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Abstract This article deals with the onset of thermosolutal natural convection in hori-
zontal superposed fluid and porous layers. A linear stability analysis is performed using the
one-domain approach. As in the thermal convection case, the results show a bimodal nature of
the marginal stability curves where each mode corresponds to a different convective instabil-
ity. At small wave numbers, the convective flow occurs in the whole cavity (“porous mode”)
while perturbations of large wave numbers lead to a convective flow mainly confined in the
fluid layer (“fluid mode”). Furthermore, it is shown that the onset of thermosolutal natural
convection is characterized by a multi-cellular flow in the fluid region for negative thermal
Rayleigh numbers. For positive thermal Rayleigh numbers, the convective flow takes place
both in the fluid and porous regions. The influence of the depth ratio and thermal diffusivity
ratio is also investigated for a wide range of the thermal Rayleigh numbers.

Keywords Stability analysis · Thermosolutal natural convection · Fluid–porous interface

1 Introduction

Transport phenomena at the interface between a fluid and a porous layer is encountered in
a wide range of industrial applications (multi-component solidification, thermal insulation,
drying processes,. . .) or in the environment (benthic boundary layers, ground water pollu-
tion,. . .). In many of these situations, thermal and/or solutal natural convection is involved
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and therefore the stability analysis for the onset of such convective flows has been the subject
of particular attention since the pioneering study performed by Nield (1977). The large major-
ity of stability analyses have been carried out using a two-domain approach. In that case,
conservation equations in the fluid and porous regions are coupled by interfacial bound-
ary conditions which can depend on the order of the partial differential equations. Indeed,
for momentum transport, most of the studies uses Darcy’s law in the porous region and
Navier-Stokes equations in the fluid region Nield (1977, 1983), Chen and Chen (1988), Carr
and Straughan (2003), Carr (2004). Under these circumstances, the coupling between the
two homogeneous regions is obtained using a slip boundary condition Beavers and Joseph
(1967) where the slip coefficient depends on the local nature and position of the interface
Beavers et al. (1970). In both thermal and thermosolutal convective cases, the results using
this modeling approach show a bimodal nature of the marginal stability curves where each
mode corresponds to a different mode of convective instability Chen and Chen (1988). At
small wave numbers the convective flow occurs in the whole cavity (“porous mode”) while
perturbations of large wave numbers lead to a convective flow mainly confined in the fluid
layer (“fluid mode”). Another two-domain approach consists in using the Brinkman cor-
rection in Darcy’s law allowing to satisfy the continuity of both velocity and stress at the
fluid/porous interface (Brinkman 1947; Neale and Nader 1974). Only one stability analysis
has been performed using this modeling. The comparison with the results obtained using the
Beavers and Joseph condition (Beavers and Joseph 1967) shows a quantitative agreement
depending on the values of the slip coefficient (Hirata et al. 2007b). Using a volume aver-
aging method, an improvement of the momentum transport description at the fluid/porous
interface has been proposed by deriving a stress jump boundary condition (Ochoa-Tapia and
Whitaker 1995a,b). This latter condition involves a jump coefficient β which is explicitly
dependent on the continuous spatial variations of the effective properties (porosity, perme-
ability) at the fluid-porous inter-region (Goyeau et al. 2003; Chandesris and Jamet 2006). It
has been recently obtained that the jump coefficient strongly influences the bimodal marginal
stability curves giving rise to more unstable situations (Hirata et al. 2007a). Finally, an alter-
native modeling approach to describe heat and mass transport in a partially porous domain
is the one-domain approach (Arquis and Caltagirone 1984). The porous layer is viewed as
a pseudo-fluid and the whole cavity is treated as a continuum. In that case, heat and mass
transport are governed by a unique set of conservation equations both valid in the fluid and
porous regions avoiding the explicit formulation of the boundary conditions at the interface.
Very few stability analyses have been performed using the one-domain approach (Zhao and
Chen 2001). The comparisons with the two-domain models lead to a qualitative agreement
of the marginal stability curves for the thermal case (bimodal behavior) whereas only the
“fluid mode” was observed for the thermosolutal case. In both cases, the critical values of the
thermal or solutal Rayleigh numbers may significantly differ (Zhao and Chen 2001; Chen
and Chen 1988). Actually, in this formulation the macroscopic properties of the homoge-
neous porous layer at the interface (porosity, permeability, effective diffusivity) are Heaviside
functions and therefore, their differentiation must be taken in the meaning of distributions
(Schwartz 1961; Kataoka 1986). In that case, the one- and the two-domain approaches are
shown to be equivalent, and very good agreement is indeed found when comparing the results
obtained with both approaches (Hirata et al. 2009).

The objective of this article is to study the onset of thermosolutal natural convection in
superposed fluid and porous layers with the one-domain model (with the derivatives in the
sense of distributions). A linear stability analysis is carried out, and the resulting eigen-
value problem is solved using the Generalized Integral Transform Technique (GITT) (Cotta
1993). The critical solutal Rayleigh number is obtained for a wide range of thermal Rayleigh
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Fig. 1 Geometric configuration
of the problem

numbers corresponding to stabilizing or destabilizing temperature gradients. The influence
of the depth ratio and of the thermal diffusivity ratio is also investigated.

2 Mathematical Modeling

The geometrical configuration is composed by an infinite horizontal porous layer of thick-
ness d∗

m underlying a fluid layer of thickness d∗
f = d∗ − d∗

m (Fig. 1). The porous layer is
assumed to be homogeneous, isotropic and saturated by the overlying fluid which is assumed
to be Newtonian and to satisfy the linear Boussinesq approximation. Therefore, the vari-
ations of the density ρ(T, S) with temperature T and solute concentration S is given by
ρ(T, S) = ρ0(1 − βT(T − T0) − βS(S − S0)) where ρ0 = ρ(T0, S0) and where βT and βS

are the thermal and solutal expansion coefficients, respectively. For the analysis of the results
presented in Sect. 4, it is important to recall that βT ≥ 0 while βS ≤ 0. The horizontal walls
are impermeable and are maintained at different temperatures and concentrations: Tu, Su

(top) and Tb, Sb (bottom).
As previously mentioned, the one-domain approach has been chosen in this analysis.The

dimensionless form of the conservation equations is obtained using the following scales: d∗
for length, d∗2/ν for time, ν/d∗ for velocity, and (ρ0ν

2)/d∗2 for pressure, ν being the kine-
matic viscosity. The temperature and concentration differences (T − T0) and (S − S0), are
scaled by �T = Tu − Tb and �S = Su − Sb, respectively. If u represents the dimensionless
velocity vector, the set of conservation equations takes the form

∇ · u = 0 (1)
∂

∂t

(
u
φ

)
+ 1

φ

(
u · ∇ u

φ

)
= ∇ ·

(
1

φ
∇u − PI

)
− 1

Da
u + GrTT ez + GrSSez (2)

∂T

∂t
+ u · ∇T = 1

Prf
∇ ·

(
αT

αTf
∇T

)
(3)

φ
∂S

∂t
+ u · ∇S = 1

Scf
∇ · (φ∇S) (4)

where GrT = (ρ0gβT�T d∗3)/ν2 and GrS = (ρ0gβS�Sd∗3)/ν2 are the thermal and solutal
Grashof numbers based on the total depth of the channel d and Prf = ν/αTf and Scf = ν/Df

are the fluid Prandtl and Schmidt numbers (Df being the molecular diffusivity), respec-
tively. In the solute transport Eq. 4, due to absence of mass diffusion in the solid phase, the
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effective solute diffusion coefficient in the absence of dispersion effect has been taken such
that Deff = φDf where φ represents the porosity.

In the momentum Eq. 2 Da = K/d∗2 is the Darcy number (dimensionless permeability)
while the reduced viscosity in the Brinkman term has be taken such that µeff/µf = 1/φ

(Whitaker 1999). The second Brinkman correction term has been neglected. Finally, αT in
Eq. 3 is the thermal diffusivity (αT =αTf in the fluid and αT =αTm in the porous region).
The associated dimensionless boundary conditions at the external walls are

u(1) = u(0)= 0, T (1)= T ∗
u − T ∗

0

�T ∗ , T (0)= T ∗
b − T ∗

0

�T ∗

S(1) = S∗
u − S∗

0

�S∗ , S(0)= S∗
b − S∗

0

�S∗ (5)

In Eqs. 1–4 let us recall that the effective properties (φ, Da, and αT ) are Heaviside functions
and therefore their differentiation must be considered in the meaning of the distributions
(Schwartz 1961; Kataoka 1986).

3 Linear Stability Analysis

The perturbation equations are obtained in a usual way using the general decomposition

ζ = ζ (z) + ζ ′(x, z, t) (6)

where the overlined and prime notations represent the basic state and the perturbation of a
generic variable ζ , respectively. The basic state is assumed to be quiescent and therefore
u(z)= w(z)= 0 and ∂/∂t = 0. For conciseness, basic states for the temperature and con-
centration are provided in Appendix. Equation 6 is introduced in Eqs. 1–5 and the resulting
system is linearized. Assuming that the principle of exchange of stability holds, the linearized
system gives

∂

∂t

(
∂

∂z

(
− 1

φ

∂w′

∂z

)
+ 1

φ

(
∂2w′

∂x2

))
= ∂

∂z

(
1

Da

)
∂w′

∂z
+ 1

Da

∂2w′

∂x2 + 1

Da

∂2w′

∂z2

− 1

φ
∇2

(
∂2w′

∂x2 + ∂2w′

∂z2

)
− ∂

∂z

(
1

φ

)
∇2

(
∂w′

∂z

)

− ∂

∂z

(
1

φ

)
∂3w′

∂z3 − ∂2

∂z2

(
1

φ

)
∂2w′

∂z2

− ∂

∂z

(
1

φ

)
∂3w′

∂x2∂z
+ GrT

∂2T ′

∂x2 + GrS
∂2S′

∂x2 (7)

Similarly, the linearized energy and solutal Eqs. 3, 4 take the form

Prf

(
∂T ′

∂t
+ w′ ∂T

∂z

)
= αT

αTf

(
∂2T ′

∂x2 + ∂2T ′

∂z2

)
+ 1

αTf

∂αT

∂z

∂T ′

∂z
(8)

Scf

(
∂S′

∂t
+ w′ ∂S

∂z

)
= φ

(
∂2S′

∂x2 + ∂2S′

∂z2

)
+ ∂φ

∂z

∂S′

∂z
(9)

According to the normal mode expansion, the vertical velocity component and the tempera-
ture and concentration are decomposed under the form

(w′, T ′, S′)= (W (z), θ(z), S(z)) eiκx+σ t (10)
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with ∇2
2 f +κ2 f = 0 (∇2

2 = ∂2/∂x2) and where W (z), θ(z) and S(z) are the amplitudes of the
velocity, temperature, and concentration, respectively. κ is the dimensionless wave number
and σ is the complex growth rate. Assuming that the principle of exchange of stability holds
(σ = 0) and introducing Eq. 10 into the linearized system gives

1

φ

(
d4W

dz4 + κ4W

)
− κ2

(
2

φ

d2W

dz2 − 1

Da
W + 2

d

dz

(
1

φ

)
dW

dz

)

−
(

2
d

dz

(
1

φ

)
d3W

dz3 − d

dz

(
1

Da

)
dW

dz
−

(
1

Da
− d2

dz2

(
1

φ

))
d2W

dz2

)

+ κ2 (GrTθ + GrSS) = 0 (11)

Prf

(
dT

dz
W

)
= αT

αTf

(
−κ2θ + d2θ

dz2

)
+ 1

αTf

dαT

dz

dθ

dz
(12)

Scfφ

(
dS

dz
W

)
=φ

(
−κ2S + d2S

dz2

)
+ dφ

dz

dS
dz

(13)

The boundary conditions at the external walls take the form:

θ(1)= 0, S(1)= 0, W (1)= 0,
dW (1)

dz
= 0

θ(0)= 0, S(0)= 0, W (0)= 0,
dW (0)

dz
= 0

(14)

The system given by Eqs. 11–14 represents the eigenvalue problem. It is solved using the
GITT (Cotta 1993) and the critical Grashof is obtained by minimization over κ . For the sake
of conciseness, the GITT is not described in this article and details concerning its application
to such a fluid-porous configuration can be found in previous papers (Hirata et al. 2006;
Hirata et al. 2007b). This numerical integral method has been validated by comparison with
the exact values obtained in full fluid and porous cavities (Chandrasekhar 1961).

4 Numerical Results

In this section, the onset of natural convection due to thermal and solutal buoyancy forces
is analyzed. First, the validation of the analysis is obtained by comparison of the numerical
results to the exact values of Rayleigh-Bénard problem both in a pure fluid (Da → ∞, φ = 1)
and in a full porous layer (d̂ = d∗

f /d∗
m → 0). As expected, in both cases, the marginal sta-

bility curves plotted in the plane (RaT, RaS) is a straight line (Nield and Bejan 1992).
Here, the thermal and the solutal Rayleigh numbers are defined by RaT = GrT Prf Da and
RaS = GrSScf Da, respectively. According to the boundary conditions given by Eq. 5, the
fluid case leads to −RaTf + RaSf = 1707.77 with the associated wave number κ = 3.12. The
full porous configuration leads to −RaTm + RaSm = 4π2 ≈ 39.48, with κ =π ≈ 3.14. From
the definitions �T = Tu−Tb and �S = Su−Sb, it is possible to identify the regions where the
temperature and concentration gradients are stabilizing or destabilizing (see, Figs. 2, 3). One
verifies that the curves RaS × RaT obtained with this analysis are straight lines that crosses
the axes in (0, 1707.77); (−1707.77, 0) and (0, 39.48); (−39.48, 0). All the results presented
here have been obtained with the following parameters: Prf = 10, Da = 10−5, φ = 0.39, and
εT =αTf/αTm = 1 (unless otherwise specified).
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Fig. 2 Critical solutal Rayleigh number as a function of the thermal Rayleigh number for a full fluid layer
(Da → ∞, φ = 1)

Fig. 3 Critical solutal Rayleigh
number as a function of the
thermal Rayleigh number for a
full porous layer (d̂ → 0)
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Figure 4 shows the stability curves obtained for different values of the depth ratio d̂.RaT = 0
and RaS = 0 correspond to the pure solutal or thermal cases, respectively. It is shown that as
RaT increases (the thermal buoyancy forces are more stabilizing) higher concentration gradi-
ents are needed to destabilize the system. Contrary to the above limiting cases, the evolution
of the stability curves are not straight lines for RaT ≥ 0. This change can be explained by
representing the critical wave number κ as a function of the thermal Rayleigh number RaT

(Fig. 5). Two regions are clearly identified: for negative values of RaT, the critical mode
corresponds to convection cells at large wave numbers while the critical mode for RaT ≥ 0
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Fig. 4 Critical solutal Rayleigh
number versus the thermal
Rayleigh number, for three values
of the depth ratio d̂
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Fig. 5 Wave number versus the thermal Rayleigh number, for three values of the depth ratio d̂

corresponds to cells at small wave numbers. These results indicate that the bimodal nature of
the marginal stability curves obtained for the pure thermal convection case (Chen and Chen
1988; Hirata et al. 2006) is also present in the thermosolutal case.

At small wave numbers the convective flow takes place in the whole cavity (“porous
mode”) while perturbations of large wave numbers lead to a convective flow mainly confined
in the fluid layer (“fluid mode”). The streamline patterns and the vertical velocity profiles
for d̂ = 0.8 and different values of RaT are presented in Fig. 6a–d. Contrary to the pure ther-
mal case where a single convection cell is observed, the onset of the thermosolutal case is
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characterized by a multi-cellular regime for RaT 	 0. This change is illustrated in Figs. 6a
b. Indeed, for RaT = − 20 (Fig. 6a), three contrarotating cells are present in the fluid region
while the velocity field in the porous region is close to zero. When RaT increases, the wave
length of the cell also increases (the wave number decreases) and at RaT = 0 (Fig. 6b) a
monocellular flow is obtained (pure solutal case). For RaT = +20 (Fig. 6c) the flow starts to
penetrate in the porous medium to finally occupy more or less the whole cavity for RaT = +50
(Fig. 6d).

Let us note that the multi-cellular regime of the thermosolutal case, had been already
observed by Chen and Chen (Chen and Chen 1988) using a two-domain approach. Zhao and
Chen (Zhao and Chen 2001) also have observed this type of multi-cellular structures using a
one-domain model but they were not able to capture the two convective modes. It seems to
us that one of the possible reasons for this difference is due to the fact that the differentiation
of the discontinuous functions at the interface was not taken in the sense of distributions.
In addition, in both studies, only one value of the thermal Rayleigh number was considered
(RaT ∼ 50).

Finally, the influence of the thermal diffusivity ratio

εT = αTf

αTm
(15)

for d̂ = 0.8 is presented in Fig. 7. It is shown that a lower value of εT leads to a more unstable
situation whatever the thermal Rayleigh number. As expected, in the absence of thermal
buoyancy forces (RaT = 0) εT has no influence on the stability of the system. Moreover, it
can be seen that the differences between the curves obtained for εT = 0.7 and 1 increases
with |RaT|. The marginal stability curves (RaS versus κ) for two different values of RaT are
presented in Figs. 8 and 9. For RaT = − 20 (the temperature gradient is destabilizing) and
εT = 1, it is important to remember that the convective flow is confined in the fluid region
(see the streamline patterns on Fig. 6a). For εT < 1 heat diffusion is easier in the porous
medium, and therefore the temperature at the interface increases. Under these circumstances,
the temperature gradients in the fluid become more important, giving rise to a smaller value
of the critical solutal Rayleigh number (Fig. 8). On the other hand, for RaT = 20 Fig. 9 shows
that the critical mode is obtained for small wave numbers (“porous mode”). It is observed
that decreasing εT hardly destabilizes the “porous mode” while the “fluid mode” (large wave
numbers) is found to be more stable. This behavior can be explained by the stabilizing effect
of the temperature gradient.

5 Conclusion

A linear stability analysis of thermosolutal natural convection in superposed fluid and porous
layers has been carried out, using a one-domain model. It has been shown that the two con-
vection modes observed in the pure thermal case are also present when thermosolutal con-
vection is considered. In that case, it has been observed that the thermal Rayleigh number
plays a fundamental role. Contrary to the pure thermal case where a single convection cell is
observed, the onset of the thermosolutal case is characterized by a multi-cellular regime for
RaT 	 0. The analysis shows the moderate influence of the depth ratio. It also emphasizes
the destabilizing influence of the thermal diffusivity ratio.
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Fig. 6 Streamline patterns and vertical velocity profiles for d̂ = 0.8: (a) RaT = − 20, RaS = − 35.1
and κcr = 10.2; (b) RaT = 0, RaS = 0 and κcr = 6.0; (c) RaT = 20, RaS = 24.7 and κcr = 3.5; (d)
RaT = 50, RaS = 38 and κcr = 4.0. The thick horizontal line represents the fluid/porous interface
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Fig. 7 Influence of the thermal
diffusivity ratio εT for d̂ = 0.8
and different thermal Rayleigh
numbers
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Fig. 8 Marginal stability curves
obtained for two different values
of the thermal diffusivity ratio
εT , d̂ = 0.8, RaT = − 20
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Appendix

Basic state for temperature and concentration

The basic state for the temperature in both the fluid and porous layers are given by

T f = c1

αTf
z + c2 (16)

T m = c3

αTm
z + c4 (17)
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Fig. 9 Marginal stability curves
obtained for two different values
of the thermal diffusivity ratio
εT , d̂ = 0.8, RaT = + 20
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with

c1 = c3 = αTm αTf (1 + d̂)

d̂ αTm + αTf
(18)

c2 = − αTm(1 + d̂)

d̂ αTm + αTf
+ Tu − T0

�T
(19)

c4 = Tb − T0

�T
(20)

Similarly the basic state for the concentration takes the form

Sf = c5z + c6 (21)

Sm = c7

φ0
z + c8 (22)

where φ0 is the porosity value in the porous layer. The constants c5 − c8 are given by

c5 = c7 = φ0(1 + d̂)

d̂ φ0 + 1
(23)

c6 = −φ0(1 + d̂)

d̂ φ0 + 1
+ Su − S0

�S (24)

c8 = Sb − S0

�S (25)
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