+1/2, j

is defined, and harmonic averaging of perma-
bilities is used (Peaceman 1977):

K −1
1,i+1/2, j = 1

2  xi+1/2, j

(
K −1

1,i j  xi + K −1
1,i+1, j  xi+1

)
. (24)

3.1 Discrete Non-Darcy Velocities

With notation as above, we can now state the following discrete counterpart of (1) or (7),
with mixed finite element derivation deferred to Sect. 7.2:(

T −1
1,i+1, j + 1

2

(
β1,i j  xi |uh |+i, j + β1,i+1, j  xi+1|uh |−i+1, j

))
u1,i+1/2, j

= pi, j − pi+1, j . (25)

An analogous definition can be written immediately in direction x2.
The crucial point is to define the terms |uh |+i, j and |uh |−i+1, j . These have the meaning of

magnitude of velocity on the cells i, j and i + 1, j , respectively, each relative to the edge
Ei+1/2, j on which the velocity component u1,i+1/2, j is being defined. They can be defined
in several ways, which we denote below as variants V = 0, 1, 2, 3.

Consider |uh |+i, j , with |uh |−i, j defined analogously. The simplest way to define it (V = 0)
is to use the magnitude of normal component of uh on the edge Ei+1/2, j , i.e., |u1,i+1/2, j |, as
was done in Ewing et al. (1999a).

Another way, V = 2, is to use the magnitude of uh itself on the edge Ei+1/2, j which is
defined using

(ūh)
+
i j =

(
u1,i+1/2, j ,

u2,i, j+1/2 + u2,i, j−1/2

2

)

(ūh)
−
i j =

(
u1,i+1/2, j ,

u2,i+1, j+1/2 + u2,i+1, j−1/2

2

)
,

or, with the quantity (V = 1),

(ūh)i j = (ūh)
+
i j + (ūh)

−
i j

2
.

Finally, the most general way, called V = 3, is to use the magnitude(s) of (interpolated)
value(s) of

(uh)i j =
(

u1,i+1/2, j + u1,i−1/2, j

2
,

u2,i, j+1/2 + u2,i, j−1/2

2

)
,

(uh)i+1, j =
(

u1,i+1/2, j + u1,i+3/2, j

2
,

u2,i+1, j+1/2 + u2,i+1, j−1/2

2

)
,

in the middle of cells �i j and �i+1, j , respectively.
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Summarizing, we define

|uh |+i, j =

⎧⎪⎪⎨
⎪⎪⎩

|u1,i+1/2, j |, variant = 0,
|(ūh)i j |, variant = 1,
|(ūh)

+
i j |, variant = 2,

|(uh)i j |, variant = 3.

(26)

These four variants lead to somewhat different numerical solutions to (1)–(3).
Variant V = 0 is a direct discretization of (8); it can also be seen as a simplification/approx-

imation of variants V = 1, 2. It uses the same five-point stencil as used for Darcy’s law with
diagonal K and allows for analytical componentwise resolution of local nonlinearities.

Variants V = 1, 2, 3 are associated each with a different method of numerical integration
in mixed FE applied to (7) (see Sect. 7.2). The difference between V = 1 and V = 2 is
not larger than the one appearing in the use of numerical quadrature to derive (23) from (2)
using mixed FE. Both variants couple the velocity u1,i+1/2, j to four other velocity degrees of
freedom and are equivalent to each other up to higher order terms (see Sect. 7.2). With V = 1,
we have symmetry in that |uh |+i, j = |uh |−i+1, j , and one can get around the difficulty of an
enlarged stencil when resolving local nonlinearities, by iteration lagging those components
in |(ūh)i j | other than u1,i+1/2, j . Variant V = 2 is somewhat more complicated than V = 1,
because |uh |+i, j is not identical to |uh |−i, j .

Variant V = 3 is the most complex one, and, if applied in (25) alone, it couples velocity
u1,i+1/2, j and pressures pi, j , pi+1, j to six other velocity degrees of freedom appearing in
its definition and thereby to 6 additional pressure values. The stencil in the resulting dis-
crete system is increased from 5-point to 13-point in d = 2. In addition, resolution of local
nonlinearity is not very successful by iteration lagging and impossible directly. While we
performed numerical experiments with this variant, its complexity is not offering promise of
being a successful model.

In view of the above, only V = 0, 1 will be discussed further. In summary then, discreti-
zation of (7) or (8) takes the form(

T −1
1,i+1, j + B1,i+1/2, j |(uh)

V
i+1/2, j |

)
u1,i+1/2, j = pi, j − pi+1, j , (27)

where we define B1,i+1/2, j = 1
2

(
β1,i j  xi + β1,i+1, j  xi+1

) = xi+1/2β1,i+1/2, j , and
where |(uh)

V
i+1/2, j | is computed according to (26).

It is convenient to cast (27) in a form similar to (23) and (20). Define the transmissibilities
ϒV

1,i+1/2, j which, unlike T1,i+1/2, j , depend nonlinearly on the solution,

ϒV
1,i+1/2, j = T

(
T1,i+1/2, j , B1,i+1/2, j , 0, |(uh)

V
i+1/2, j |

)
, (28)

with a similar definition for ϒ2,i, j+1/2. Now (27) reads, for every i, j

u1,i+1/2, j = ϒV
1,i+1/2, j (pi, j − pi+1, j ), (29)

u2,i, j+1/2 = ϒV
2,i, j+1/2(pi, j − pi, j+1), (30)

and in a vector form we can write symbolically, for uh = (
(u1,i+1/2, j , u2,i, j+1/2)

)
i j ,

uh = TV (Kh, βh, |uh |,uh)∇h ph = TV
h ∇h ph . (31)

Note finally that if β ≡ 0 we have TV (Kh, 0, |uh |,uh) ≡ −Kh . Also, recall that if V = 0,
the implicit relationships (29) and (30) can be resolved explicitly.
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This formulation is used in the remainder of this article; see Sect. 7.2 for mixed FE der-
ivation and Sect. 7.1 for details of nonlinear solver. Also, see Sect. 5 for discussion of the
difference between variants V = 0, 1. To complete this section, we comment on boundary
conditions.

3.1.1 Boundary Conditions

In examples and upscaling procedures discussed in this article we consider one of the fol-
lowing types of boundary conditions, represented schematically in Fig. 4.

Let us be given 
D and 
N which denote the Dirichlet and Neumann no-flow parts of the
boundary ∂�, respectively. We impose

p|
D = pD (32)

K∇ p · ν|
N = 0. (33)

Examples of 
D, 
N for a rectangular domain � denoted B1, B2, B3 and used in examples
in Sect. 5 are shown in Fig. 4. Of course, other arrangements are possible.

In the numerical model, we apply Dirichlet boundary conditions using an algorithm shown
in Peszyńska et al. (2002a,b). The no-flow Neumann conditions are natural for CCFD and
are equivalent to setting transmissibilities on appropriate edges to 0 (Peaceman 1977).

For a rectangular domain�, instead of Dirichlet and Neumann conditions, one may choose
to apply periodic boundary conditions (BP). Here, we discern between opposite sides of the
rectangular domain, say 
− and 
+ and impose

p|
+ = p|
− + jump (34)

K∇ p · ν|
+ = −K∇ p · ν|
− . (35)

Here, the jump may be equal to 0, or not; usually, exactly one of the sides (left or right, top
or bottom) will have a nonzero jump.

Implementation of periodic boundary conditions of the type (BP) shown in Fig. 4 is done
by introducing an additional set of unknowns p∂�. These unknowns play a dual role: first,
they are used as the known values of “Dirichlet data.” Second, their values on opposite sides
of the domain are either matched or are subject to a prescribed jump. Finally, to close the sys-
tem, the fluxes on opposite sides are matched. The system as such is underdetermined and one
has to add an additional condition which fixes the average of ph over �. In implementation,
one can eliminate the additional unknowns p∂�.

D

N

D

N

D

D

N N

D

N

D

N

N

N

P

P

P P+jump

Fig. 4 Boundary conditions used in examples and upscaling procedures
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4 Upscaling

This section provides answers to the core issues addressed in this article. Let us be given
a scale h, identified as diameter of �i j , on which the coefficients Kh, βh are given, but at
which it is practically impossible to solve the system (53). Assume there is a coarse scale
H � h at which such computations are possible. The main issue is to find the equations
which describe the problem at scale H and to identify their coefficients. Our premise is that
this is possible and that an upscaled version of (53)

∇H · TV
H ∇H pH = 0 (36)

can be identified.
Alternatively, one can use a numerical method at scale H which incorporates the varia-

tion of Kh in its definition; this is done in subgrid upscaling or multiscale and variational
approaches to finite element methods (see Arbogast 2003; Efendiev et al. 2000; Weinan et al.
2007; Efendiev and Pankov 2004; Efendiev et al. 2006 and related work). Yet another alter-
native is to use mortar upscaling (Peszyńska et al. 2002b).

Our approach in this article in using (36) is traditional, and we aim to derive KH , βH from
Kh, βh . We briefly review what was done for Darcy flow and then proceed to non-Darcy
case.

4.1 Upscaling Kh and Notation

For Darcy flow, it is standard to consider the upscaled linear system at scale H to be of the same
form as the one at h, which is also linear. Various methods M of upscaling (K)h �→ (K)H

have been reviewed in Renarda and de Marsily (1997); these include arithmetic M = A or har-
monic M = H averaging and give (K)AH , (K)HH , respectively. The pressure-based methods
(Durlofsky 1991) which deliver (K)DH ,(K)PH and use Dirichlet and periodic boundary condi-
tions, respectively, perform better than M = A,H but are more computationally expensive.
They are related to homogenization methods pursued in mathematical analysis (Bensoussan
et al. 1978).

Here, we briefly recall the method proposed in Durlofsky (1991). Fix a grid cell �I J at
scale H . By upscaling Darcy flow coefficients, we want to ensure that (23) holds on the grid
H . Since (23) is linear, it is natural to ask that the fluxes on grid H which arise due to pressure
gradients imposed on that grid, agree on average with fluxes on grid h, when these arise from
the same global pressure gradients; this requirement preserves mass. With this approach,
one finds KH |�I J by inverse modeling as the appropriate coefficient of proportionality. The
caveat is that one has to solve a cell problem on�I J subject to some global pressure gradients
in order to compute that response. How these pressure gradients are imposed determines the
D and P methods.

Consider first the local cell problem with Dirichlet boundary conditions of type B1 (see
Fig. 4). We solve for p̃h, ũh

−∇h · (Kh∇h p̃h) = 0, y ∈ �I J (37)

p̃|
1,I−1/2,J = 0 (38)

p̃|
1,I+1/2,J = DI,J (39)

(Kh∇ p̃ · n)|
2,I,J+1/2∪
2,I,J−1/2 = 0. (40)
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Then, we compute the total flux ũ1,I+1/2,J = ∫

1,I,J+1/2

ũh · n, and we find K D
1,I+1/2,J by

fitting it into the counterpart of (23)

ũ1,I+1/2,J = K D
1,I,J

DI,J

xI,J
. (41)

Next, we solve an analogous cell problem with boundary conditions B2 to find K D
2,I,J . The

two values K D
1,I,J , K D

2,I,J form the diagonal upscaled tensor KD
I,J . Repeating cell calculations

on all cells I, J of the grid at scale H , we obtain the collection of diagonal conductivities

KH ≡
(

KD
I,J

)
I J

.

Instead of using Dirichlet boundary conditions B1, B2, one can solve (37)–(40) subject
to periodic boundary conditions (34) and (35) (see BP in Fig. 4). The jump is now DI J .
However, the coefficients (KH )

P
I J that one gets from inverse matching of fluxes across all

boundaries are, in general, not diagonal even if Kh is diagonal.
The global system −∇H · (KH ∇H pH ) = 0 solved for pH on grid H with (K)MH for

M = D,P, has reasonable accuracy of global flow patterns in the sense that they resemble
closely those for grid h. In general, M = P leads to better accuracy of global flow patterns
than M = D does, and both are more accurate than M = A,H. See further discussion of
metrics of upscaling accuracy in Sect. 5.

4.2 Upscaling Non-Darcy Flow with a Pressure-Based Method

For non-Darcy flow, the underlying problem at scale h is nonlinear and, therefore, it is not
straightforward to see whether the problem at scale H has the same structure as the one at
scale h, and even if so, how to obtain Kh �→ KH , and βh �→ βH .

The following idea comes to mind. Let us be given Kh, βh and some scale H � h. Let
M = D, hence, we focus for the moment on a pressure-based method using Dirichlet bound-
ary conditions. Consider �I J and compute solutions to the cell problem on �I J similar
to (37) first setting βh ≡ 0 (Darcy case). Next, we compute the solution with βh as was
given originally. In each cell �I,J , the former gives us KD

I J while the latter can be used to

find a nonlinear transmissibility ϒD,V
I J . Then, find the upscaled βD

I J by fitting the nonlinear
transmissibility, KD

I J , DI J , and the fluxes to the analogue of (20) (see details in Sect. 4.2.1).
This procedure appears quite straightforward. However, the transmissibilities in non-

Darcy flow depend nonlinearly on the fluxes; hence, βD
I J depends on the boundary conditions

DI J driving the flow. In other words, βH is not in general constant, but rather a function of
gradients of pressure. When used in the global model (36), βH will be chosen depending on
pH , or uH .

Therefore, the proposed procedure is only useful as a method of upscaling if (i) βH sat-
isfies the same qualitative properties that βh does and (ii) we are able to determine how it
changes quantitatively with the boundary conditions. In particular, (i) βH should be positive.
As concerns (ii), since Darcy’s law and its discrete counterparts are linear, the coefficient KD

I,J
does not depend on α = DI J . However, the fluxes do, and therefore, the transmissibilities
ϒ

D,V
I J and hence, βD

I J also are functions of α.
Beside qualitative guesses, we found it impossible to predict the character of the map

βH (α) analytically. It has to be computed numerically but is found to vary only mildly (see
Sect. 5.2). In general, only simple smooth relationships appear useful in practice so that it is
enough to determine βH (α) on a small set α ∈ A: the values for α ∈ IR can be found via
appropriate interpolation or approximation.
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4.2.1 Details of Upscaling βh �→ βH

Now, we supply details of the method. Fix I, J . Consider variant V = 0 or V = 1. Find KD
I J

by solving (37)–(40). Next, consider the following extension of (37)–(40) to non-Darcy flow

−∇h · (
TV

h ∇h p̂h
) = 0, y ∈ �I J (42)

p̂|
1,I−1/2,J = 0 (43)

p̂|
1,I+1/2,J = DI,J (44)

(T (∇h p̂h) · n)|
2,I,J+1/2∪
2,I,J−1/2 = 0. (45)

This cell problem is solved with the numerical method and Newtonian iteration described in
Sects. 3 and 7.1.

Once p̂h, ûh are known, compute the total flux û1,I+1/2,J = ∫

1,I,J+1/2

ûh · n, and find the

value ϒD
1,I,J from (20)

û1,I+1/2,J = ϒD
1,I,J

DI,J

xI,J
. (46)

Finally, compute βD
1,I J from (20)

βD
1,I J =

(
ϒD

1,I,J

)−1 − (K D
1,I J )

−1

|û1,I+1/2,J | . (47)

Analogous calculations are done for β2,I J .
Collecting ϒD

1,IJ , ϒ
D
2,IJ for all cells (I, J ) we have ϒD

H . By collecting βD
1,I J , β

D
2,I J com-

puted componentwise, we finally obtain βD
H .

Consider now M = P. It is straightforward to extend the above procedure to the case of
periodic boundary conditions for cell problems; we have done this computationally. How-
ever, the process results in nondiagonal KP

H , ϒ
P
H and in more than two components of βP

I J .
The resulting upscaled model for the full matrix βP

H lacks a theoretical foundation, and we
defer it to future investigation.

4.3 Other Methods of Upscaling βh

Consider now M = A,H and simple averaging procedures which yield K A
H , K H

H .
Consider some divergence-free velocity field ψh on �i j chosen ad hoc, i.e., without the

pressure-solve of (42)–(45). For example, considerψh arising as a gradient of linear pressure
field satisfying (43)–(44), that is, a uniform velocity field. Note that since ψh is constant,
trivially ∇h · ψh = 0. Another possibility is to use as ψh the Darcy velocities found in
(41). In each case, ψh depends linearly on DI J . Now, one can calculate a fixed quantity
ϒ(Kh, βh, ψh) which is “like” a transmissibility but which is inconsistent with (20). Putting
aside the concern of inconsistency, a simple average ϒM

I J of ϒ(Kh, βh, ψh) for M = A,H
can be computed. Following a calculation similar to (47) one obtains βM

H for M = A,H.
This method of upscaling is very inexpensive computationally and may offer advantages in
some cases especially in layered media. For lack of space we do not present results.
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5 Results

Here, we illustrate results of the upscaling methodology proposed in Sect. 4 and we verify
its accuracy; this follows in Sects. 5.2 and 5.3. For the sake of exposition, we provide first
an illustration of numerical methods and effects of heterogeneity for non-Darcy flow (Sect.
5.1).

5.1 Non-Darcy Flow Results

Consider a 2D region of flow with Kh as shown in Fig. 5 with permeability field (a) layered
isotropic, (b) periodic (similar to a fracture system), and (c) small heterogeneous. For each
Kh , let βh be given by (6) with B = 0, 1, and β0 as indicated in each case. Now, solve the
problem (53) subject to boundary conditions of type B1, B2, or B3, as shown in Fig. 4, with
unit Dirichlet data. In the numerical model, we consider velocity variants V = 0, 1 as in (26).
Below follows a discussion of most interesting and at the same time simple enough cases.

As concerns the layered case (a), the results shown earlier in Sect. 2.1 in Fig. 2c are rep-
resentative of cross-sections when Kh is layered and boundary conditions B1 are used. With
large β0, the profiles of pressure become more typical of those for a homogeneous medium.
If boundary conditions B2 are used, the flow field is uniform; we skip the presentation of
these results.

Results for the periodic field (b) are shown in Fig. 6. Here, we use boundary conditions B3
in order to make the flow patterns interesting enough. The same effect of smoothing effects
of larger β0 on pressure profiles is observed (Fig. 7).

Next, we show the effects of the choice of B and of V; we focus on the heterogeneous case
(c) and use β0 = 100. See Fig. 8, where pressure profiles for different choices of B,V are
shown. It is evident that the solutions for different variants V = 0, 1 do not differ much; this is
also true for other values of β0 (not shown). However, as expected, the solutions for different
B = 0, 1 differ substantially. This suggests that care must be taken in real simulations to
determine an appropriate model (6) of β.
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Fig. 5 Field Kh for three cases. (a) Layered. (b) Periodic (jump of a factor of 10). (c) Heterogeneous
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Fig. 6 Heterogeneity effects for non-Darcy flow, boundary condition B3, permeability field periodic, and
B = 0,V = 0. Far left: reference field Kh . Left to right: pressure profiles ph for β0 = 0 (Darcy), β0 =
1, 102, 103, respectively
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Fig. 7 Heterogeneity effects for non-Darcy flow, boundary condition B3, permeability field heterogeneous,
and B = 0,V = 0. Far left: reference field Kh . Left to right: pressure profiles ph for β0 = 0 (Darcy),
β0 = 1, 102, 103, respectively
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Fig. 8 Dependence of numerical solution on the choice of B,V . In all examples we use β = 100

5.2 Results of Upscaling

Now, we come to the central issue of this article on upscaling Kh, βh . Given Kh, βh we want
to (i) compute KH , βH , (ii) use these to solve for pH , and (iii) verify the accuracy of our
upscaling procedure. Throughout this section we use H = Nh with N > 1.

We restrict presentation to the method M = D using pressure-based solver with Dirichlet
boundary conditions; as mentioned above, M = P leads to still open theoretical questions on
the form of non-Darcy correction. Methods M = A,H are very simple but in general less
accurate than M = D,P due to inconsistency and will not be discussed.

For logical verification of the upscaling methodology, we first set up a trivial problem
with Kh ≡ const = K0, with some given isotropic or anisotropic K0. Clearly, we obtain
KH = K0 for any H . One can also expect that for any β0 and βh = gB(β0,Kh), our upscal-
ing procedure should deliver βH = gB(β0,KH ). This expectation is readily confirmed by
numerical results for all cases B = 0, 1, V = 0, 1; detailed presentation is omitted.

Next, we consider nontrivial Kh . We compute KH (upscaled Darcy permeability) for
Kh, H as indicated in Fig. 9. We then let βh = gB(β0,Kh), consider B = 0, 1 and V = 0, 1
and use the upscaling procedure defined in Sect. 4 with Dirichlet boundary data pD = α

which is allowed to vary and thus determine βH (α). The collection of values α in practice
need not be large.
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Fig. 9 Field Kh and grid H indicated by thick grid lines for three cases: (a) layered, (b) periodic, (c) large
heterogeneous with 3 × 3 coarse grid, (d) large heterogeneous with 6 × 6 coarse grid
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Of interest is variability of βH on Dirichlet boundary data α, and its anisotropy, particu-
larly when βh itself is isotropic. In general, we find nonisotropic βH even if βh is isotropic,
and that βH �= g(β0,KH ).

In the case of constant βh we find

B = 0 : βh = g0(β0, Kh) ≡ β0

βH (α) = (
βH,1(α), βH,2(α)

) = (R1(α),R2(α)) β0, (48)

where both ratios Rx ,Ry , for a fixed β0, are mildly varying functions of α.
In the correlated case we find, abusing notation as concerns diagonal components of Kh

and KH ,0

B = 1 : βh = g1(β0,Kh) = β0√
Kh
,

βH (α) = (
βH,1(α), βH,2(α)

) = (R1(α),R2(α)) β0√
K H

. (49)

Remark 1 In summary, we find that

βH (α) = gB(β0,KH ) (R1(α),R2(α)), (50)

i.e., βH is constant or correlated to KH , up to a nonisotropic multiplicative correction depen-
dent on α.

The usefulness of our upscaling procedure depends on the range and variability of Ri (α),
i = 1, . . . d . In particular, in order for non-Darcy flow to retain its physical character reflected
by monotonicity of the map K(K , β; D), we expect that each of the ratios must be positive;
this is confirmed in our experiments. Results depend on Kh,B, and less significantly on V (see
below). Finally, the variability of Ri (α), i = 1, . . . d turns out to be small, and so our upscal-
ing method in practice does not require tremendous computational effort: Ri (α), i = 1, . . . d
needs to be computed only for a few values of α.

5.2.1 Upscaled Map βH for Layered Case

First, we discuss the results of the layered case, as they are quite illuminating (see Fig. 10).
If B = 0 and βh ≡ β0, it is at a first glance reasonable to expect that the upscaled βH =
gB(KH ) ≡ β0. However, this is in fact only true for the flow across the layers, where we see
that R1(α) ≡ 1. We hypothesize that this is due to harmonic weighting of transmissibilities
which is in perfect agreement with arithmetic averaging of βh and a constant unidirectional
flux. On the other hand, the R2(α) is not constant and it is decreasing with α. In summary,
in this case we obtain

βH (α) = (1,R2(α))β0. (51)

However, we find that while βH does indeed vary with both α and β0, the ratios Ri remain
mildly varying as functions of the product of β0α. Qualitatively, this is not surprising given
the analytical solution derived in Sect. 2.1 (see also Fig. 2). From computational point of
view, this property makes our upscaling method effective because results obtained for a fixed
β0 and several values of α can be reused for another set of values of β0 and α.
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5.2.2 Upscaled Map βH for Heterogeneous Case

Observations similar to the layered case can be made for the periodic and heterogeneous cases,
where Kh is as in Fig. 9b and c. Of these two, the heterogeneous case is more interesting;
see results shown in Fig. 11. (We show only (βH )11(α).)

The main observation with respect to the layered case is that both Ri , i = 1, 2 vary with
α and β0. This obviously results from nonuniform flow in both xi , i = 1, . . . d directions.

5.3 Comparison of Fine and Coarse Grid Solutions

Now, we discuss the accuracy of upscaling non-Darcy flow by comparing results on coarse
grid H to those on the original fine grid h.

In various articles devoted to upscaling, authors use different metrics to compare fine grid
and coarse grid solutions; some compare ph and pH pointwise, some only show profiles
of pressures and/or discuss agreement of velocity and streamline patterns between the two
grids. In other articles, when wells are included, the well rates are compared. On the other
hand, it was pointed out that minimizing a particular norm of ph − pH may be associated
with a particular upscaling method (see Holden and Nielsen 2000; Zijl and Trykozko 2002).
In general, conclusions of comparisons depend on the metric that was chosen and on the
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global boundary conditions and/or flow patterns. Finally, one should consider both accuracy
and efficiency of an upscaling method.

In this article, we compare boundary fluxes across outflow parts of ∂�

f =
∫


outflow

K∇ p · ν,

and we also consider the following.

Remark 2 In any comparison, one has to keep in mind the fact that, due to numerical error
arising from discretization on grid h or H , the difference between solutions on grid h and H ,
regardless of the metrics, will likely be nonzero even for homogeneous uniform Kh . (This
does not apply directly to mortar or subgrid upscaling; see Peszyńska et al. 2002b; Peszyńska
2005; Arbogast 2003.) To alleviate the effect of discretization error on upscaling error, one
can compare the solution ph on grid h obtained using Kh, βh , to that pH �→h computed on
the same grid h but with data KH �→h, βH �→h . Here by KH �→h, βH �→h , we mean KH , βH

which were downscaled to the original grid h, for example by simple injection. We found
this method of comparison very useful, but it requires computation of a solution pH �→h on
grid h which is expensive and does not relate directly to pH . We emphasize that this idea
is suggested only for theoretical purposes to compare various upscaling methods M ; in a
practical upscaling simulation it would not be employed. See Table 1 for comparison of
four upscaling methods M = A, D, P,H for Darcy case for all three types of boundary
conditions B1, B2, and B3, for heterogeneous Kh .

Now, we discuss results for non-Darcy upscaling; we test the accuracy of nonlinear upscal-
ing relative to the accuracy of upscaling the linear Darcy case. We consider various patterns
of Kh and H , shown in Fig. 9. As before, βh is given by (6). We consider three cases of global

Table 1 Comparison of M = A, D, P,H for Darcy flow for heterogeneous Kh

BC M fh fH fH �→h | fh− fH
fh

| | fh− fH �→h
fh

|

B1 A 32.57484362 55.03545873 55.09824639 0.68950799 0.69143548

D 32.57484362 32.35069719 32.38584459 0.00688097 0.00580199

P 32.57484362 32.41986422 32.45464733 0.00475764 0.00368985

H 32.57484362 26.14566346 26.17359339 0.19736642 0.19650901

B2 A 51.38471961 58.92646422 58.97261428 0.14677018 0.14766831

D 51.38471961 51.34424224 51.38080698 0.00078773 0.00007614

P 51.38471961 50.55448835 50.58589065 0.01615716 0.01554604

H 51.38471961 35.73207110 35.77021427 0.30461679 0.30387449

B3 A 17.85362214 20.76764487 26.32567940 0.16321745 0.47452876

D 17.85362214 13.98183753 17.75764287 0.21686269 0.00537590

P 17.85362214 13.85705590 17.63303101 0.22385184 0.01235554

H 17.85362214 10.29882863 12.91371346 0.42315186 0.27668944

Note that flux fH for M = A / M = H seems to always overpredict/underpredict fh ; this is consistent with
Hashin–Shtrikman bounds (Jikov et al. 1994; Renarda and de Marsily 1997). Also, M = D, P give signifi-
cantly more accurate results than M = A,H. Note that M = P which in general more accurate than M = D
here may be less so due to the off-diagonal terms of KP

H which are dropped. Finally, for more complicated flow
pattern associated with B3, the use of downscaled solution shows that the coefficients KH and the numerical
error are jointly contributing to (in)accuracy of upscaled solution
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Table 2 Layered case upscaled to 2 × 2

BC D β0 fh fH | fh− fH
fh

| f
g
H | fh− f

g
H

fh
|

B1 1 0 0.15625 0.156250 0 0.156250 0

B2 1 0 0.46 0.460000 1.2e-016 0.460000 1.2e-016

B1 1 0.01 0.156212 0.156212 1.4e-013 0.156212 1.4e-013

1 1 0.152611 0.152611 2.9e-015 0.152611 2.9e-015

1 100 0.072995 0.072995 1.9e-016 0.072995 1.9e-016

100 1 7.29952 7.299524 2.4e-016 7.299524 2.4e-016

0.01 1 0.001562 0.001562 1.4e-013 0.001562 1.4e-013

Column BC describes the boundary condition used

boundary conditions B1, B2, and B3 as in Fig. 4 so that the flow is from right to left, top to
bottom, or crossflow from right to left, respectively. We use a prescribed global gradient of
pressure D and fix B,V .

We first compute KH and the map βH for each case, as shown in Sect. 5.2. To verify
that it is important to calculate the upscaled map βH via (48) and (49) rather than to use the
original value or correlation, we also set

β
g
H (α) = g(β0; KH ). (52)

Then, we solve for ph on grid h and for pH and pg
H on grid H and compute fluxes.

Remark 3 To compute pH , one needs to use the upscaled map βH (α), i.e., we have to select
the particular α that is needed. The α can be found by iteration lagging in global Newton
iteration described in Sect. 7.1. Since βH (α) does not have large derivatives, such estimation
does not introduce much additional error.

Results corresponding to permeability cases from Fig. 9 are summarized in Tables 2, 3, and
4, respectively. Additionally, pressure profiles are shown for selected examples. Discussion
then follows. For the sake of brevity as before, we restrict ourselves to only most interesting
cases and results. Recall also that non-Darcy case results are only considered for M = D
for reasons explained above. We do not show downscaled results for lack of space; they are
qualitatively consistent with nondownscaled results.

5.3.1 Upscaling of Layered Case

In the layered case and B1 and B2, the agreement of fh and fH is perfect. This is expected:
for B1, the upscaled value KH agrees with harmonic average, and for B2 with arithmetic
average of Kh , and this is reflected in the values of fh, fH for Darcy case β = 0. For β �= 0,
we have that βH is constant and so pH = pg

H and we see also very good agreement of fh

with both fH , f g
H . Other results for B1 and B2 reproduce the same behavior.

5.3.2 Upscaling Periodic Case

In the periodic case, if βH is used, the upscaled fluxes fH are as accurate as in the layered
case for all cases with B = 0, 1 and V = 0, 1. However, the fluxes f g

H are not in very good
agreement with fh (see Table 3).
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Table 3 Results of non-Darcy upscaling for periodic case upscaled to 3 × 3 grid

D β0 fh fH | fh− fH
fh

| f
g
H | fh− f

g
H

fh
|

1 0 0.451148 0.451148 8.06e-007 0.451148 8.06e-007

V = 0,B = 0

0.01 0.44762 0.447621 7.77e-007 0.450233 0.00583

0.1 0.420943 0.420943 5.70e-007 0.442321 0.050787

1 0.312592 0.312592 5.31e-008 0.384463 0.22992

10 0.174966 0.174966 5.43e-007 0.224258 0.28172

100 0.079319 0.079319 8.33e-007 0.089529 0.12872

1 0 0.451148 0.451148 8.06e-007 0.451148 8.1e-07

0.01 1 0.004473 0.004476 1.46e-005 0.004502 0.00594

0.1 1 0.042045 0.042050 0.000116 0.044232 0.05200

1 1 0.311185 0.311187 6.23e-006 0.384463 0.23547

10 1 1.74129 1.741323 2.04e-005 2.242580 0.28788

100 1 7.92272 7.922750 4.41e-006 8.952939 0.13003

V = 0,B = 1

1 0 0.451148 0.451148 8.06e-007 0.451148 8.06e-007

1 0.01 0.447594 0.447595 7.77e-007 0.449789 0.00490

1 1 0.310331 0.310331 6.72e-008 0.362759 0.16894

1 100 0.0671734 0.067173 9.04e-007 0.074849 0.11426

V = 1,B = 0

1 0 0.451148 0.451148 8.06e-007 0.451148 8.06e-07

0.01 0.447573 0.447561 2.55e-005 0.450233 0.00594

0.1 0.420478 0.420481 7.89e-006 0.442321 0.05194

1 0.311185 0.311187 6.24e-006 0.384463 0.23547

10 0.174126 0.174132 3.35e-005 0.224257 0.28790

100 0.0792157 0.079227 0.000149 0.089529 0.13019

Here, we show results for B1 only, since the case is symmetric

5.3.3 Upscaling Heterogeneous Case

We consider isotropic and anisotropic variants. In the latter case, (K2)i j = 5(K1)i j . Results
are, respectively, in Tables 4, and 5. It can be seen from Table 4 that the use of βH gives
significantly better results than the use of βg

H . In particular, when comparing the results for
β = 0 to those for β �= 0, we see that the fluxes fH are, at least for B1 and B2, quite close to
fh . In the nonisotropic case, the results of non-Darcy upscaling appear in better agreement
than those with Darcy case (Figs. 12, 13, 14)

5.3.4 Correlation between βH and KH

Our last result answers a natural question, and let B = 0 and β0 = 1. Let us be given a fine
grid heterogeneous Kh such as in Fig. 9c. After KH and βH (α) are computed, the questions
is: for a fixed α, is there any correlation between βH (α) and KH ?
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Table 4 Results for heterogeneous, isotropic case

BC D β0 fh fH | fh− fH
fh

| f
g
H | fh− f

g
H

fh
|

B1 1 0 32.5748 32.350697 0.0068809674 32.350697 0.00688

B2 1 0 51.3847 51.344242 0.00078773182 51.344242 0.00078773182

B3 1 0 17.8536 13.981838 0.21686269 13.981838 0.21686269

B = 0 upscaling to 3 × 3

B1 1 0.01 8.30372 8.292560 0.0013440962 8.535338 0.02789

1 1 0.98079 0.980768 2.26e-005 0.984167 0.0034434907

1 100 0.0998039 0.099805 9.14e-006 0.099840 0.00036680035

B1 0.01 1 0.0830359 0.082925 0.0013346016 0.085353 0.027909566

1 1 0.98079 0.980768 2.26e-005 0.984167 0.0034434907

100 1 9.98054 9.980541 8.34e-009 9.984043 0.0003509255

B = 1 upscaling to 3 × 3

B1 1 0.01 16.4825 16.581159 0.0059877337 16.736875 0.015435089

1 10 0.771172 0.788014 0.021839215 0.758147 0.016889485

1 1 2.36765 2.416472 0.020619331 2.335706 0.013492875

1 100 0.246165 0.251634 0.022216664 0.241736 0.017991781

10 1 7.71176 7.880148 0.0218355 7.581472 0.016894391

B2 1 0.01 8.46364 8.392461 0.0084098349 8.980445 0.061061964

1 1 0.981007 0.980862 0.00014691914 0.989225 0.0083772249

1 100 0.0998052 0.099805 4.8381498e-006 0.099892 0.00086514693

B = 0 upscaling to 3 × 3

B3 1 1 0.537621 0.443146 0.17572764 0.445521 0.17131009

1 0.01 4.49917 3.685097 0.18093908 3.846547 0.14505487

1 100 0.0548129 0.045192 0.17552435 0.045217 0.17507379

B = 1 upscaling to 3 × 3

B3 1 0.01 8.90008 7.152788 0.19632361 7.416759 0.16666418

1 1 1.28143 1.047498 0.18255851 1.043956 0.18532221

1 100 0.133437 0.109215 0.18152499 0.108140 0.18958172

B = 0 upscaling to 6 × 6

B1 1 0.01 8.30372 8.296412 0.00088023584 8.525850 0.0267505

1 1 0.98079 0.980768 2.1964034e-005 0.984003 0.0032759738

1 100 0.0998039 0.099804 2.4940728e-006 0.099838 0.00033819023

B2 1 0.01 8.46364 8.391858 0.0084810113 8.933469 0.055511652

1 1 0.981007 0.980852 0.00015715651 0.988642 0.0077834603

1 100 0.0998052 0.099805 1.6263878e-006 0.099885 0.00080476623

Upscaling to 3 × 3 and 6 × 6; only interesting cases shown. Throughout V = 0

The answer is illustrated in Fig. 15, and it appears to suggest a mild correlation βH ≈
c(KH )

s where s < 0 and |s| is small, which is qualitatively independent of β0 or α.
This may indicate why several authors report on different correlations between measured

K and β; our calculations show that the computational correlations appear to depend on the
scale at which they are measured.
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Table 5 Heterogeneous case 30 × 30 with anisotropy ratio 5 upscaled to 3 × 3

BC D β0 fh fH | fh− fH
fh

| f
g
H | fh− f

g
H

fh
|

B1 1 0 34.8733 33.689881 0.033933817 33.689881 0.033933817

B2 1 0 243.981 246.780723 0.011473481 246.780723 0.011473481

B3 1 0 24.5257 18.026847 0.26498012 18.026847 0.26498012

B1 1 0.01 8.32665 8.305207 0.0025747009 8.586365 0.031191334

1 1 0.980837 0.980788 4.967377e-005 0.984753 0.0039928307

1 100 0.0998053 0.099805 3.2948047e-007 0.099846 0.00041092264

B2 1 0.01 9.63034 9.625004 0.00055404447 9.776467 0.015173625

1 1 0.996125 0.996118 6.3406493e-06 0.997739 0.0016202148

1 100 0.0999578 0.099934 0.00023912392 0.099977 0.00019552109

B3 1 0.01 4.71649 3.821925 0.18966706 3.988913 0.15426174

1 1 0.540639 0.444926 0.1770378 0.447171 0.17288422

1 100 0.0548442 0.045206 0.1757355 0.045233 0.17524023

Throughout B = 0,V = 0
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Fig. 12 Data for upscaling heterogeneous case to 3 × 3 grid. First row: original Kh (isotropic) and upscaled
permeabilities KH (nonisotropic). Second row: upscaled β1,H (1), β2,H (1) for β0 = 1e2 and B = 0 (left)
and B = 1 (right)
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Fig. 13 Upscaling heterogeneous case to 3 × 3 grid with B3 boundary conditions: pressure contours for
β0 = 100, B = 0. Far left: Kh . Left: fine grid solution ph , middle: pH . Right: p

g
H
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Fig. 14 Upscaling heterogeneous case to 6 × 6 grid with B3 boundary conditions: pressure contours for
β0 = 0 (top), and β0 = 1. Throughout B = 0. Far left: Kh and H . Left: fine grid solution ph , middle: pH .
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Fig. 15 Scatter-plot of βH (α)
versus KH for α = 1 for
heterogeneous case
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6 Conclusions

In this article, we have addressed the issue of upscaling non-Darcy flow driven by boundary
conditions, where a simple quadratic model of velocity parametrized with a positive coeffi-
cient β and conductivity K extends the linear Darcy case. Given Kh, βh at fine scale h, the
approach is to determine KH , βH . Our method extends the one for Darcy case (Durlofsky
1991). The resulting upscaled coefficient βH is a mildly varying map which supplies an
anisotropic correction to the original coefficient from fine scale. We presented the numerical
method, the upscaling procedure, and numerical results which demonstrate the accuracy of
the method. Some simple variants of the procedure which may be less computationally cum-
bersome but are also less accurate have been also proposed. Values of βH appear correlated
to some function(s) of KH ; this appears independent of the correlation at fine scale.

There remain open questions as concern an appropriate anisotropic model of non-Darcy
correction, other non-Darcy models, fracture systems, as well as upscaling around wells.
These are topics of future work.
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7 Appendix

7.1 Nonlinear Solver

Here, we discuss the solution of the nonlinear discrete system that arises from (22), some
imposed boundary conditions, and the implicit relation (31). In summary, we solve for ph

the system

∇h · TV
h ∇ ph = 0. (53)

This system of equations is nonlinear, and if V = 1, it additionally requires a local internal
iteration to resolve the local implicit relationships (29) and (30). The latter is not required
for V = 0.

Consider first V = 0. One can compute explicitly uh = T0(ph) pointwise from (31), if
only ph is known. Since ph is, of course, unknown, we have to solve (53) by iteration. As
initial guess p(0)h one can use the Darcy pressures which can be found by solving a linear
counterpart of (53) setting β = 0. Or, for large β, additionally one may try the method of
continuity in which one starts with β = 0 and then iterates, gradually increasing β to the
desired magnitude, thereby obtaining a better initial guess.

It appears very natural to solve (53) using successive substitutions iterating on (31).
Unfortunately, for small h and large heterogeneities, this simple iteration may have trouble
converging and/or is very slow. The only reasonable alternative is to use Newton’s method.
We set it up as follows.

Given an initial guess p(0)h , iterate for n = 0, 1, . . . until convergence

(∗) compute u(n)h = TV
(

Kh, βh, |u(n)h |,u(n)h

)
∇h p(n)h

compute residual R(n) = ∇h · u(n)h

compute Jacobian J(n) = ∂

∂ph
R(n)

advance p(n+1)
h = p(n)h −

(
J(n)

)−1
R(n)

In this algorithm, the step (∗) can be executed pointwise analytically, if V = 0. The resid-
ual calculations of R(n) are quite simple as we only have to calculate the current ∇h · u(n)h .
Jacobian calculations of J(n) are done with the help of (12). Overall however, the method
converges generally quite fast, even for large β.

Consider now V = 1. Now the step (∗) cannot be executed exactly and, in order to resolve
(21), we compute an iteration-lagged approximation ũ(n)h to u(n)h via

ũ(n)h = TV
(

Kh, βh, |u(n−1)
h |, ũ(n)h

)
∇h p(n)h .
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This introduces a mild inconsistency in the residual and Jacobian calculations. However, the
Newton iteration converges at least as fast as the one for V = 0. If the iteration is run under
strict convergence tolerance criteria, then one can assume that ũ(n)h ≈ u(n)h . Note that due to
a different formulation ph,uh obtained with V = 0, 1 are (somewhat) different (see results
shown in Sect. 5).

Our experience with performance of the Newton solver for variants V = 0, 1, models
B = 0, 1 of βh , and values of Kh can be summarized as follows. The solver needs more
iterations in the case of strong anisotropy especially if β is correlated with K. Next, one
should formulate the stopping criteria very carefully: in terms of simple mass-balanced resid-
ual norms, the iteration appears not to be making much progress, while pressure and velocity
values have not yet converged. As concerns velocity variants, variant V = 0 requires more
iterations to converge than V = 1, especially for strong anisotropy ratio and large uncorrelated
heterogeneities; this is likely caused by V = 1 being capable of carrying more information.
The opposite appears true for small correlation lengths, for example, for the periodic fissure
problem (see Sect. 5) and is probably due to the inconsistency of residuals discussed above
playing more substantial role in the absence of other difficulties.

7.2 Mixed FE Derivation of (25)

Here, we use mixed finite elements of type RT[0] on a rectangular grid to derive (25); we
focus on details leading to (26). Such derivation was done for Darcy’s flow in Russell and
Wheeler (1983). The non-Darcy flow equations were discretized using mixed FE in Douglas
et al. (1993) and Park (2005) but, to our knowledge, the use of quadrature and identification
with CCFD discussed here has not been carried out. The importance of this derivation is that
it extends the convergence results of mixed FE to CCFD formulation; on the other hand,
it uncouples the saddle point formulation of mixed FE (Russell and Wheeler 1983). For
notation see also Brezzi and Fortin (1991).

First consider the weak formulation of (1) and (4) complemented by no-flow boundary
conditions (33) with 
N ≡ ∂�. Let (W,V) = (L2(�), {v ∈ H(div;�) : v · ν|
N = 0}).
The weak solution (p,u) ∈ (W,V) satisfies the system obtained by multiplying (4) and (1)
by test functions w ∈ W, v ∈ V and integrating by parts over �∫

�

∇ · uw =
∫
�

qw, ∀w ∈ W, (54)

∫
�

K−1u · v +
∫
�

β|u|u · v =
∫
�

p∇ · v, ∀v ∈ V (55)

The mixed FE solution (ph,uh) ∈ Wh × Vh where Wh ⊂ W,Vh ⊂ V. The functions in
Wh are piecewise constant on each cell; a test function ξi j ∈ Wh is a characteristic function
of the cell �i, j so that ph(x, y) = ∑

i j ξi j (x, y)pi j . Recall that the functions vh ∈ Vh

from space RT[0] (Raviart and Thomas 1977) are piecewise linear in one coordinate direc-
tion and piecewise constant in the others and can be written symbolically as a tensor product
RT[0] = P1,0× P0,1 (Brezzi and Fortin 1991; Russell and Wheeler 1983; Raviart and Thomas
1977). Here, Pq,r (S) denotes a space of polynomials of degree q in x1 and of degree r in x2

which are variables over a subset S ⊂ IRd . We have

uh(x, y)|�i j = (
ψi−1/2, j (x)ui−1/2, j + ψi+1/2, j (x)ui+1/2, j ,

φi, j−1/2(y)vi, j−1/2 + φi, j+1/2(y)vi, j+1/2
)
,
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with the basis functions ψi±1/2, j (x), φi, j±1/2(y) in P1,0 and P0,1, respectively. Note that
ψi+1/2, j (x) is supported only on �i j ∪�i+1, j .

It is also useful to consider the value of uh on the edge Ei+1/2, j,k = ∂�i j ∩ ∂�i+1, j . By
definition of uh , we are guaranteed the continuity of its normal component (uh)1 but not of
its tangential component (uh)2 across that edge. The discrete solution (ph,uh) satisfies an
equation analogous to (54) in which∫

�

∇ · uhwh =
∫
�

qwh, ∀wh ∈ Wh,

and using wh = ξi j one derives pointwise

ui+1/2, j − ui−1/2, j + ui, j+1/2 − ui, j−1/2 = qi j  xi  y j , (56)

which can be interpreted as (22) when q ≡ 0. The discrete analogue to momentum equation
(55) is ∫

�

K−1
h uh · vh +

∫
�

βh |uh |uh · vh =
∫
�

ph∇ · vh, ∀vh ∈ Vh (57)

forming a linear saddle-point system along with (22).
Now, as shown in Russell and Wheeler (1983) for Darcy flow, the integrals in (57) can

be replaced by their numerical approximations, namely, a combination of trapezoidal and
midpoint quadrature rules, at the expense of introducing a quadrature error of higher order
than approximation order. In this way, the discrete velocity values are identified with those in
CCFD formulation; the numerical integration approach entirely decouples the original sad-
dle-point system and allows to solve a symmetric nonnegative-definite system in ph unknown
only. We notice that this is possible for diagonal K.

We follow the same idea here for non-Darcy flow. Use the test function vh = (ψi+1/2, j ,

ξ jk) ∈ Vh and integrate over its support �i j ∪ �i+1, j , with the trapezoidal rule applied to
integration in x1 direction and the midpoint rule applied in y1 directions, which we denote
by subscripts (TM).

The integration rules used below for products are all of second order accuracy with respect
to the size of domain: trapezoidal (

∫ b
a f (t)g(t)dt)T = (b−a) f (a)g(a)+ f (b)g(b)

2 , the midpoint

rule (
∫ b

a f (t)g(t)dt)M = (b − a) f ( a+b
2 )g( a+b

2 ). Additionally, we define the product P rule

as (
∫ b

a f (t)g(t)dt)P = (b − a) f ( a+b
2 )

g(a)+g(b)
2 . One can show using standard numerical

analysis that the P rule has (at least) the same order of accuracy as the trapezoidal rule.
Using the (TM) rule for the first integral on left-hand side and integrating directly the

right-hand side of (57), we obtain expressions as in Darcy’s case, since vh equals zero on
both edges Ei−1/2, j , Ei+3/2, j

⎛
⎝∫
�

K−1uh · vh

⎞
⎠

TM

=
⎛
⎜⎝∫
�i j

K −1
1,i j uh · vh

⎞
⎟⎠

TM

+
⎛
⎜⎝ ∫
�i+1, j

K −1
1,i+1, j uh · vh

⎞
⎟⎠

TM

= y j T −1
1,i+1/2, j ui+1/2, jk,∫

�

ph∇ · vh =
∫
�i j

pi j∇ · vh +
∫

�i+1, j

pi+1, j∇ · vh = y j (pi j − pi+1, j ).
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The new and most important element in the non-Darcy case is handling of the second term
on the left side of (57). Using the (TM) quadrature rule over �i j ∪�i+1, j , we get

⎛
⎝∫
�

β|uh |uh · vh

⎞
⎠

TM

= βi j

⎛
⎜⎝∫
�i j

|uh |uh · v

⎞
⎟⎠

TM

+ βi+1, j

⎛
⎜⎝ ∫
�i+1, j

|uh |u · v

⎞
⎟⎠

TM

(58)

Consider one of the integrals on the right side, which gives exactly⎛
⎜⎝∫
�i j

|uh |uh · v

⎞
⎟⎠

TM

= xi  y j

2
|(uh)

+
i j |u1,i+1/2, j , (59)

and which is consistent with V = 2 in (26) and the following expression(
T −1

1,i+1/2, j + 1

2

(
xiβ1,i j |uh |+i j + xi+1β1,i+1, j |uh |−i+1, j

))
u1,i+1/2, j (60)

= pi, j − pi+1, j .

Since each |uh |+i j , |uh |−i j depends on u1,i+1/2, j and on other velocity degrees of freedom, as
mentioned before, the solution u1,i+1/2, j cannot be obtained analytically or even by local
iteration.

This issue can be somewhat rectified by the use, instead of the discontinuous values |uh |+i j ,

|uh |−i j in (60), of their average |ūh |i j as in V = 1 leading to

(
T −1

1,i+1, j + 1

2
(xiβ1,i j + xi+1β1,i+1, j )

∣∣∣∣∣
(uh)

+
i j + (uh)

−
i+1, j

2

∣∣∣∣∣
)

u1,i+1/2, j

= pi, j − pi+1, j . (61)

This introduces an additional error which is however readily seen to be of order not exceeding
that of numerical integration, via expansion, for any z,

√
1 + z = 1 + z

2 − 1
8 z2 + O(z3).

Further details will not be provided as they are not essential.
Now we discuss V = 3. This arises if in (58) one uses the (PM) integration rule instead

of (TM), (∫
�i j

|uh |uh · v

)
PM

= xi  y j

2
|(uh)i j |u1,i+1/2, j (62)

which provides the following alternative to (27),(
T −1

1,i+1/2, j + 1

2

(xiβ1,i j |(uh)i j | + xi+1β1,i+1, j |(uh)i+1, j |
))

u1,i+1/2, j

= pi, j − pi+1, j .

Since this formulation leads to an excessively wide stencil, it is not pursued here.
Finally, we interpret V = 0. It arises if instead of (7) one discretizes (8). Alternatively,

V = 0 can be seen as an approximation to V = 1 in which the tangential components of
velocity are ignored.
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