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Abstract In this paper, we consider the effect of mechanical vibration on the onset of
convection in porous media. The porous medium is saturated either by a pure fluid or by
a binary mixture. The importance of a transport model on stability diagrams is presented
and discussed. The stability threshold for the Darcy–Brinkman case in the RaT c-R and kc-R
diagrams is presented (where RaT c, kc and R are the critical Rayleigh number, the critical
wave number and the vibration parameters, respectively). It is shown that there is a signif-
icant deviation from the Darcy model. In the thermo-solutal case with the Soret effect, the
influence of vibration on the reduction of multi-cellular convection is emphasized. A new
analytical relation for obtaining the threshold of mono-cellular convection is derived. This
relation shows how the separation factor � is related to the controlling parameters of the
problem, � = f (R, ε∗, Le), when the wave number k → 0. The importance of vibrational
parameter definition is highlighted and it is shown how, by using a proper definition for
vibrational parameter, we may obtain compact relationship. It is also shown how this result
may be used to increase component separation.
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List of Symbols

Roman Symbols

a∗ Effective thermal diffusivity, m2 s−1

b Vibration amplitude, m
Ci Initial mass fraction
D∗ Mass diffusion coefficient
DT Thermodiffusion coefficient
Da Darcy number
e The direction of vibration
g Gravitational acceleration, m s−2

H Height, m
j Unit vector in y direction
k Wave number
K Permeability, m2

Le Lewis number (a/D)∗
P Pressure, N m−2

R Vibration parameter
Ra Rayleigh number
Rav Vibrational Rayleigh number
T Temperature, K
t Dimensional time
V Velocity, m s−1

W Solenoidal vector

Greek Symbols

α Direction of vibration
βC Coefficient of mass expansion
βT Coefficient of thermal expansion
γ The ratio of the Brinkman effective viscosity to the fluid viscosity (µe/µ f )

ε Porosity
ε∗ Normalized porosity
λ∗ Effective thermal conductivity
ν Kinematic viscosity, m2 s−1

ρ Density, kg m−3

(ρc)∗ Volumic heat capacity of medium
τ Vibration period
ψ Separation factor
ω Dimensional pulsation

1 Introduction

Microgravity research deals with the effects of reduced gravitational force on physical, chem-
ical, and biological phenomena. Many scientific disciplines are affected by gravity such as
fundamental physics, fluid mechanics, transport phenomena, etc. It should be noted that
some of these disciplines are laboratory sciences that inherently use controlled and model
experiments.
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Predictive High Frequency Thermo-Vibrational Models 209

In reduced gravity, the decrease in rates of sedimentation, hydrostatic pressure and buoy-
ancy-driven flows causes other effects to become more important. These effects at the same
time can be observed and measured. The acceleration due to vibration can then be treated as
an important and interesting experimental parameter. It has been shown that a spacecraft in
orbit is subject to many disturbing influences of human as well as equipment origin. These
influences result in the appearance of residual accelerations, which are commonly called
“g-jitter.” As a first approximation, “g-jitter” may be modeled as mono-frequency vibration
(see, for example, Alexander 1994 or Nelson 1994).

The exploration of this parameter at normal earth gravity and reduced gravity may provide
a better understanding of certain physical process, and possibly may lead to the identification
of new phenomena. One idea that may be associated with microgravity is the commercial
manufacturing in space environment. We summarize below some of these aspects.

1.1 Material Science and Processing

The microgravity environment provided by an orbiting spacecraft or space station offers new
opportunities in the control of the solidification process. Reduction of convective velocities
permits, in some cases, more precise control of the temperature and composition of the melt.
Likewise, body force effects such as sedimentation will be reduced. In order to accomplish
the objectives discussed above, it is necessary to conduct a series of carefully chosen, well
conceived experiments. At the same time, these experiments should delineate the advantages
and limitations of microgravity research. For example, microgravity experiments may be used
to elucidate the essential features of solidification process and suggest better control strat-
egies. These strategies may improve the current technologies for earth-bound experiments;
an example is the application of mechanical vibration (shaking) of the container.

Another aspect which is of highest importance is the prediction and control of micro-
structures. The region between the advancing solid and dendrite tip is called the “mushy
zone.” This region is composed of a fine, micrometer length scale mixture of liquid and
solid. This closely resembles transport in porous media and this is the reason porous media
modeling has received much attention. By carefully controlling the direction in which heat is
extracted (directional solidification), interesting controlled solid–liquid micro-structure can
be produced.

1.2 Diffusive Transport Processes

Under normal gravitational acceleration, multi-component fluids experience leads to various
modes of thermo-solutal convection (depending on the relative orientation of temperature
and concentration gradients with each other and with the buoyancy vector). With reduced
gravity, there is an attractive opportunity to obtain a better fundamental understanding of tem-
perature–concentration interactions, which may be overshadowed under terrestrial condition.

1.3 Fluid Mechanics and Transport Phenomena

Fluid mechanics and transport phenomena are influenced significantly by gravity. As a con-
sequence, different behavior may be expected for many fluid configurations in a microgravity
environment. Also, the reduction of gravitational body forces leads to the dominance by other
forces normally obscured in terrestrial environment. Because fluid mechanics and transport
processes are involved in many areas of microgravity research, they represent a common
theme for fundamental studies.
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Fluid mechanics and transport phenomena also play an essential role in many space-based
technologies. Space system designers will be constantly challenged to develop new technol-
ogies and critical concepts that involve fluid mechanics and transport phenomena in low
gravity environment.

Unfortunately, predictive models for the low gravity environments are often inadequate.
Our objective in this article is to highlight some of these predictive models in thermo-

vibration problems in porous media.

2 A Brief Summary of Thermal Vibrational Convection in Porous Media

In recent years, effects of mechanical vibration on the stability threshold of thermal systems
have been the subject of numerous studies. In broad terms, the subject of thermo-vibration
convection concerns the appearance of a mean flow in a confined cavity filled with a fluid
(mono or multi-component) subjected to temperature or concentration non-homogeneities.
This type of convective motion, in which the buoyancy force may be thought of as time
dependent, has attracted the attention of many researchers. Gershuni and Lyubimov (1998)
gave a summary of different aspects of the thermo-vibrational problem. Their work mainly
covers the Russian researches in this field and focuses on fluid media. One of the most
interesting features of this book is a comprehensive treatment of the so-called time-averaged
method. In this method, valid under the limiting case of high-frequency and small amplitude
vibration, the time dependent acceleration does not appear explicitly in the governing equa-
tions. Instead, a vibrational force due to its mean energy appears in the momentum equation.
Furthermore, in some cases, the time-averaged method provides us with closed form ana-
lytical solutions from which it is possible to study the onset of convection. Given the fact
that stability characterization of thermal vibrational convection is generally complicated and
depends on many physical parameters, the existence of some closed form relations is quite
beneficial in understanding these problems. It should be noted that this method was first
proposed by Simonenko and Zenkovskaya (1966). Thermo-vibration problem has received
particular attention in porous media too. Generally, these studies can be classified in two
groups: porous media saturated by a pure fluid or by a binary-mixture. Here, we report only
the researches dealing with the high-frequency and small amplitude vibration; for other cases,
the readers can refer to Razi et al. (2008). Zen’kovskaya (1992) studied the effect of vertical
vibration (parallel to the temperature gradient) on the onset of convection in a horizontal
porous layer. The Darcy model is used in the momentum equation. It is found analytically
that vibration has a stabilizing effect (it increases the critical Rayleigh number). In another
study, Zen’kovskaya and Rogovenko (1999) completed the previous work by considering
arbitrary directions of vibration. The result of their linear stability analysis showed that only
the vertical vibration has always a stabilizing effect. In addition, they find that convection
under microgravity is possible, provided that the direction of vibrational is not parallel to the
temperature gradient. Bardan and Mojtabi (2000) extended the vertical vibration results to
the confined cavity geometry. In addition to performing the linear stability analysis, they con-
ducted a weakly nonlinear stability analysis too. They concluded that the primary bifurcations
were of symmetry-breaking pitch fork type. Razi et al. (2002) and Charrier-Mojtabi et al.
(2003) discussed the validity of the time-averaged formulation. In these papers, through an
analysis of a Mathieu equation, the time averaged results were obtained. Bardan et al. (2004)
analyzed the importance of vibrational parameter in physical interpretations of the thermal
stability results. Finally, Charrier-Mojtabi et al. (2006) revisited the confined cavity and infi-
nite horizontal porous layer problems under the effect of vertical vibration. From a theoretical

123



Predictive High Frequency Thermo-Vibrational Models 211

point of view, they found how we may estimate the stability results of a confined cavity from
the results obtained from an infinite horizontal porous layer.

All the papers cited above deal with porous media saturated by a single component fluid.
For the problems involving porous media saturated by binary mixtures, we may cite the work
of Sovran et al. (2002). They presented a linear stability analysis of thermo-solutal prob-
lem. The Soret effect was also considered in the governing equations. They concluded that
vertical vibrations increased the stability threshold. In addition, they presented the results
of the Hopf bifurcation for negative separation ratios. Charrier-Mojtabi et al. (2004) inves-
tigated the influence of vibration on the Soret-driven convection. The confined cavity and
infinite horizontal porous layer saturated by a binary-mixture were considered. Different
directions of vibration were considered. From the linear stability analysis, they concluded
that vertical vibration had a stabilizing effect on the stationary and Hopf bifurcations. The
stability diagrams in kc − � coordinates illustrated that vibration reduced the critical wave
number too. They presented many tables which highlighted the effect of vibration on the
Hopf frequency and the Nusselt number. Some analytical relations for the long wave mode
instability were proposed too. Elhajjar et al. (2009) revisit the Sovran et al. (2002) problem.
They propose a new application for the effect of vibration, namely a better species separation
in the case of the long wave mode. Furthermore, for the first time in thermo-vibration prob-
lems, they perform a linear stability analysis of the long wave mode. They emphasize that the
mono-cellular convection loses its stability via a transient bifurcation. They characterized
this transition by its critical Rayleigh, wave number, and oscillatory frequency. In the follow
up, they showed that vibration had a stabilizing effect on this kind of instability. Although
thermo-solutal convection problems with the Soret effect are important from an applied point
of view, thermo-solutal problems without the Soret effect have their own merits. In this kind
of thermo-solutal problems, the concentration gradient is imposed and is not induced by a
temperature gradient. As we may find analytical relations for the onset of stationary and the
Hopf bifurcations, we may have a better opportunity to study the sensitivity of each parame-
ter on the critical values of Rayleigh and wave numbers. For these studies, we may mention
Jounet and Bardan (2001) and Mojtabi et al. (2005).

3 The Effect of High-Frequency Vibration on the Onset of Convection
in a Horizontal Porous Layer Saturated by a Pure Fluid

The problem of the onset of convection in an infinite horizontal layer is well suited to high-
light mathematical and physical features of thermo-vibrational problems. This is why we
begin by this problem. Later, we will discuss the effect of different transport models on the
convection threshold, namely Darcy and Darcy–Brinkman models.

3.1 Mathematical Formulation

The geometry of the problem consists of two horizontal parallel plates having infinite exten-
sion in the Ox direction. These plates are rigid and impermeable; they are kept at constant
but different temperatures T1 and T2. The distance between the plates is H. The porosity and
permeability of the porous material filling the layer are ε and K, respectively. The porous
layer and its boundaries are subjected to a harmonic vibration. We suppose that the porous
medium is homogenous and isotropic. The fluid is assumed to be Newtonian and to satisfy
the Oberbeck–Boussinesq approximation. In the momentum equation, the Darcy–Brinkman
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model is used. In a coordinate system linked to the porous layer, the gravitational field may be
replaced by the sum of the gravitational and vibrational accelerations g → g+bω2 sin(ωt)j,
where j is the unit vector along the axis of vibration, b is the displacement amplitude, and
ω is the angular frequency of vibration. After making standard assumptions (local thermal
equilibrium, negligible viscous heating dissipations …), the governing equations for vertical
vibration (parallel to the temperature gradient) are written as:

∇ · V = 0,
ρ0

ε

∂V
∂t

+ µ f

K
V = −∇ P − ρ0 [βT (T − Tref )] (g − bω2 sinω tj)+ γµ f ∇2V,

(ρ c)∗ ∂T

∂ t
+ (ρc) f V · ∇T = λ∗∇2T .

(1)

The boundary conditions corresponding to (1) are

V(x, y = 0) = 0, T (x, y = 0) = T1,

V(x, y = H) = 0, T (x, y = H) = T2.
(2)

In the system of the Eq. (1),µ f is the dynamic viscosity of the fluid, (ρc)∗ the effective volu-
mic heat capacity, (ρc) f is the volumic heat capacity of fluid, and λ∗ represents the effective
thermal conductivity, and finally γ =µe/µ f (µe is the Brinkman effective viscosity).

3.2 Time-Averaged Formulation

In order to study the averaged behavior of the system (1)–(2), we use the time-averaged
method. This method has been used under the conditions of high frequency and small ampli-
tude of vibration. Under these conditions, it is possible to subdivide the fields into two
different parts; the first part varies slowly with time (i.e., the characteristic time is large with
respect to the vibration period), while the second part varies rapidly with time and is periodic
with a period of 2π/ω (this procedure was first used in problems concerning fluid media
under vertical vibrational by Simonenko and Zenkovskaya 1966).

On replacing the above-mentioned transformation into Eqs. 1–2, and by performing aver-
aging procedures over a vibration period, we may distinguish the oscillatory fields from
mean fields. Two coupled systems of equations are obtained. One governs the mean flow and
the other the oscillatory flow. As the problem depends on several time scales and amplitude
ratios, special relationships between time scales and amplitude ratios should be found. Before
proceeding with a discussion on the time-averaged method, it is informative to describe the
nature of momentum and energy equations in the thermo-vibrational problem.

For this reason, we perform an order magnitude analysis in the oscillatory system.

3.3 Scale Analysis Method for the Oscillatory System

The key step in resolving the closure problem lies in establishing relations between oscil-
latory velocity and temperature fields in terms of the averaged ones. For this purpose, the
scale analysis method is used. This method has been successfully employed by Bejan (1994,
2000), Bejan and Nelson (1998), and Nield and Bejan (2006) in predicting boundary layer
approximations, the existence of optimal geometries and critical parameters. Later, it became
an important tool in Constructal theory (Bejan 2000; Bejan and Lorente 2008). In addition,
this procedure in the framework of the averaging method was pioneered in Razi et al. (2002)
and was further completed in Razi et al. (2004b). Here, for the first time, we outline this
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method in the case of Darcy–Brinkman model. The following reference scales are used in
the oscillatory system of equations:

O(T̄ − Tref ) ≈ T1 − T2 = �T, O

(
∂( )

∂t

)
≈ ω( ), O

(
∂( )

∂y

)
≈ 1

H
· (3)

By replacing these scales in the oscillating momentum equation and assuming that for the
oscillating temperature scale T ′ � �T , the buoyancy terms involving T ′ may be neglected
(the condition for this assumption will be validated later).

In order to study the possibility of convective motion in the oscillatory momentum equa-
tion, the following expression is considered:

Buoyancy Term (Containing �T)≈ Inertia (Transient Term in the Momentum Equation)

By replacing the order magnitudes of corresponding terms in this expression, we obtain
the oscillating velocity scale

v′
scale ≈ εβT�T bω (4)

Furthermore, from the inequality Inertia >>Darcy and Brinkman Friction terms, we get:

εv

Kω
� 1 or τvib � τviscD (5a)

εγ ν

H2ω
� 1 or τvib � τviscB (5b)

In relation (5a) and (5b), τvib = 1/ω, τviscD = K/εν, and τviscB = H2/εγ ν, which
represent vibrational, Darcy, and Brinkman viscous time scales, respectively. Assumptions
(5a) and (5b) allow us to neglect the viscous terms in the oscillating momentum equation. It
should be noted that (5b) is the additional assumption related to applying the Darcy–Brinkman
model.

Following the same procedure, the order magnitude of important terms in the oscillatory
energy equation is found. Imposing the oscillatory velocity scale in the equality Convection
≈ Transient term and using the hypothesis T ′ � �T results in:

T ′ ≈ ε

σ
βT�T 2 b

H
or b � H

ε
σ
βT�T

,

(
σ = (ρc)∗

(ρc) f

)
(6)

Inequality (6) gives the criterion for small-amplitude vibration. Also, from the following
inequality
Transient Term � Diffusive (Conductive) Terms

We obtain:

a∗

σH2ω
� 1 or τvib � τcond,

(
a∗ = λ∗

(ρc) f

)
(7)

In (7), τcond = σH2/a∗ represents the conductive time scale. Relation (7) allows us to
neglect the diffusive terms in the energy equation.

Now that the scale of T ′ has been found, the final step is to validate our assumptions in the
oscillatory momentum equation; in other words, it should be shown under which condition
ρ0βT�T bω2 is the dominant buoyancy force.

Under condition:

ω2 � gεβT�T

Hσ
or τ 2

vib � τ 2
buoy. (8)
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ρ0βT�T bω2 is the dominant buoyancy force in the oscillatory momentum equation. In (8),
the gravitational buoyancy time scale is defined as τbuoy = (εgβT�T/σH)1/2.

3.4 Time-averaged System of Equations

By applying assumptions (5a), (5b), (6), (7), and (8) to the oscillatory system of equations
and also by applying the Helmholtz decomposition, the oscillatory pressure term may be
eliminated. This allows the finding of exact oscillatory velocity and temperature (W and ∇φ
are solenoidal and irrotational parts of the Helmholtz decomposition, respectively):

V′ = −(εβT bω cosωt)W, (9)

T ′ =
( ε
σ
βT b sinωt

)
W · ∇ T̄ . (10)

By substituting Eqs. 9 and 10 in the coupling terms of mean fields, the time-averaged equa-
tions are found (details can be found elsewhere in Razi et al. 2004b). By introducing reference
parameter, T1–T2 for temperature, H for height, σH2/a∗ for time, a∗/H for velocity, βT�T
for W, and µa∗/K for pressure, the resulting averaged system in dimensionless form may
be written as

∇ · V̄
∗ = 0,

B
∂V̄

∗

∂t∗
+ V̄

∗ = −∇ P̄∗ + RaT T̄ ∗j + Rav W∗ · ∇ T̄ ∗j + γ Da∇2V̄
∗
,

∂ T̄ ∗

∂t∗
+ V̄

∗ · ∇ T̄ ∗ = ∇2T̄ ∗, (11)

∇ · W∗ = 0,

∇ × W∗ = ∇ T̄ ∗ × j

The corresponding boundary conditions for this system are

∀x∗, for y∗ = 0, V̄
∗ = 0, T̄ ∗ = 1, W∗

y = 0,
∀x∗, for y∗ = 1, V̄∗ = 0, T̄ ∗ = 0, W∗

y = 0.
(12)

in which

RaT = K gβT�T H

νa∗ , Rav = R2 Ra2
T , Da = K

H2 , γ = µe

µ f
(12a)(

B = a∗K

ενσH2 = τvisc

τcond
, R2 = ενa∗

2K

(
bω

gH

)2
)

In the above relationships, RaT is the thermal Rayleigh number, Rav is the vibrational
Rayleigh number, and B is the ratio of viscous time scale to the conductive time scale. It
should be noted that we may define vibrational Rayleigh number as

Rav = K ε(bωβT�T )2

2νa∗ (12b)

This definition is more appropriate for weightlessness studies, as it is always positive. In any
case, under simultaneous action of vibration and gravitational accelerations, it is better to
separate the vibrational parameters from thermal parameters (see Bardan et al. 2004). This
remark will be revisited in Sect. 4.4.
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3.5 Linear Stability Analysis

3.5.1 Darcy Model

In the presence of vertical vibration (vibration parallel to the temperature gradient), mechan-
ical equilibrium is possible. In order to find the motionless state, the velocity is set equal to
zero. The equilibrium state corresponds to a linear distribution of temperature and zero for
the solenoidal field.

For linear stability analysis, the temperature, velocity, and solenoidal fields are perturbed
around the equilibrium state. By performing the standard linearizing procedure and develop-
ing disturbances in normal modes, we obtain:

(−λB + 1)

(
d2φ(y∗)

dy∗2 − k2φ(y∗)
)

= −I k RaT θ(y
∗)+ k2 Rav f (y∗),

−λθ(y∗)+ I kφ(y∗) = d2θ(y∗)
dz∗2 − k2θ(y∗),

−k2 f (y∗)+ d2 f (y∗)
dy∗2 = −I kθ(y∗). (13)

In (13), k is the wave number and φ, θ , and f represent amplitude of velocity, solenoidal,
and temperature disturbances, respectively. Also, λ characterizes the eigenvalue of the sys-
tem, which is generally a complex number (λ = λr + Iλi ). It should be noted that velocity
boundary conditions in (12) should be modified and the slip condition should be imposed.
There exist exact solutions of sinusoidal form for this system, which upon replacing in (13),
results in the following relation for the marginal stability (λ = 0):

RaT = (π2 + k2)2

k2 + Rav
k2

π2 + k2 · (14)

For all values of control parameters, it has been verified numerically that λi = 0. It can
be understood from the above equation that, under micro-gravity (RaT = 0), the system
remains thermally stable. Under the condition of vibration in the presence of gravity, Rav
can be replaced by R2 Ra2

T . From Eq. 14, we get:

RaT = k2 + π2

2k2 R2

[
1 −

√
1 − 4R2(k2 + π2)

]
. (15)

Figure 1 shows the critical Rayleigh number as a function of R for the layer heated from
below. We conclude that vibration has a stabilizing effect, and the critical Rayleigh number
increases. At the same time, vibration decreases the critical wave number. Another interesting
feature of Eq. 15 is that it gives additional information for complete stabilization:

R = 1

2π
, (kc → 0) (16)

we may observe the existence of this asymptote in Fig. 2.

3.5.2 Darcy–Brinkman Model

In this section, we consider two different sets of boundary conditions, namely free surface
and rigid boundaries.
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Fig. 1 Influence of vibration parameter R on the onset of convection in a horizontal porous layer saturated
by a pure fluid (Darcy model) for the layer heated from below

Fig. 2 Influence of vibration parameter R on the critical wave number kc (Darcy model) for the layer heated
from below

Free Surface Boundary Conditions (Unrealistic Boundary Condition): For this case, there
is an exact solution for the system of equations and the procedure is the same as previous
section. We find an analytical relation which resembles (14):

RaT = (π2 + k2)2

k2

[
1 + γ Da(π2 + k2)

] + R2 Ra2
T

k2

k2 + π2 (17)

From a comparison of Eqs. 14 and 17, we conclude that the Brinkman term only modifies
the first part, and it has no effect on the second part (vibrational effect). This is due to the fact
that vibrational effect under high frequency and small amplitude is obtained by neglecting
the viscous terms. The critical Rayleigh and wave numbers can be found from the following
system:
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Fig. 3 Influence of vertical vibration on the critical Rayleigh number for different values of γ Da for the layer
heated from below

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

RaT c =
[
(2π2 − k2

c )+ 2γ Da(π4 − k4
c )

]
(π2 + k2

c )
2

π2k2
c

R2 = π2
[
(π2 − k2

c )+ γ Da(π2 − 2k2
c )(π

2 + k2
c )

]
(π2 + k2

c )
[
(2π2 − k2

c )+ 2γ Da(π4 − k4
c )

]2

(18)

In this situation, the critical vibrational parameter for absolute stabilization is modified:

R2
max = 1

4π2(1 + γπ2 Da)
, kc → 0 (19)

Equation 19 shows that the introduction of the Brinkman term leads to a reduction of the
critical vibrational parameter. This is due to the additional frictional effect in the time-aver-
aged momentum equation.

Rigid Boundary Conditions: Figure 3 shows the effect of γ Da parameter on the onset of
convection. For the layer heated from below, we see that the Brinkman model modifies the
critical RaT c values significantly. This means that by increasing γ Da, there is a deviation
from the Darcy model. This deviation depends largely on vibrational parameter (Razi et al.
2005). For the layer heated from above, the conductive solution is always stable.

For an alternative mathematical description (see Maliwan 2004).

3.6 Some Key Results

In this section, we studied the effect of transport models on the stability threshold under the
effect of vibration. The direction of vibration is vertical (parallel to the temperature gradient).
The time-averaged method is adopted. For the first time, the time-averaged governing equa-
tions for the Darcy–Brinkman model are obtained. The additional assumption in obtaining
this system of equations has been explained. We showed that there is a significant deviation
(20%) from the Darcy model in determining the critical Rayleigh number. This effect is not
as significant in critical wave numbers.
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4 Influence of High-Frequency Mechanical Vibration on a Porous Medium
Saturated by a Binary Mixture

In this section, we study the effect of vibration on a porous medium saturated by a multi-com-
ponent fluid. This problem is more interesting than a single-component fluid for in addition
to buoyancy forces due to the gravity and vibration we may also have the effect of dissipative
mechanism. This mechanism is cause by diffusion (or thermo-diffusion). As put forward
in Van Vaerenberg and Legros (1990), the Soret effect must be taken into account as it can
modify the concentration gradient in the liquid–solid interface. Under the Soret effect, the
temperature gradient invokes a concentration gradient in a binary mixture (see De Groot and
Mazur 1984). From a physical point of view, we may encounter oscillatory instability (Hopf
bifurcation), which is normally absent in a single component fluid (pure fluid) situation under
the effect of vibration (see Sect. 3). Many instability modes such as stationary multi-cellular,
mono-cellular, and oscillatory multi-cellular may be observed too.

This problem in the context of the high-frequency vibration in a binary mixture was
pioneered by Gershuni et al. (1997) for horizontal vibration and Gershuni et al. (1999) for
vertical vibration. Razi et al. (2004a) completed this study for arbitrary directions of vibra-
tion. The geometry was an infinite horizontal fluid layer. They found that vibration modifies
the stability diagram and can be effectively used to control the onset of convection. Generally,
the vertical vibration (parallel to the temperature gradient) increases the stability threshold.
For the same problem, under finite frequency situations, Smorodin et al. (2002) showed that
vertical vibration had a stabilizing effect in the synchronous mode.

Due to the application and importance of solidification control and the existing analo-
gies with porous media, which was previously explained (Sect. 1), many researchers studied
this problem in recent years. In this context, we may mention Sovran et al. (2002), Mali-
wan (2001), Maliwan et al. (2002), and Charrier-Mojtabi et al. (2004). Elhajjar et al. (2009)
proposed a new application of vibration in increasing separation. They also pioneered the
stability analysis of the long-wave mode, too.

For the case in which the concentration gradient is imposed independently and is not
generated by the temperature gradient, we may cite Jounet and Bardan (2001) and Mojtabi
et al. (2005).

4.1 Problem Description

The geometry of the problem consists of a rectangular cavity filled with a porous medium and
saturated by a binary mixture. The aspect ratio is defined as A = L/H , where H represents
the height and L the length of the cavity. The cavity boundaries are rigid and impermeable;
the horizontal boundaries can be heated from below or above. The governing equations are
written in a reference frame linked to the cavity. For the high frequency and small amplitude
vibration, the time-averaged equations in dimensionless form are written as Elhajjar et al.
(2009) for vertical vibration and Charrier-Mojtabi et al. (2004) for arbitrary directions of
vibration):

∇ · V̄
∗ = 0

B
∂V̄

∗

∂t∗
+ V̄

∗ = −∇ P̄∗ + Ra
(
T̄ ∗ + ψC̄∗) j

+ Rav(W∗
T + ψW∗

c) · ∇
(

T̄ ∗ + ψ

ε∗
C̄∗

)
e
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∂ T̄ ∗

∂t∗
+ V̄

∗ · ∇ T̄ ∗ = ∇2T̄ ∗

ε∗ ∂C̄∗

∂t∗
+ V̄

∗ · ∇C̄∗ = 1

Le

(∇2C̄∗ − ∇2T̄ ∗)
∇ · W∗

T = 0, ∇ · W∗
c = 0

∇ T̄ ∗ × e = ∇ × W∗
T , ∇C̄∗ × e = ∇ × W∗

c where e = cos(α)i + sin(α)j

(20a)

where W∗
T and W∗

c are the solenoidal vectors corresponding to the temperature and concen-
tration, respectively. For finding the assumptions leading to this system, see Appendix. The
corresponding boundary conditions are given by

V̄ ∗ · n = W∗
T · n = W∗

c · n ∀M ∈ ∂�
y∗ = 0 : T̄ ∗ = 1, J∗

m · n = 0

y∗ = 1 : T̄ ∗ = 0, J∗
m · n = 0

x∗ = 0, A : ∂ T̄ ∗

∂x∗ = ∂C̄∗

∂x∗ = 0 (20b)

In obtaining the system of Eq. (20), we assumed that Dufour effect is negligible (as
we are interested in liquid mixture). J∗

m represents the non-dimensional mass flux (J∗
m =

∇C∗ − ∇T ∗).
System (20a) depends on the following parameters: the thermal Rayleigh number

Ra = K gβ�T H/νa∗, the vibrational Rayleigh number Rav = R2 Ra2
T , the separation

factor ψ = − Ci (1 − Ci )(βc/βT )DT /D∗, the normalized porosity ε∗ (ε∗ = ε/σ ) where
σ = (ρc)∗/(ρc) f , the Lewis number Le (Le = a∗/D∗ in which a∗ is the effective thermal
diffusivity and D∗ is the effective mass diffusivity), the coefficient of the unsteady Darcy
term in the momentum equation B (in porous media B is normally very small ≈ 10−5), and
finally α which is the direction of vibration with respect to the heated boundary.

4.2 Mechanical Equilibrium (or Quasi-Equilibrium)

When the direction of vibration is parallel to the temperature gradient, i.e., α = π/2, there
exists a mechanical equilibrium, for both an infinite horizontal layer and a confined cavity.
This solution is characterized by

V0 = 0, T0 = 1 − y, C0 = c1 − y, WT 0 = 0, WC0 = 0 (21)

However, for other directions of vibration, the situation is quite different. For an infinite
horizontal layer, there exists a mechanical quasi-equilibrium solution, which is represented
by zero mean velocity and generally non-zero oscillatory part. This motionless state for an
infinite horizontal layer is characterized by

V0 = 0, T0 = 1 − y, C0 = c1 − y, WT 0x = c2 − y cosα; WT 0y = 0, (22)

WC0x = c3 − y cosα, WC0y = 0

4.3 Formulation of the Stability Problem in an Infinite Horizontal Porous Layer

In order to investigate the stability of the conductive solution, the fields are perturbed around
the equilibrium solution. Then, after performing linearization, the disturbances are developed
in the form of normal modes:
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(ξ ′, θ ′, η′, F ′
T , F ′

C ) = (ξ̂ , θ̂ , η̂, F̂T , F̂η) exp(−λt + I kx) (22a)

In the above equation, the disturbances ξ̂ , θ̂ , η̂, F̂T , F̂η represent the amplitude of velocity
stream function, temperature, the transformation (c′ −θ ′), solenoidal stream function related
to the temperature, and finally solenoidal stream function related to η.

It is assumed that the perturbation quantities are sufficiently small so that the second-order
terms may be neglected. The system of equations for amplitudes can be written as

− (λB + 1) (D2 − k2)ξ̂ = I k Ra
[
(1 + ψ)θ̂ + ψη̂

]

+ Rav

[
−k2(WT 0x + ψWC0x )

((
1 + ψ

ε∗

)
θ̂ + ψ

ε∗
η̂

)
sin α

−I k D (WT 0x + ψWC0x )

((
1 + ψ

ε∗

)
θ̂ + ψ

ε∗
η̂

)
cosα

−I k (WT 0x + ψWC0x )D

((
1 + ψ

ε∗

)
θ̂ + ψ

ε∗
η̂

)
cosα

−k2
(

1 + ψ

ε∗

)
((1 + ψ)F̂T + ψ F̂η) sin α

−I k

(
1 + ψ

ε∗

)
D((1 + ψ)F̂T + ψ F̂η) cosα

]

λθ̂ + I kξ̂ = (D2 − k2)θ̂ , ε∗λ(θ̂ + η̂)+ I kξ̂ = 1

Le
(D2 − k2)η̂

(D2 − k2)F̂T = Dθ̂ cosα − I k sin α, (D2 − k2)F̂η = Dη̂ cosα − I kη̂ sin α (23)

The corresponding boundary conditions are given as

ξ̂ (x, 0) = θ̂ (x, 0) = Dη̂(x, 0) = F̂T (x, 0) = F̂η(x, 0) = 0

ξ̂ (x, 1) = θ̂ (x, 1) = Dη̂(x, 1) = F̂T (x, 1) = F̂η(x, 1) = 0 (24)

The solution of system (23)–(24) leads to a spectral amplitude problem in which λ is related
to the important thermo-physical parameters of the problem, namely λ= λ (Ra, Rav , �, α,
ε∗, k, Le). Generally, the decay rate λ is a complex number, i.e., λ= λr + Iλi . For a stationary
bifurcation, the stability domain is determined by setting λ= 0. In the case of an oscillatory
bifurcation, the stability domain is determined by setting λr = 0 ( λi represents the frequency
of the oscillating instability).

4.4 Limiting Case of the Long-Wave Mode Instability (α = π/2)

The results of the previous studies indicate that the long wave mode (k = 0) is the domi-
nant mode of the Soret-driven convection under the effect of mechanical vibration in binary
liquids. For this reason, we study the special case of the long wave mode theoretically. In
some related studies in fluid media, Gershuni et al. (1997) and Gershuni et al. (1999), and
Razi et al. (2004a) showed that asymptotic analysis results in a closed form relation for the
stability threshold. In order to obtain such a relation, a regular perturbation method with the
wave number as the small parameter is performed (for simplifying the procedure, we drop
the hat symbol in (23) and (24)):
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ξ =
∞∑

n=0

knξn; θ =
∞∑

n=0

knθn; η =
∞∑

n=0

knηn; FT =
∞∑

n=0

kn FTn ; Fη =
∞∑

n=0

kn Fηn ;

λ =
∞∑

n=0

knλn (25)

By substituting expressions (25) in the amplitude equations resulting from the linear sta-
bility analysis and factoring the same order of k, we find a sequential system of equations:
For the zeroth order (k0):

ξ0 = 0; θ0 = 0; η0 = cst; Fη0 = 0; FT0 = 0; λ0 = 0 (26)

For the first-order (k1):

θ1 = 0, ξ1 = − I RaTψη0

2
(y2 − y), η1 = cst; FT1 = 0; Fη1 = − Iη0

2
(y2 − y);

λ1 = 0 (27)

For the second-order(k2):

For this order of k, we obtain the following system of equations:
⎧⎪⎪⎨
⎪⎪⎩

−d2ξ2

dy2 = I RaTψ η1; d2θ2

dy2 = I ξ1

ε∗λ2η0 + I ξ1 = 1

Le

(
d2η2

dy2 − η0

)
; d2 FT2

dy2 = 0; d2 Fη2

dy2 = −Iη1

(28)

subjected to the corresponding boundary conditions

At y = 0 and y = 1 : ξ2 = θ2 = dη2

dy
= FT2 = Fη2 = 0

After invoking the solvability condition, we find:

ε∗λ2 = 1

Le
− ψ RaT

12
(29)

We note that λ2 is a real number (λ2 ∈ R), which means that instability is of stationary type.
For the marginal stability λ2 is set equal to zero and we obtain:

RaT cs = 12

ψ Le
(30)

As mentioned in Razi et al. (2004a) in thermo-vibration problems in fluid-media, we may
continue this procedure up to the fourth order of k. By setting λ4 = 0, we find the following
relation:

204
1 + ψ

Leψ
− 14LeRavψ

(
1 + ψ

ε∗

)
= 160 (31)

The solution of this nonlinear equation shows from which value of ψ the long wave-mode
may appear. The results also emphasize the fact that vibration increases the long wave mode
domain. In other words, this means that the long wave mode settles in at the lower value of
ψ under the effect of vertical vibration.
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In addition, relation (31) can be written in a more compact form if we use the alternative
definition of vibrational Rayleigh number (Rav = R2 Ra2

T ):

ψ = 204 − 2016R2

160Le − 204 + 2016R2

ε∗
for k → 0 (32)

Relation (32) is the new result, which provides us with a theoretical basis for the previous
publications, Sovran et al. (2002), Charrier-Mojtabi et al. (2004), and Elhajjar et al. (2009).
In addition, the importance of vibrational Rayleigh definition is highlighted one more time
in the Soret driven convection.

These theoretical relations for the long wave mode for different orientation of vibration are
compared with the relations previously obtained in fluid media (Razi et al. 2004a; Mojtabi
et al. 2005); see Table 1. The comparison of the results reveals that the Darcy model can
capture the essential physical features of binary mixture under the effect of vibration in fluid
media.

Relation (32) also shows how by selecting the vibrational parameter, we may increase the
mono-cellular region significantly.

4.5 Stability Analysis Results for Arbitrary Values of Wave Number

The aim of this section is to present the effect of vibration on the critical Rayleigh number
for arbitrary values of critical wave number.

The results are presented in the stability diagram RaT c-ψ and kc-ψ . Onlyψ > 0 region is
considered. For a complete analysis, the readers are referred to Charrier-Mojtabi et al. (2004)
or Ehajjar et al. (2008). Figure 4 illustrates the effect of vibration on the onset of convection
for the layer heated from below. For this case, the numerical values of physical parameters
are chosen as Le = 100, B = 10−6, and ε∗ = 0.5. The vibrational Rayleigh number is
varied in the interval 0 < Rav < 50. We can see that all the curves in this region fall between
two limiting ones: 1. (Rav = 0, classical Soret driven convection under static gravity) and 2.
(k = 0, or the long wave mode instability). Therefore, we conclude that RaT >12/(Le�) is
a sufficient condition for the onset of convection. Figure 5 shows the effect of vibration on
the critical wave numbers. It is evident that vibration decreases the multi-cellular instability;
in other words, vibration reduces the critical wave number. Another interesting result is that
vibration reduces the mono-cellular threshold values of � for convection (cf. Fig. 6). This
conclusion is in perfect agreement with relations (31) and (32). Table 2 provides a comparison
of the critical values of thermal Rayleigh and wave numbers of classical situation (absence
of vibration) with the situation under different values of vibrational Rayleigh number. For
a detailed analysis of the classical case of the Soret driven convection (in the absence of
vibration field), the readers are referred to Charrier-Mojtabi et al. (2007).

4.6 Separation Management Under High Frequency Vibration

As mentioned elsewhere (Bonneville 1990), finding experiments that emphasize the benefits
of residual acceleration is of prominent importance. Recently, Elhajjar et al. (2009) proposed
such an application. They showed that in the case of mono-cellular convection, there is a
possibility of increasing separation (cf. Fig. 7). Their study is theoretical as well as numerical.
It should be added that the separation is defined as S = m A, in which m is the slope of the
concentration field in the horizontal direction, and A is the aspect ratio. They show that there
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Fig. 4 Effect of vertical vibration on the onset of Soret-driven convection, Le = 100, ε∗ = 0.5, and B = 10−6

for the layer heated from below

Fig. 5 Effect of vertical vibration on the critical wave number in Soret-driven convection Le = 100, ε∗ = 0.5,
and B = 10−6 for the layer heated from below

Table 2 Comparison of the critical Rayleigh (RaT c) and wave numbers (kc) for Le = 100, B = 10−6, and
ε∗ = 0.5 for different physical situations

ψ Rav = 0 (No vibration) Rav = 10 Rav = 50

RaT c kc RaT c kc RaT c kc

0 39.48 3.14 44.32 2.95 60.38 2.38
0.001 33.55 2.90 37.94 2.66 51.76 1.98
0.002 28.88 2.68 32.82 2.37 43.76 1.58
0.004 22.12 2.27 25.07 1.79 29.87 0.58
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Fig. 6 Effect of vertical vibration on the onset of mono-cellular separation ratios, ε∗ = 0.5 and B = 10−6

for the layer heated from below

Fig. 7 Separation (S) versus (RaLe�)

is an optimum value for (LeRa�), for which S possesses a maximum value:

(LeRa�)opt = 24 (33)

Equations 33 and 32 may be considered simultaneously to provide us with the set of
controlling parameter to achieve maximum separation. Figure 8 gives a qualitative represen-
tation of flow and concentration fields under different physical situations. For the case studied,
A = 10, Le = 2, � = 0.4, Ra = 15.7, and ε∗ = 0.5. The vibrational Rayleigh numbers con-
sidered are set to 0 and 20 (Rav = 0 and 20). In 8(a), the convective flow has multi-cellular
nature and it is not possible to achieve the separation of the components. However in 8(b),
the component separation in the binary mixture is achieved under the effect of vibration (all
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Fig. 8 Streamlines and iso-concentrations. (a) Static gravity (Rav = 0). (b) Simultaneous effects of vibration
and gravitation (Rav = 20), RaT = 15.7, Le = 2, A = 10, and ε∗ = 0.5

parameters are kept constant except Rav , which is set equal to 20). It is noteworthy that
vibration has drastically changed the flow patterns too.

4.7 Summary of Key Results

In this section, we present new results for the Soret-driven convection under the effect of
vibration. The vibration is in the range of high-frequency and small amplitude and its direc-
tion is taken parallel to the temperature gradient. The focus was placed on the long wave
mode instability. An exact analytical relation for characterizing the mono-cellular domain is
presented. From this equation, we may find the value of the vibrational parameter, for which
the mono-cellular flow becomes the dominant flow pattern. This conclusion along with better
separation results of component under the influence of vibration proposed by Elhajjar et al.
(2009) may be used to achieve maximum components separation.

Appendix

Under the Boussinesq approximation, the dimensional governing equations for the thermo-
solutal convection with Soret effect can be written as

∇ · V = 0,
ρ0

ε

∂V
∂t

+ µ f

K
V = −∇ P − ρ0[βT (T − Tref )

−βC (C − Cref )] (g − bω2 sinω t j),

(ρ c)∗ ∂T

∂ t
+ (ρc) f V · ∇T = λ∗∇2T,

ε
∂C

∂ t
+ V · ∇C = D∗∇2C + DT Ci (1 − Ci )∇2T (34)

The corresponding boundary conditions are

V · n = 0 ∀M ∈ ∂�,
y = 0 : T = T1, Jm · n = 0,

y = H : T = T2, Jm · n = 0,

x = 0, L : ∂T

∂x
= ∂C

∂x
= 0 (35)
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In (A2), the mass flux vector is Jm = D∗∇C + DT Ci (1 − Ci ) ∇T , where Ci represents
initial mass fraction of the denser component.

Following the time-averaged procedure explained in Sects. 3.2 and 3.3, we transform the
velocity, pressure, temperature, and mass fraction fields as the superposition of the time-aver-
aged values (mean values calculated over a vibration period) plus oscillating ones:

V = V̄(t)+ V∗(ωt), P = P̄(t)+ P ′(ω t),

T = T̄ (t)+ T ′(ω t), C = C̄(t)+ C ′(ωt) (36)

By replacing (36) in (34) and (35), and performing the time averaging over a vibrational
period, we may obtain two coupled systems of equations. One governs the time-averaged sys-
tem of equations, the other governs the oscillating one. By making the following assumptions
in the oscillating system

ω � max

(
εν f

K
,

a∗

σH2 ,
D∗

εH2

)
, ω2 � max

(
εβT�T g

σ H
,
βC�Cg

H

)

max

(
εbβT�T

σ H
,
εbβC�C

σ H

)
� 1 (37)

we may simplify this system of equations significantly. The conditions on frequency in 37
represent the high frequency assumptions. The second inequality in 37 is the small amplitude
assumption (it comes from the fact that the temperature and concentration oscillatory fields
are much less than their averaged counterparts). By applying (37) in the oscillating system
of equations, we may simplify it drastically. By applying the Helmholtz decompositions to
the simplified oscillating momentum equation, we may eliminate the pressure term and find
the oscillating fields. On substituting these oscillating fields in the coupling terms in the
momentum, energy, and concentration equations, we obtain the system of Eq. (20a).
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