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Abstract We seek simple analytical solutions in a model of gas flow driven by a
combination of buoyancy, viscous, and capillary forces. Traveling-wave solutions describe
propagation of the top and bottom of the gas plume. The top of the plume has low gas satura-
tion, but propagates much faster than the bottom. The theoretical maximum of the velocity of
propagation of the top of the plume provides a simple conservative estimate of the time until
plume evolution will dramatically slow down. A sequence of rarefaction and traveling-wave
solutions characterizes the transition zones between the top and bottom stable regions. The
analytical results are applied to studying carbon dioxide flow caused by leaks from deep geo-
logical formations used for CO2 storage. The results are also applicable for modeling flow
of natural gas leaking from seasonal gas storage, or for modeling of secondary hydrocarbon
migration.

Keywords Multiphase flow · Porous media · Gas migration · Darcy’s law

1 Introduction

This work is motivated by the growing interest in injecting carbon dioxide into deep geo-
logical formations as a means of avoiding its atmospheric emissions and consequent global
warming (IPPC 2005). While it is anticipated that CO2 will remain trapped beneath the seal
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450 D. Silin et al.

of the storage reservoir, it is important to have a good understanding of the rate that CO2

would move upward under buoyancy forces should some of the CO2 leak out of the stor-
age reservoir. To date, studies of leakage have either focused on the role of leaking wells
(Gasda et al. 2004; Nordbotten et al. 2005) or used numerical simulation to investigate leak-
age through poor-quality reservoir seals (Lindeberg 1997; Doughty and Myer 2008). Here,
we are interested in the fate of CO2 driven upward by buoyancy, using analytical methods to
help provide insights into the physics of countercurrent flow of CO2 and water and to bound
potential migration rates.

In a steady-state flow, two immiscible fluids saturating a porous medium approach an
equilibrium distribution characterized by a local minimum of the surface tension energy.
Although the capillary forces act locally at a microscopic scale, they constrain the macro-
scopic flow by arranging the distribution of the fluids. Examples of such flows are oil and
gas migration (Hubbert 1953; Muskat 1949), or the flow of gas leaking from an underground
storage into an overlying aquifer. Early works (Rapoport 1955; Mattax and Kyte 1962) report
experimental and theoretical studies of countercurrent two-phase flow in porous media in the
context of enhanced oil recovery.

A number of researchers have studied models of buoyancy-driven vertical migration of flu-
ids in the past using both analytical and numerical approaches. Shvidler and Levi (1970) have
obtained an analytical solution to a static gravity segregation problem and numerically inves-
tigated dynamic gravity-driven vertical two-phase fluid flow. More recently, similar problems
have been studied in the contexts of formation of oil and gas reservoirs by secondary hydro-
carbon migration (Siddique and Lake 1997; Bedrikovetsky et al. 2001) and gravity-drainage
in fractured reservoirs (Luan 1994). An analytical solution for a model of gas plume propaga-
tion in a saline aquifer caused by gas injection has been obtained by Nordbotten et al. (2005).
Their solution is based on the Buckley–Leverett approximation (Buckley and Leverett 1942),
where capillarity is neglected. Doughty has investigated numerically the impact of capillary
hysteresis effects on CO2 migration (Doughty 2007). Riaz and Tchelepi (2006) have numer-
ically investigated a problem very similar to the one considered in this work with analytical
tools.

In this study, we focus on a case where a less dense nonwetting fluid, e.g., gas, migrates
vertically upward in an initially dense-liquid-saturated reservoir. We focus on the relative
impact of gravity, capillarity, and viscosity on the plume dynamics, and assume that the for-
mation is homogeneous. In general, vertical fluid migration is significantly affected by the
rock heterogeneity. For instance, if the formation has a system of vertical or inclined conduc-
tive fractures or faults, the leaking gas, most likely, will flow through this system. We also
assume that the domain under consideration is deep enough so that the gas is supercritical
and variations of the density of gas and the viscosities of both fluids can be neglected. In this
study, we neglect processes like fluid exchange by evaporation and condensation, as well as
precipitation and dissolution.

We employ analytical tools, for which we assume an idealized homogeneous formation.
We simplify the model so that the interactions between the driving forces do not interfere
with other phenomena. Our principal finding is that the evolution of the saturation profile of a
moving plume can be described as a sequence of traveling and rarefaction waves, as presented
in Fig. 1. The model predicts that two traveling waves characterize the evolution of the top
and bottom boundaries of the saturation profile. The top of the plume has low gas saturation,
but propagates much faster than the bottom. Thus, the plume stretches until it either reaches
a uniform residual gas saturation or reaches a seal. The model also suggests that there is a
fixed depth at which the fluid saturation remains constant most of the time. Above this point,
the migrating gas displaces water by drainage. Below this point, where most gas is at the
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Fig. 1 The top part of the plume
is relatively “lean” with respect
to the gas saturation, but
propagates much faster than the
bottom part saturated with gas
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beginning, the fluid displacement mechanism is imbibition. In addition, this stable point is
characterized by the most intense countercurrent fluid flow. From the relative permeability
curves, we estimate the theoretical maximum of the plume propagation velocity. This simple
estimate can be used for prediction of the time of plume evolution.

Accurate prediction of plume evolution requires knowledge of the fluid and formation
properties. We have found that the usually used capillary pressure parametrization proposed
in Van Genuchten (1980) is insufficient for an adequate fitting of the laboratory-measured
capillary pressure for the Frio formation sandstone. In this study, we have developed a differ-
ent parametrization, which is described in Appendix A. The selection of the Frio formation
properties has been motivated by the fact that it was the site of a pilot CO2 injection test.
Papers Daley et al. (2007) and Doughty et al. (2008) provide a comprehensive overview of
that project.

The paper is organized as follows. First, we briefly review the gravity-segregation model
and formulate the main equations of countercurrent flow of gas and brine. Applying this
model to describe vertical gas plume migration, we characterize different zones of the plume
by traveling-wave and rarefaction-wave solutions. Conclusions are given at the end. Physi-
cal parameters used in the case studies presented in this paper are gathered in Appendix A.
Appendix B describes the traveling-wave and rarefaction-wave solutions.

2 The Model

In this section, we review the principal equations of the mathematical model of buoyancy-
driven countercurrent flow. We neglect the lateral flow components, and so the flow is essen-
tially vertical. This assumption is valid if the gas flow is horizontally confined by fracture
walls or if we consider fluid flow far away from the lateral boundaries of the plume. Under
these assumptions, the two-phase fluid flow is countercurrent: in a representative elementary
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volume, the gas flowing upward is replaced by an equal volume of the brine flowing downward.
These assumptions make our model similar to the one developed by Luan (1994). We apply
this model to study the evolution of the vertical saturation profile in a gas plume.

pg and pw denote the gas and brine pressures, respectively. The capillary pressure, pc =
pg − pw, is related to the local-equilibrium fluid distribution in the pore space. It is usually
expressed as a function of saturation S, i.e., the fractional volume of the pore space filled
with the water (Leverett 1941):

pg − pw = pc(S) (1)

This dependence on S is not a one-to-one correspondence (Muskat 1949), but is strongly
affected by the history of fluid migration. Numerous studies emphasize differences between
the drainage and imbibition capillary pressure curves (see Doughty 2007; Al-Futaisi and
Patzek 2003; Al-Futaisi and Patzek 2004, and the references therein).

The permeability to each fluid is determined by the geometry of the part of the pore space
occupied by this fluid. Hence, the remarks regarding history-dependence of the capillary
pressure curve equally apply to the relative permeability curves: the permeability to each
fluid is a function of both the liquid saturation and the history of the fluid migration. The
velocity of propagation of the plume is determined by the velocity of propagation of its
leading tip, where the fluid displacement mechanism is drainage. In order to simplify the cal-
culations, we will use the drainage capillary pressure and relative permeability coefficients,
krg = krg(S) and krw = krw(S), for the entire plume.

For each fluid phase, Darcy’s law with an account for gravity yields (Hubbert 1956):

ug = krg(S)k

µg

(−∇ pg + �gg
)

(2)

uw = krw(S)k

µw
(−∇ pw + �wg) (3)

Here, ug and uw are, respectively, Darcy velocities or volumetric fluxes of the gas and liquid,
µg and µw are the dynamic viscosities of the fluids, and �g and �w are their densities. The
gravity acceleration is denoted by g. Using Eq. 1, the liquid pressure pw can be eliminated
from the system of Eqs. 2 and 3:

uw = krw(S)k

µw

(−∇ pg + ∇ pc(S) + �wg
)

(4)

The mass balance of gas and liquid can be expressed as

∂
(
�g(1 − S)φ

)

∂t
+ ∇ · (�gug) = 0 (5)

∂(�wφS)

∂t
+ ∇ · (�wuw) = 0 (6)

The porosity φ accounts only for the void space available for fluid flow. The total number
of unknown functions is equal to 11: ui , pi , �i (i = g, w), and S. In order to determine a
unique solution, Eqs. 1–6 must be complemented with two equations of state, one for each
fluid, and with a consistent set of boundary and initial conditions.

We consider a spontaneous buoyancy-driven flow at a depth where carbon dioxide is in
a supercritical state. The total interval where the solution is defined is not large relative to
the absolute depth, and so the variation of the hydrostatic pressure is not large. With this
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assumption, we neglect the compressibility of the fluids and rock and summation of Eqs. 5
and 6 yields

∇ · (
ug + uw

) = 0 (7)

The flow is vertical, and there is no flow outside the plume. Hence, Eq. 7 implies that the
magnitudes of fluid velocities satisfy

ug + uw = 0 (8)

In other words, the flow is countercurrent (Barenblatt and Gilman 1987; Ryzhik 1960; Silin
and Patzek 2004). Equations 1, 2, and 4 imply

∂

∂z
pg =

krw(S)

µw

krw(S)

µw
+ krg(S)

µg

[
∂

∂z
pc(S) − (�w − �g)g

]
− �gg (9)

and

∂

∂z
pw = −

krg(S)

µg

krw(S)

µw
+ krg(S)

µg

[
∂

∂z
pc(S) − (�w − �g)g

]
− �wg (10)

Here, g is the scalar magnitude of the gravity acceleration and z is the vertical coordinate
directed upward. By virtue of Eq. 10, the Darcy velocity of water, Eq. 3, becomes

uw = k

µw
f (S)

[
∂

∂z
pc(S) − (�w − �g)g

]
(11)

where

f (S) =
krw(S)

krg(S)

µg

krw(S)

µw
+ krg(S)

µg

= krw(S)

krw(S)

krg(S)

µg

µw
+ 1

(12)

In Eq. 11, we have left mobility factor k/µw outside the function f (S) to make the latter
dimensionless.

Substitution of Eq. 11 into Eq. 6 yields

∂(φS)

∂t
= − ∂

∂z

(
k

µw
f (S)

(
∂

∂z
pc(S) − (�w − �g)g

))
(13)

2.1 Flow Equations in a Dimensionless Form

Let H denote the thickness of the aquifer. Then, dimensionless vertical coordinate and time,
ζ and τ , can be introduced in the following way:

ζ = z

H
and τ = k

(
�w − �g

)
g

µw H
t (14)
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In these variables, the dimensionless Darcy velocity of water Ww has the following form:

Ww = µw

k(�w − �g)g
uw = f (S)

[
1

(�w − �∗
g)g

∂

∂z
pc(S) − 1

]

(15)

The capillary pressure function can be expressed through dimensionless Leverett’s
J -function (Leverett et al. 1942):

pc(S) = σ

√
φ

k
J (S) (16)

where σ is the surface tension coefficient at the water–gas interface. Thus, Eqs. 13 and 15
take the form

φ
∂S

∂τ
= − ∂

∂ζ
Ww (17)

and

Ww = f (S)

(
γJ ′(S)

∂S

∂ζ
− 1

)
(18)

where

γ = σ

(�w − �g)gH

√
φ

k
(19)

The dimensionless factor γ is analogous to the reciprocal Bond number and evaluates the
ratio between the capillary and buoyancy forces. Its value is of the order of 1 for carbon
dioxide flowing in a 20-m-thick aquifer layer of permeability of the order of 100 millidarcy
and porosity about 20% at a depth of several kilometers. However, the magnitude of γ is
much larger in a thin low-permeability seal. For instance, if the permeability is of the order
of 0.01 millidarcy, the porosity is around 1%, and the thickness is of the order of 1 m; then,
γ = 103, which is three orders of magnitude larger than in an aquifer. With the same values
of the fluid and porous medium parameters, the characteristic plume propagation time in the
above-mentioned permeable aquifer is measured in weeks, whereas for a tight seal, this time
scale is of the order of hundreds or thousands of years.

Equations 17 and 18 can be summarized in the form of a nonlinear diffusion–advection
equation

φ
∂S

∂τ
= ∂

∂ζ

[
f (S)

(
−γJ ′(S)

∂S

∂ζ
+ 1

)]
(20)

2.2 Three Asymptotic Forms of Eq. 20

Equation 20 resembles Rappoport–Leas water–oil displacement equation (Barenblatt et al.
1990). This analogy suggests three asymptotic approximations, depending on the relative
values of the two terms in the parentheses on the right-hand side. If

∣∣∣∣γJ ′(S)
∂S

∂ζ

∣∣∣∣ � 1 (21)

then the flow can be characterized by Ryzhik’s self-similar solution (Ryzhik 1960; Barenblatt
et al. 1990). A condition like 21 holds where the saturation changes abruptly, for example,
at the gas–water interface near the leading front of a plume entering a low-permeability seal.
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In the second case, the flow is considered in a permeable thick aquifer, so that
∣
∣
∣
∣γJ ′(S)

∂S

∂ζ

∣
∣
∣
∣ ∼ 1 (22)

In this case, neither gravity forces nor capillarity can be neglected and two stable zones at
the top and at the bottom of the plume can be described by traveling-wave solutions.

Small saturation gradient, so that
∣
∣
∣
∣γJ ′(S)

∂S

∂ζ

∣
∣
∣
∣ � 1 (23)

leads to the Buckley–Leverett approximation. In this case, the Darcy velocities of the fluids
do not depend on capillary pressure,

Ww = − f (S) (24)

and Eq. 20 reduces to a hyperbolic equation

φ
∂S

∂τ
= ∂

∂ζ
f (S) (25)

Known solutions to hyperbolic equations include shock or rarefaction waves (Buckley and
Leverett 1942; Barenblatt et al. 1990). By introducing a new variable,

U (ζ, τ ) = φ

ζ∫

0

S(η, τ ) dη (26)

which evaluates the mean volume of water relative to the bulk volume of the porous medium,
one obtains a Hamilton–Jacobi equation

∂U

∂τ
= f

(
∂U

∂ζ

)
(27)

Development of shock waves in Buckley–Leverett theory is equivalent to the loss of smooth-
ness of the solution to a Hamilton–Jacobi equation. The latter leads to the concept of viscosity
solution (Crandall et al. 1984).

One can demonstrate that the convexity or concavity of the function f and the initial con-
dition for U determine whether the solution remains smooth or the evolution of the saturation
profile may lead to development of shock waves (Silin 1997, 1998). A rarefaction-wave solu-
tion is smooth in ζ for all τ . It is feasible only on a saturation interval, where the monotonicity
of the initial saturation profile and the convexity of function f are the right combination.
For example, if U at τ = 0 is a concave function of ζ , which is the case if water saturation
increases with depth, then concavity of f (S) guarantees that the respective solution is smooth
at all times.

A shock wave is an asymptotic solution implied by neglecting the transition zone at the
gas–water displacement front. Such a solution is justified in water–oil displacement models
with a high flow rate, which must be forced by injection (Barenblatt et al. 1990). In our model,
the flow rate cannot be forced, and depending on the magnitude of dimensionless factor γ ,
such an approximation may lead to inadequate conclusions. Therefore, we simulate the evo-
lution of gas–water transition zones using the full traveling-wave solutions to Eq. 20. Such
an approach excludes shocks and makes possible estimation of the thicknesses of transition
zones (see Appendix B).
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2.3 The Structure of the Plume

We model the evolution of a vertically migrating plume of gas by splitting it into several zones.
In each zone, the saturation profile is described by a simple analytical solution, which is either
a traveling-wave or a rarefaction wave. Both types of solutions are described in Appendix B.
These solutions are asymptotic, and therefore, are meaningful only within certain length and
time scales. Since these scales are not identical for both types of solutions, conditions must be
established guaranteeing continuity of the plume. Each solution automatically satisfies mass
conservation. Hence, compatibility conditions are derived from the requirement of equal
propagation: the speed of propagation of the top or bottom tip of a rarefaction wave must
match the speed of propagation of the adjacent traveling-wave. This requirement provides
a set of conditions linking different parts of the plume. Satisfying these conditions leads
to building of the whole plume as a sequence of blocks (see Fig. 1). Some of these blocks
may shrink to zero as the plume evolves. Depending on the initial saturation distribution in
the plume, not all of these blocks are necessarily present from the very beginning. Figure 2
shows an example of calculation of the plume evolution in four-month time increments for
the parameters given in Table 1. At the beginning, the rarefaction wave at the tale of the
plume, symbolically shown as a broken line, is a negligibly small part of the entire profile.
With time, the low-water (i.e., high-gas) saturation zone of the plume will disperse and this
tail rarefaction wave will stretch over the whole low-gas saturation plume.

Water saturation profile, S(ξ, τ ), is the key unknown function. All other parameters can
be found from S(ξ, τ ). Indeed, the gradient of water saturation can be evaluated without
differentiation using Eq. B.12. The Darcy velocity is readily obtained by substitution of this
gradient into Eq. 18. Water pressure can be obtained by converting the dimensionless Darcy

Fig. 2 Evolution of water
saturation profile in the plume.
The origin, z = 0, is associated
with the center of the rarefaction
wave at the top of the plume
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Table 1 Formation and fluid
parameters used in the
calculations

Absolute permeability in aquifer, k 100 millidarcy
Porosity in aquifer, φ 20%
Water viscosity, µw 5.0 · 10−4 Pa-s
Gas viscosity, µg 4.38 · 10−5 Pa-s
Water density, �w 1.0 · 103 kg/m3

Gas density, �g 0.561 · 103 kg/m3

Surface tension coefficient, σ 3 · 10−2 N/m
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velocity back into physical units and integrating Eq. 10. Gas pressure is evaluated using the
capillary pressure curve, Eq. 1.

The following subsections describe individual blocks of the plume. The values of physical
parameters used in the calculations are discussed in Appendix A.

2.4 Traveling-Wave at the Top of the Plume

The top of the plume can be characterized by a traveling-wave solution. Above the plume,
the formation is saturated with brine. Thus, S2 = 1 in Eq. B.6. Since f (1) = 0, Eq. B.8
reduces to

V (S) = f (S)

φ(1 − S)
(28)

where S is the saturation near the top of the plume. Function V (S) attains a maximum, which
defines the theoretical upper limit for the velocity of plume migration (see Fig. 3). Let us
denote the respective saturation by ST. The sharp shape of the V (S) curve is a consequence
of the significant viscosity contrast between water and gas. In case of hydrocarbon migration,
this contrast may be significantly lower. Therefore, the respective curve will be smoother
and the maximum will shift toward a lower water saturation (see Fig. 4).

At the leading tip of the plume, the saturation behind the front must correspond to the
maximum of velocity (28), ST. If it were less than ST, the very top of the plume would
run away and disperse, and a new front would develop. If the saturation behind the front
exceeded ST, then small heterogeneities and consequent saturation fluctuations would create
a faster-propagating front that would coalesce with the top of the plume.

By selecting some S0 > ST, and respective dimensionless depth ξ0, Eq. B.15 reduces to

ξ(S) = ξ0 +
S∫

S0

γ f (η)J ′(η)

f (η) − f (ST)

1 − ST
(1 − η)

dη (29)

Fig. 3 The maximum of the
V (S) curve defines the
theoretical maximum of the
plume propagation velocity
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By virtue of Eq. 28, the latter equation is equivalent to

ξ(S) = ξ0 +
S∫

S0

γJ ′(η)

1 − V (ST)

V (η)

dη (30)

By the definition of saturation ST, the denominator of the integrand is negative, and so is
the numerator. Thus, the whole expression is positive and water saturation increases with
ξ . The interval of saturations, where Eq. 30 is valid, does not include singularity points of
the Leverett’s function. In particular, such an interval must be strictly between the end-point
saturations.

The asymptotic character of this solution is revealed by the fact that the integrand has
a singularity as the dummy variable η approaches ST. Consequently, the transition part of
the profile is followed by a theoretically infinite interval of almost constant saturation. How-
ever, such constant-saturation parts of the plume are not sustainable: local heterogeneities
inevitably result in the development of new fronts with transition zones. A stable solution is
obtained by linking the top traveling-wave transition part of the plume to a rarefaction wave
that follows behind.

2.5 The Rarefaction Wave behind the Leading Part of the Plume

The velocity of propagation of the top of the plume is characterized by the maximum of the
function V (S) (Eq. 28). At the maximum, V ′(S) = 0 and V ′′(S) ≤ 0. Hence,

f ′ (S)
∣∣
S=ST

= − f (S)

1 − S

∣∣∣∣
S=ST

and f ′′(S)
∣∣
S=ST

< 0 (31)

The left-hand equality in Eq. 31 means that the velocity of propagation of the top of the plume
automatically matches the velocity of propagation of the rarefaction wave with saturation ST

at the top (see Eq. B.19). The right-hand inequality implies that f (S) is a concave function of
S near S = ST (Rockafellar 1970). Hence, this rarefaction wave corresponds to the interval
of concavity of the function f (S) (see Fig. 5).

Let SRT be the brine saturation at the lower end of the rarefaction wave and SM be the
saturation at which the function f (S) attains its maximum. We assume that SRT < SM. By

Fig. 4 Plume migration velocity
in m/year for three different
viscosity ratios µw:µg

0

5

 10

 15

 20

 25

 30

0  0.2  0.4  0.6  0.8 1

v(
S

) 
[m

/y
ea

r]

S

Viscosity ratio = 20:1

Viscosity ratio = 1:1

Viscosity ratio = 1:5

123



Buoyancy-Driven Two-Phase Countercurrent Fluid Flow 459

Fig. 5 Plot of f (S): normally
the plot includes an interval of
concavity between two intervals
where the function is convex
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virtue of Eq. B.18, the top and bottom bounds of the rarefaction zone, ζT(τ ) and ζRT(τ ), are
characterized by

ζT(τ ) = ζ0 − τ
f ′ (ST)

φ
= ζ0 + τ V (ST) and ζRT(τ ) = ζ0 − τ

f ′ (SRT)

φ
(32)

Note the opposite directions of propagation: the top end moves upward, along with the leading
part of the plume, and the bottom one moves downward (see Fig. 6). The Darcy velocity of
the fluids inside the rarefaction wave is defined by Eq. 24. Therefore, the magnitude of Darcy
velocity attains its greatest value at the saturation S = SM. At this saturation, the derivative
f ′(S) vanishes, which corresponds to the vertical coordinate ζ0, where the saturation is con-
stant. Thus, the most intense fluid flow happens in the immobile part of the saturation profile!
Above this point, the brine saturation decreases, and so the fluid displacement mechanism is
drainage. Below ζ0, the brine saturation increases, and so the fluid displacement is imbibition.

The assumption SRT < SM, in particular, imply that f ′ (SRT) > 0. At the same time,
for the rarefaction-wave solution to exist, SRT must be inside or at the end of an interval
of concavity of function f (S). If the minimum of water saturation in the plume, Smin, is
outside this interval, then the rarefaction wave is followed by a traveling-wave front moving
downward and SRT must be determined from matching the velocities of propagation (see
next subsection).
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Fig. 7 Saturations at the tail of
rarefaction wave and the main
part of the plume: the saturation
at the transition point, SRM, is the
tangential point between the plot
of f (S) and a straight line
passing through Smin. The
transition saturation, SB, between
the traveling and rarefaction
waves at the bottom can be
determined in a similar way

Smin

SRM

Minimal water saturation in the plume

Transition between rarefaction 
and travelling waves

SB >S*

SM

2.6 The Main Part of the Plume

The main part of the plume is characterized by the maximum gas saturation and minimum
water saturation: S = Smin. The dynamics of saturation profile evolution behind the rarefac-
tion wave zone can be characterized by a traveling-wave solution. By virtue of Eq. B.8, with
S1 = Smin and S2 = SRT, the dimensionless velocity

Vmin = − 1

φ

f (SRT) − f (Smin)

SRT − Smin
(33)

is negative and the traveling-wave propagates downward. In particular, the fluid displacement
mechanism is imbibition. Matching the derivative of ξRT from the rarefaction wave above
with velocity (33) leads to

f ′(SRT) = f (SRT) − f (Smin)

SRT − Smin
(34)

The latter equation determines SRT. In Fig. 7, the straight line with the slope f ′(SRT) is tan-
gential to the plot f (S) at S = SRT and it must cross the plot at S = Smin. Clearly, as Smin

approaches the dividing point between the intervals of convexity and concavity of function
f (S), the solution to Eq. 34, SRT, converges to the same dividing point as well. At the exact
limit, when Smin = SRT, the downward traveling-wave disappears. Therefore, this downward
traveling-wave can be present only if the function f (S) is convex near S = Smin.

2.7 Saturation Distribution in the Tail of the Plume

Gas saturation behind the plume is not zero, but the fluids do not flow because the gas phase
becomes disconnected. Let us denote by Srg the residual gas saturation behind the plume
and put

S∗ = 1 − Srg (35)

Similar to the upper part of the plume, the evolution of the saturation profile at the bottom
can be characterized by a traveling-wave followed by a rarefaction wave. Let SB be water
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saturation at the transition point. Then, by virtue of Eq. B.8, the velocity of propagation of
the bottom traveling-wave, VB, is

VB = − 1

φ

f (SB) − f (Smin)

SB − Smin
(36)

VB is positive, and therefore the propagation of the wave is upward and the fluid displacement
mechanism is imbibition. Matching the velocity VB with the velocity of the top end of the
following rarefaction wave yields the equation

f ′(SB) = f (SB) − f (Smin)

SB − Smin
(37)

(see Eq. B.19). Thus, the saturation SB characterizes the tangential point between the straight
line, which intersects the plot of f (S) at S = Smin, and the plot of f (S) (Fig. 7). Although
SB > S∗, the difference between the two saturations is tiny. Therefore, the role of the
rarefaction wave in the entire saturation profile is small as long as the maximal gas saturation
in the main plume is relatively high. The bottom end of this rarefaction wave is where water
saturation is equal to S∗. In particular, f ′(S∗) = 0, and only the upper boundary of the bottom
rarefaction wave moves.

2.8 Further Remarks

The calculations presented above suggest the gas plume in a brine-saturated aquifer can be
modeled as a sequence of traveling and rarefaction waves. Driven by buoyancy, the plume
propagates by stretching vertically upward, unlike a gas bubble in bulk water. The velocities
of propagation of the fronts described by traveling-wave solutions are determined from the
conservation of mass and are functions of the saturations ahead of and behind the front. As the
saturation profile evolves, these saturations may change. For example, the saturations above
and below the intersection of the bottom profile with profiles (1)–(3) in Fig. 2 are not equal.
We have neglected these end saturation variations. Such a simplification may be unacceptable
when the variations of end saturations are significant. However, it affects only the internal
structure of the plume, not the profile at the leading front. The velocity of propagation of the
latter eventually determines the time of plume stretching.

If the initial gas saturation in the plume is low, the flow pattern is different. Although such a
case is of lesser practical interest, we briefly discuss it here. The case where SRT < Smin < SM

is similar to the case Smin = SRT considered above: the downward traveling-wave is not pres-
ent and the bottom end of the rarefaction wave propagates downward until it meets the bottom
traveling-wave and the plume collapses.

An interesting case is Smin = SM . By Eq. 32, the bottom boundary of the rarefaction wave
does not move and the plume collapses when the bottom traveling-wave passes the location
where f ′(S) = 0.

If SM < Smin < ST , then both ends of the rarefaction wave behind the leading part of
the plume propagate upward. The saturation SB can be significantly different from S∗. The
magnitude of the velocity of the bottom of the plume is characterized by the slope of the line
between points with coordinates (Smin, f (Smin)) and (SB, f (SB)) (Fig. 7). Thus, unlike the
practically zero propagation velocity at the bottom of the plume at high gas saturations, in
this case, this velocity is relatively high. If

− f ′(SB) >
f (ST)

1 − ST
(38)
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the bottom velocity exceeds V (ST). The inequality (38) can be satisfied only when gas sat-
urations are low. For example, at later times, when the gas saturation becomes small in the
whole plume, the bottom traveling-wave will accelerate and will eventually stretch the plume
to uniform residual saturation.

The above calculations above assumed that the formation is initially fully water-saturated.
However, if the plume follows behind other plumes, the water saturation at the front of the
plume is not one but corresponds to the residual gas saturation behind the other plumes. If
the upper plume has already stretched to uniform residual gas saturation, then, by Eq. B.8,
the dimensionless velocity of propagation of the top of the following plume is given by
equation

VF(S) = f (S)

1 − S∗ − S
(39)

Clearly, VF(S) > V (S). Thus, the “follow-up” plumes propagate faster than the first one.
In particular, subsequent plumes following one another will likely coalesce after some
time.

The fluid displacement mechanism in the part of the plume at initially high gas saturation
is imbibition. That is, water displaces supercritical gas. At the top, a low-saturation gas flow
displaces the reservoir water. The theory of front stability in two-phase fluid displacement
is based on pressure perturbations (Saffman and Taylor 1958; Homsy 1987). Thus, it is not
applicable to buoyancy-driven countercurrent flow. Pressure perturbations in each fluid are
possible only if the saturation changes. Water saturation behind the front determines the
velocity of propagation (Eq. 28). Since the derivative of V (S) vanishes at S = ST, a small
perturbation of the saturation behind the front, S̃ = ST +δS, results in a variation of the front
propagation velocity of the order O(δS2). Thus, perturbations of the saturation may gen-
erate some dispersion of the front. However, development of instabilities like macroscopic
viscous fingers is unlikely. This observation becomes less counterintuitive once one notices
that the mobility contrast at the front is close to one due to the low gas saturation. Based
on the results of 2D numerical simulations of buoyancy-driven countercurrent flow, similar
to the one considered in this study, Bryant et al. (2006) conclude that plume dispersion can
develop due to formation heterogeneity. However, no viscous fingers have been produced by
the simulations.

At the pore scale, countercurrent flow consists of numerous flow channels and pathes,
where the fluids flow in the opposite directions. If the permeability of the formation is high
enough, the buoyancy drive can become sufficient to support a nonzero macroscopic curl
flow. Such a flow is not countercurrent and the argument above is not applicable. An extreme
case of high permeability is bulk fluid flow, where the front is unstable.

2.9 A Simple Estimate of Plume Migration Time

A rough estimate of the time needed to trap all the gas initially contained in the plume can
be obtained as follows. Due to the high viscosity contrast, the difference between ST and S∗
is not very large. Viscosity contrast also implies that the function V (S) decreases sharply as
S deviates from ST. Once water saturation at the top of the plume becomes larger than ST, its
propagation slows down dramatically. Further plume stretching happens at low gas saturation
and decelerates continuously. The active plume stretching continues until water saturation in
the plume becomes close to ST. If the initial thickness of the plume is L , then mass balance

yields an expression for the stretched plume thickness in the form: LT = 1 − Smin

1 − ST
L . Since
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the velocity of plume stretching is approximately equal to the velocity of propagation of the
top, V (ST), the time to attain this thickness is approximately

t ≈ φµw L

k(�w − �g)g

ST − Smin

f (ST)
(40)

Here, we have used the scaling of the velocity into physical units provided by Eq. B.2.

3 Conclusions

Interactions of buoyant, capillary, and viscous forces determine the spontaneous flow of a
gas plume in an aquifer. We focus on vertical flow, assuming either flow in a vertical fracture
or flow in the central part of a large plume away from the lateral boundaries. The two-phase
flow is countercurrent, where a volume of one fluid replaces an equal volume of the other
one.

The evolution of a gas plume can be modeled as a sequence of traveling and rarefaction
waves. In a traveling-wave, the capillary pressure function defines the thickness of a stable
transition zone in the vertical saturation profile. In a rarefaction wave zone, the saturation
variation can only decrease, and therefore the impact of capillarity is neglected.

The top and the bottom of the plume are modeled as traveling-waves. At high viscosity
contrast between gas and water, the wave velocity at the bottom part is negligibly small rela-
tive to the speed of propagation at the top. Therefore, the plume does not rise like a bubble in
bulk water, but stretches until it reaches a uniform residual gas saturation or hits a horizontal
seal. The theoretical maximum of velocity of the top of the plume propagation determines
how fast the plume stretches in the vertical direction. This velocity in dimensionless form
has been expressed through the fractional flow function. The physical velocity arises from
this dimensionless velocity through a simple scaling relationship. This calculation leads to a
rough, but straightforward, estimate of the plume propagation time. Accurate predictions of
this time require knowledge of fluid and formation parameters. Simple calculations presented
in this study suggest that the velocity of propagation of a plume of supercritical carbon diox-
ide may reach values of the order of tens of meters per year in an aquifer whose permeability
is of the order of 100 millidarcy.

At the beginning, the main part of the plume has much higher gas saturation than the
leading top part. This zone of highest gas saturation is bounded from above and below by
two traveling-wave saturation profiles moving toward each other. Both traveling waves are
followed by rarefaction waves. The top rarefaction wave includes a point where the saturation
does not change in time. Surprisingly, this point corresponds to the most intense fluid flow.
Although the total volumetric fluid flow is identically zero in the plume, the magnitudes of
the individual Darcy velocities of gas and water reach their maximal value. This point also
serves as a separator between the part of the plume above it, where the fluid displacement is
drainage, and below, where the displacement mechanism is imbibition.

If there is a sequence of plumes one above the other, the lower plume propagates with a
higher velocity and there is a possibility of plume coalescence.

Accurate prediction of plume migration requires good understanding of the formation
properties, including capillary pressure and relative permeability functions. A new parame-
trization of the capillary pressure has been developed to achieve a good fit of laboratory core
flood measurements for the Frio sandstone.

At depths and length scales, where gas compressibility cannot be neglected, the model
described here needs a modification, which is beyond the scope of this work.
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Appendix A

Here, we present the formulae used for the relative permeability and capillary pressure func-
tions in the calculations discussed above.

The parameters characterizing the fluid and rock properties are listed in Table 1. The
fluid properties roughly correspond to the properties of water and supercritical CO2 at the
temperature of 60◦C and pressure of 150 bars.

Accurate estimation of the transition zone in a traveling-wave solution requires
high-quality fitting of the plateau zone on the capillary pressure curve. In this study, we
have used the following parametrization for the Leverett’s J -function:

J (S) = A
(
S−λ1∗ − 1

) + B
(
1 − Sλ2∗

)1/λ2 (A.1)

Here, A, B, and λ1,2 are fitting parameters, and

S∗ = S − SJ

1 − SJ
(A.2)

with another fitting parameter SJ. It turns out that this parametrization makes possible a signif-
icantly better fitting of experimental data for Frio and Berea sandstone than the traditionally
used van Genuchten parametrization (Van Genuchten 1980).

The following set of parameters has been used in Fig. 8 to parameterize the experimental
curve obtained from a drainage experiment on a Frio formation sandstone core involving
supercritical CO2 and brine:

A = 0.0038
B = 0.28
λ1 = 3.8
λ2 = 5.18
SJ = 0.06

(A.3)

For the gas relative permeability, a Corey type formula (Corey 1954) has been used:

krg(S) = (1 − S̃)2(1 − S̃2) (A.4)

where

S̃ = S − Siw

1 − Srg − Siw
(A.5)

In this work, the value of Srg = 0.05 has been used.
For water relative permeability, a van Genuchten function has been used

krw(S) = √
S∗

[
1 −

(
1 − S∗1/λ

)λ
]2

(A.6)
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where S∗ = S∗(S) is defined in

S∗ = S − Siw

1 − Siw
(A.7)

The numerical values of the parameters for the relative permeability functions have been
borrowed from Xu et al. (2005).

Appendix B: Traveling-Wave and Rarefaction-Wave Solutions

Traveling-Wave Solution

Let v be the velocity of traveling-wave propagation. Then, we seek a solution, which can be
presented as a function of a single composite variable Z = z − tv. From Eq. 13,

vφS′ = k

µw

(
f (S)

(
d pc(S)

dS
S′ − (�w − �g)g

))′
(B.1)

Here, the prime denotes the derivative with respect to the composite variable Z . Define
dimensionless plume propagation velocity V as

V = µw

k(�w − �g)g
v (B.2)

Then, in dimensionless variables, we seek a solution in the form

S(ζ, τ ) = S(ξ) (B.3)

where

ξ = ζ − τ V (B.4)

A dimensionless traveling-wave solution satisfies the equation

φV
dS

dξ
− d

dξ

(
f (S)

(
γJ ′(S)

dS

dξ
− 1

))
= 0 (B.5)

Fig. 8 The blue curve with circle
markers is the data, and the red
curve is the fitting curve. Fitting
the plateau with the new
parametrization
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(cf. 20). The plume migration velocity, V , can be found from the following considerations.
We assume that the saturations at a large distance are known:

S(−∞) = S1 and S(+∞) = S2 (B.6)

The saturation profile stabilizes at a large distance, so that

dS

dξ

∣
∣
∣
∣−∞

= dS

dξ

∣
∣
∣
∣+∞

= 0 (B.7)

Accounting for the boundary conditions (B.6 and B.7), integration of Eq. B.5 yields

V = − 1

φ

f (S2) − f (S1)

S2 − S1
(B.8)

Physically, the latter equation is an expression of mass conservation.
If S2 < S1, then the traveling wave propagates upward (drainage), (V > 0), if f (S2) >

f (S1); it propagates downward (imbibition) if f (S2) < f (S1). Conversely, if S2 > S1, the
traveling wave propagates downward (imbibition) if f (S2) > f (S1); it propagates upward
(drainage) if f (S2) < f (S1). An interesting case is a standing wave, which corresponds to
the saturations S1 and S2, for which f (S2) = f (S1) and V = 0.

By virtue of the Lagrange finite increments theorem, Eq. B.8 implies that

V = − 1

φ
f ′(S)

∣∣
S=S̃ (B.9)

for some saturation S̃ between S1 and S2. Therefore, the fastest traveling-wave propagation
corresponds to a pair of saturations both close to the maximum of the absolute value of the
derivative f ′(S). In a typical case, the function f (S) has two intervals where it is convex, and
one interval where it is concave (see Fig. 5). The maximum of the absolute value of f ′(S) is
attained at a saturation where f ′′(S) = 0, i.e., at a dividing point between adjacent intervals
of convexity and concavity.

Integration of Eq. B.5 from −∞ to ξ and from ξ to +∞ yields

φV (S(ξ) − S1) = γ f (S)J ′(S)
dS

dξ
− f (S(ξ)) + f (S1) (B.10)

φV (S2 − S(ξ)) = −γ f (S)J ′(S)
dS

dξ
+ f (S(ξ)) − f (S2) (B.11)

Explicit solutions to the last two equations can be obtained in the form ξ = ξ(S):

dξ

dS
= γ f (S)J ′(S)

f (S) − f (S1) − f (S2) − f (S1)

S2 − S1
(S − S1)

(B.12)

dξ

dS
= γ f (S)J ′(S)

f (S) − f (S2) − f (S2) − f (S1)

S2 − S1
(S − S2)

(B.13)

One can verify that Eqs. B.12 and B.13 are equivalent. Moreover, the denominator in either
equation is the difference between f (S) and a linear interpolation between f (S1) and f (S2).
Therefore, the denominator vanishes both at S = S1 and S = S2. A traveling-wave solution
can be obtained by explicit integration of either one of the Eqs. B.12 and B.13 if the denom-
inator does not vanish between S1 and S2. For example, this holds true if both S1 and S2
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are in the same interval of convexity or concavity of the function f (S). A solution ξ(S) is
determined up to a vertical shift of the coordinate. Let us pick a saturation value S0 between
S1 and S2. Putting ξ0 = ξ (S0), one obtains

ξ(S) = ξ0 +
S∫

S0

γ f (η)J ′(η)

f (η) − f (S1) − f (S2) − f (S1)

S2 − S1
(η − S1)

dη (B.14)

or, equivalently,

ξ(S) = ξ0 +
S∫

S0

γ f (η)J ′(η)

f (η) − f (S2) − f (S2) − f (S1)

S2 − S1
(η − S2)

dη (B.15)

The function ξ(S) characterizes the transition of the saturation between the two extreme
values S1 and S2 in the propagating wave. The size of this transition zone is, in particu-
lar, determined by the structure of Leverett’s J -function and the dimensionless factor γ . A
smaller surface tension coefficient or higher permeability result in a sharper transition front
(see Eq. 19).

Rarefaction Wave

A rarefaction wave is a self-similar solution obtained for the hyperbolic approximation (25).
The term comes from gas dynamics (Landau and Lifshitz 1959). In order to find such a
solution, put

η = ζ − ζ0

τ
(B.16)

where ζ0 is the location of the center of the wave. Then, Eq. 25 takes on the form

− φη = f ′(S) (B.17)

The last relationship provides a solution in the form η = η(s) (cf. Eqs. B.14 and B.15).
Equation B.17 can be converted into S = S(η) if the derivative f ′(S) is monotone with

respect to S. In other words, the second derivative f ′′(S) must not change the sign. In par-
ticular, the range of saturations in a rarefaction wave must be contained in a single interval
of convexity or concavity.

In terms of variables ζ and τ , a self-similar solution is provided by

ζ = ζ0 − τ
1

φ
f ′ (S(τ, ζ )) (B.18)

In particular, the velocity of propagation of the part of the rarefaction wave, where brine
saturation is S is equal to

Vr(S) = − 1

φ
f ′ (S) (B.19)
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