
Transp Porous Med (2009) 76:345–362
DOI 10.1007/s11242-008-9250-8

Thermally Developing Forced Convection in a Porous
Medium Occupied by a Rarefied Gas: Parallel Plate
Channel or Circular Tube with Walls at Constant Heat
Flux

A. V. Kuznetsov · D. A. Nield

Received: 23 January 2008 / Accepted: 10 May 2008 / Published online: 3 June 2008
© Springer Science+Business Media B.V. 2008

Abstract An adaptation of the classical Graetz methodology is applied to investigate the
thermal development of forced convection in a parallel plate channel or a circular tube filled
by a porous medium saturated by a rarefied gas, with walls held at constant heat flux. The
Brinkman model is employed. The analysis leads to expressions for the local Nusselt num-
ber Nu as functions of the dimensionless longitudinal coordinate and the Darcy number. It
is found that an increase in the velocity slip coefficient generally increases Nu by a small
or moderate amount (but the circular tube at large Darcy number is an exception) while an
increase in the temperature slip coefficient reduces Nu by a more substantial amount. These
trends are uniform as the longitudinal coordinate varies.

Keywords Forced convection · Thermal development · Rarefied gas · Graetz problem ·
Parallel plate channel and circular tube

Nomenclature
cP Specific heat at constant pressure
C0 Constant defined by Eq. 44
Cn Coefficients defined by Eq. 38 for a channel and by Eq. 77 for a circular

tube
Da Darcy number defined as K /H2 for a channel and K /r2

0 for a circular
tube

f (r) Temperature perturbation function defined by Eq. 69 for a circular tube
f (y) Temperature perturbation function defined by Eq. 30 for a channel
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G Negative of the applied pressure gradient
H Half channel width
km Effective thermal conductivity of the porous medium
K Permeability
Kn Knudsen number
M Viscosity ratio, µ̃/µ

Nu Local Nusselt number defined as 2Hq ′′
km(T ∗

m−T ∗
w)

for a channel and 2r0q ′′
km(T ∗

m−T ∗
w)

for a circular tube
Nu Mean Nusselt number defined by Eq. 46
Pe Péclet number defined as ρcP HU∗/km for a channel and ρcPr0U∗/km

for a tube
q ′′ Wall heat flux
r r∗/r0

r∗ Radial coordinate
r0 Circular tube radius
Rn(y) Eigenfunctions for a circular tube
S (MDa)−1/2

T ∗
m Bulk mean temperature

T ∗ Temperature

T̂ T ∗−T ∗
w

T ∗
m−T ∗

w

T ∗
IN Inlet temperature

T ∗
w Wall temperature

T + Perturbation temperature, T ∗ − T ∗
FD

u µ̃u∗/GH2 for a channel and µ̃u∗/Gr2
0 for a circular tube

u∗ Filtration velocity
û u∗/U∗
U∗ Mean filtration velocity
x̃ x/Pe
x x∗/H
x∗ Longitudinal coordinate
y y∗/H
y∗ Transverse coordinate
Yn(y) Eigenfunctions for a channel

Greek symbols
α Velocity slip coefficient
β Temperature slip coefficient
γ Parameter defined by Eq. 8 for a channel and by Eq. 51 for a circular

tube
θ Dimensionless temperature, defined by Eq. 10
θ+ T +

Hq ′′/km
for a channel and T +

r0q ′′/km
for a circular tube

λn Eigenvalues
µ Fluid viscosity
µ̃ Effective viscosity for the flow in the porous medium
ρ Fluid density

Subscripts
FD fully developed
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1 Introduction

There has recently been renewed interest in the problem of forced convection in a porous
medium channel or duct filled with a porous medium because of the use of hyperporous
media in the cooling of electronic equipment. Until recently the only work done on the ther-
mal development aspect was confined to the Darcy model, but Nield et al. (2004) extended
this work to the Brinkman model. In this paper both the parallel channel and the circular tube
were treated, but only for the case of isothermal walls. In this case the standard Graetz analy-
sis can be readily applied, because a pair of boundary conditions for the dependent variable
(a dimensionless temperature) is homogeneous, and so the method of separation of variables
is immediately applicable. In the case of walls held at constant heat flux (the case treated in
the present paper) a wall boundary condition is not homogeneous, and this means that the
analysis has to proceed in two steps: first the fully developed solution to the problem must
be found, and then the problem involving the perturbation temperature can be tackled using
the method of separation of variables. This procedure was carried out by Nield et al. (2003a).
Some extensions of the theory (local thermal non-equilibrium, viscous dissipation, longitu-
dinal conduction) were treated by Nield et al. (2002, 2003b), and Kuznetsov et al. (2003).

In this paper we model in turn convection in a parallel plates channel, and in a circular duct,
using the Brinkman model, but now assuming both limited velocity slip and temperature slip
on the walls of the channel or duct, for the case of uniform heat flux at the walls. The fully
developed situation was studied by Nield and Kuznetsov (2006). At the time of submission
of that paper nothing had been published on convection in a porous medium occupied by
a rarefied gas. Subsequently a number of papers by Haddad et al. (2005; 2006a,b; 2007a,b)
have appeared, together with comments by Al-Nimr and Haddad (2007) and a response by
Nield and Kuznetsov (2007). This is indicative of current interest in the topic. The emerging
field of micro-scale heat transfer has opened up new applications involving slip-flow.

2 Analysis for a Parallel Plate Channel

We start by considering a channel between two plane parallel walls a distance 2H apart, the
boundaries being at y = H and y = −H . For fully developed flow the velocity is u(y) in
the x-direction. We suppose that the governing momentum equation is

G = µu∗

K
− µ̃

d2u∗

dy∗2 . (1)

Here the asterisks denote dimensional variables, and −G is the applied pressure gradient in
the x∗-direction. We define the dimensionless variables

x = x∗

H
, y = y∗

H
, u = µ̃u∗

G H2 , (2)

and write

M = µ̃

µ
, Da = K

H2 . (3)

Thus M is the viscosity ratio and Da is the Darcy number.
Then Eq. 1 becomes

M
d2u

dy2 − u

Da
+ 1 = 0. (4)
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This equation is to be solved subject to the boundary/symmetry conditions

u = −α
du

dy
at y = 1,

du

dy
= 0 at y = 0. (5)

The value of α can be related to the value of K n. One can write α = κK n. Our knowledge
about κ has been summarized by Harley et al. (1995). An argument due to Maxwell shows
that the coefficient κ = κo(2−F)/F , where κo is a constant of O(1) and F is a quantity called
the momentum accommodation coefficient, defined as the fraction of diffusely reflected mol-
ecules (as distinct from specularly reflected molecules). In other words, F is the fraction of
molecular tangential momentum lost through collisions with the solid surface. For a simple
approximate argument which yields the above expression for κ in terms of F with κo = 1,
the reader is referred to Schaaf and Chambre (1961). Thermal creep and thermal stress flow
have been neglected. More generally, κ depends on temperature, surface roughness and type
of gas.

The solution is

u = Da

(
1 − cosh Sy

γ cosh S

)
, (6)

where for convenience we introduce

S = 1

(MDa)1/2 , (7)

γ = 1 + αS tanh S. (8)

We also introduce the mean velocity U∗ and the bulk mean temperature T ∗
m defined by

U∗ = 1

H

∫ H

0
u∗dy∗, T ∗

m = 1

HU∗

∫ H

0
u∗T ∗dy∗. (9)

We then define further dimensionless variables defined by

û = u∗

U∗ , θ = T ∗ − T
∗
w

T ∗
m − T ∗

w
, (10)

The Nusselt number is defined by

Nu = 2Hq′′

km(T ∗
m − T ∗

w)
. (11)

Here T ∗
w and q ′′ are the temperature and heat flux on the wall.

(The reader should note that we have followed Nield and Bejan (2006) and defined Nu in
terms of the channel width rather than the hydraulic diameter. The Nusselt number defined
in terms of the hydraulic diameter is twice Nu.)

Local thermal equilibrium is assumed. (The case of local thermal non-equilibrium requires
a separate investigation.) It is also assumed that the Péclet number is sufficiently large for
axial conduction to be neglected. Thermal dispersion is also neglected. The steady-state
thermal energy equation is then

u∗ ∂T ∗

∂x∗ = km

ρcp

∂2T ∗

∂y∗2 . (12)
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Use of the first law of thermodynamics now leads to

dT ∗
m

dx∗ = q ′′

ρcp HU∗ . (13)

This is here a constant.
In the case of fully developed convection, ∂T ∗/∂x∗ = dT ∗

m/dx and then Eq. 12 becomes,
in non-dimensional form and for the fully developed case,

d2θFD

dy2 = −1

2
NuFDû. (14)

For the Brinkman model, with u given by Eq. 6, we have

û = Sγ

Sγ − tanh S

(
1 − cosh Sy

γ cosh S

)
, (15)

The subscript FD distinguishes the solution of the fully developed problem from the solution
for the thermally developing problem that we treat below.

Equation 14 is to be solved subject to the boundary conditions

dθFD

dy
(0) = 0, β

dθFD

dy
+ θFD(1) = 0 (16)

The temperature slip coefficient β can be written as β = κT K n where κT was found by
Weber to have the value 2.85 for air, 11.7 for hydrogen, and about 3 for most other common
gases (Devine 1965).

The solution of Eq. 14 subject to Eq. 16 is

θFD = Sγ NuFD

Sγ − tanhS

[
1

4
(1 − y2) − cosh S − cosh Sy

2S2γ cosh S

]
+ βNuFD

2
. (17)

The definition of the dimensionless temperature leads to the integral compatibility condition
∫ 1

0
ûθFDdy = 1. (18)

Substitution from Eqs. 15 and 17 into 18 then leads to

NuFD = 1
/ {

β

2
+ 2γ 2S3 + (12γ + 3)(tanh S − S) + 3S tanh2 S

12S(γ S − tanh S)2

}
. (19)

For the case α = β = 0 (and so γ = 1) this gives

NuFD = 12S(S − tanh S)2

2S3 − 15S + 15 tanh S + 3S tanh2 S
, (20)

in agreement with Eq. 4.125 of Nield and Bejan (2006).
In order to tackle the thermally developing problem, it is convenient to work in terms of

a new dimensionless temperature θ defined by

T ∗ − T ∗
m

Hq′′/km
= 2(1 − θ)

Nu
. (21)

From integration of Eq. 13,

T ∗
m − T ∗

IN

Hq′′/km
= x̃ (22)
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where

x̃ = x

Pe
, (23)

and in turn the Péclet number Pe is now defined as

Pe = ρcP HU∗

km
. (24)

From Eqs. 21 and 22, by addition, and specification to the fully developed case, we have

T
∗

FD − T ∗
IN

Hq′′/km
= x̃ + 2(1 − θFD)

NuFD
. (25)

Here T ∗
FD is the dimensional temperature corresponding to the fully developed case.

We now introduce a perturbation temperature defined by

T + = T ∗ − T ∗
FD (26)

and define

θ+ = T +

Hq′′/km
. (27)

Since T + also satisfies Eq. 12, it follows that

û
∂θ+

∂ x̃
= ∂2θ+

∂y2 . (28)

Also we have the boundary conditions

∂θ+

∂y
(x̃, 0) = 0,

∂θ+

∂y
(x̃, 1) = 0 (29)

and the initial condition

θ+(0, y) = 2(θFD − 1)

NuFD
≡ − f (y). (30)

It is interesting that f (y) as defined by Eq. 30 is independent of β. When one substitutes in
Eq. 30 from Eqs. 17 and 19 the terms in β cancel out.

Separation of variables, following the assumption that

θ+ = 	(x̃)Y (y), (31)

leads to two linear and homogeneous equations for 	 and Y ,

	′ + λ2	 = 0, (32)

Y ′′ + λ2ûY = 0. (33)

Equation 33 together with the boundary conditions

Y ′(0) = Y ′(1) = 0 (34)

defines an eigenvalue problem of Sturm-Liouville type with eigenvalues λn and correspond-
ing eigenfunctions Yn(y) for n = 1, 2, 3, . . . . In particular,

Y ′′
n + λ2

nûYn = 0. (35)
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The general solution of Eqs. 28, 29 is the series

θ+ = C0 +
∞∑

n=1

CnYn(y) exp(−λ2
n x̃), (36)

where the constants C0, C1, C2, . . . are determined by the condition (30) and the require-
ment that the contribution from the perturbation θ+ to the wall heat flux is zero. Since the
eigenfunctions satisfy the orthogonality condition∫ 1

0
ûYmYndy = 0 if m �= n (37)

it follows that

Cn = − ∫ 1
0 ûYn f (y) dy∫ 1

0 ûY 2
n dy

for n = 1, 2, 3, . . . (38)

For example, in the Darcy limit one has

û = 1, NuFD = 6, θFD = 3

2

(
1 − y2) , f (y) = −1

6

(
1 − 3y2). (39)

Yn(y) = cos nπy, Cn = 2(−1)n−1

n2π2 for n = 1, 2, 3, . . . . (40)

In the no-slip clear fluid limit one has

û = 3

2

(
1 − y2) , NuFD = 70

17
, θFD = 35

136

(
5 − 6y2 + y4) ,

f (y) = − 1

280

(
39 − 210y2 + 35y4) . (41)

There is no simple analytical expression for Yn(y) or Cn .
At the wall,

T ∗
w − T ∗

IN

Hq′′/km
= x̃ + f (1) + C0 +

∞∑
n=1

CnYn(1) exp(−λ2
n x̃). (42)

It follows from Eqs. 11, 22, 25 and 42 that

Nu = 2

f (1) + C0 + ∑∞
n=1 CnYn(1) exp(−λ2

n x̃)
. (43)

The constant C0 is determined by the requirement that Nu → NuFD as x̃ → ∞. One finds
that

C0 = 2

NuFD
− f (1) = 2θFD(1)

NuFD
= β. (44)

When C0 is eliminated one has

Nu =
{

1

NuFD
+ 1

2

∞∑
n=1

CnYn(1) exp(−λ2
n x̃)

}−1

. (45)

It is noteworthy that C0 = 0 when β = 0, that is in the absence of velocity slip. For this reason
Nield et al. (2003a,b) had no need to introduce the C0 and they were able to compute Nu
from Eq. 43 with C0 absent.
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Equation 45 gives the local Nusselt number. The mean Nusselt number, averaged over a
length x̃ , is

Nu = 1

x̃

∫ x̃

0
Nudx̃ . (46)

3 Calculations: Parallel Plate Channel

It is convenient to express the second order Eq. 35 as a system of two first order ones, by
writing y1 = Y, y2 = Y ′, where a prime denotes a derivative with respect to x . (We drop the
tilde). Then

y′
1 = y2,

y′
2 = −λ2û y1.

(47)

These equations may be solved by a shooting procedure. Each eigenfunction may be nor-
malized by the requirement that it satisfies the condition Y (0) = 1. Then we have

y1(0) = 1, y2(0) = 0. (48)

Starting with an estimate for the value of an eigenvalue, one can step forward from x = 0
to x = 1 and vary the value of λ to satisfy the condition y2(1) = 0. This yields the precise
eigenvalue, and the corresponding function y1(x) is the required eigenfunction. Once the
eigenvalues and eigenfunctions have been obtained, the coefficients Cn can be obtained by
simple numerical integration of the integrals that are involved, and the solution is readily
completed.

We checked our calculated eigenvalues with known results for the case of slug flow (very
small Da) (when the λn are multiples of π ) and for the case of plane Poiseuille flow with no
slip (very large Da), given by Shah and London (1978).

4 Results and Discussion: Parallel Plate Channel

The plots of Nusselt number versus longitudinal coordinate are presented as Figs. 1–3.
Figure 1, for the case MDa = 1, is typical for a hyperporous medium and approximates the
case of a fluid clear of solid material. It is seen that an increase in the velocity slip coefficient α
leads to a moderate increase in Nu, and this is so across the board. An increase in the temper-
ature slip coefficient β produces a more substantial reduction in Nu, and at large values of β

the curves develop an inflection point. The increase of Nu with increasing α is expected since
increasing the velocity slip facilitates the flow and hence aids the convective heat transfer.
The decrease of Nu with increasing β is also expected since increasing the temperature slip
decreases the coupling between the wall temperature and the temperature within the bulk of
the fluid. A reduction in temperature gradient leads to a reduction in heat transfer.

Figures 2 and 3 illustrate the cases MDa = 10−2 and 10−4, respectively. In general, a
decrease in Darcy number leads to an increase in Nu. (One recalls that for fully developed
convection without slip one has Nu = 70/17 in the clear fluid limit and Nu=6 in the Darcy
limit). For small values of the Darcy number, the effect of variation in the value of α is small.
This is particularly the case when β is large; this is especially exemplified by the coalescence
of curves in Fig. 3c. This is as expected since then the velocity profile is close to that of slug
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Fig. 1 Plots of local Nusselt
number versus longitudinal
coordinate for the parallel plate
channel problem, for the case
MDa = 1 (S = 1), for various
values (0, 0.1, 1.0) of the velocity
slip coefficient α and the
temperature slip coefficient β; (a)
β = 0, (b) β = 0.1, (c) β = 1.0
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flow in the bulk of the channel and variation of α just modifies the flow in thin boundary layers
near the walls. An increase in the value of β continues to produce a substantial reduction in Nu.

5 Analysis: Circular Tube

The analysis is much the same as that for the parallel plate channel, so we briefly note the
changes. We consider a tube of radius r0, so the boundary is at r∗ = r0, and r0 replaces H
as the length scale in the definitions of the Darcy number Da and the Nusselt number Nu.
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Fig. 2 As for Fig. 1, but now for
MDa = 10−2 (S = 10)
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The dimensionless form of the momentum equation is now

M

(
d2u

dr2 + 1

r

du

dr

)
− u

Da
+ 1 = 0, (49)

and the solution for the rescaled velocity û, subject to the hydrodynamic slip boundary
condition, is now
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Fig. 3 As for Fig. 1, but now for
MDa = 10−4 (S = 100)
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û = S{γ I0(S) − I0(Sr)}
γ SI0(S) − 2I1(S)

, (50)

where

γ = 1 + αSI1(S)

I0(S)
. (51)

Here I0 and I1 are modified Bessel functions of orders zero and one, respectively.
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The Nusselt number Nu is now defined as

Nu = 2r0q ′′

km(T ∗
w − T ∗

m)
. (52)

The steady-state thermal energy equation is now

u∗ ∂T ∗

∂x∗ = km

ρcp

(
∂2T ∗

∂r∗2 + 1

r∗
∂T ∗

∂r∗

)
. (53)

Use of the first law of thermodynamics now leads to

dTm

dx∗ = 2q ′′

ρcpr0U∗ . (54)

The dimensionless form of the thermal energy equation for fully developed convection is
now

d2θFD

dr2 + 1

r

dθFD

dr
= −Nuû, (55)

and the solution of this equation, subject to the temperature slip boundary condition, is

θFD = Nuγ SI0(S)

γ SI0(S) − 2I1(S)

{
1

4
(1 − r2) − I0(S) − I0(Sr)

γ S2 I0(S)

}
+ Nuβ

2
. (56)

Substitution in the integral compatibility condition

2
∫ 1

0
r ûθFDdr = 1 (57)

yields

NuFD = 1
/ {

β

2
+ {γ 2S3 − 8(γ + 2)S}[I0(S)]2 + 16(γ + 2)I0(S)I1(S) + 8S[I1(S)]2

8S {γ SI0(S) − 2I1(S)}2

}
.

(58)

For the case α = β = 0, and so γ = 1, this reduces to

NuFD = 8S {SI0(S) − 2I1(S)}2

(S3 − 24S)[I0(S)]2 + 48I0(S)I1(S) + 8S[I1(S)]2 , (59)

in agreement with Eq. 53 of Nield et al. (2003) and Eq. 4.119 of Vafai (2005).
In order to tackle the thermally developing problem, it is convenient to work in terms of

a new dimensionless temperature

T ∗ − T ∗
m

r0q ′′/km
= 2(1 − θ)

Nu
. (60)

From integration of Eq. 54,

T ∗
m − T ∗

IN

r0q ′′/km
= 2x̃, (61)

where

x̃ = x

Pe
, (62)
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and in turn the Peclet number Pe is now defined as

Pe = ρcPr0U∗

km
. (63)

From Eqs. 60 and 61, by addition, and specialization to the fully developed case,

T ∗
FD − T ∗

IN

r0q ′′/km
= 2x̃ + 2(1 − θFD)

NuFD
. (64)

We now introduce a perturbation temperature defined by

T + = T ∗ − T ∗
FD (65)

and define

θ+ = T +

r0q ′′/km
. (66)

Since T + also satisfies Eq. 52, it follows that

û
∂θ+

∂ x̃
= ∂2θ+

∂r2 + 1

r

∂θ+

∂r
. (67)

Also we have the boundary conditions

∂θ+

∂r
(x, 0) = 0,

∂θ+

∂r
(x, 1) = 0 (68)

and the initial condition

θ+(0, r) = 2(θFD − 1)

NuFD
≡ − f (r). (69)

Separation of variables, following the assumption that

θ+ = 	(x̃)R(r), (70)

leads to two linear and homogeneous equations for 	 and R,

	′ + λ2	 = 0, (71)

R′′ + (1/r)R′ + λ2û R = 0. (72)

Equation 71 together with the boundary conditions

R′(0) = R′(1) = 0 (73)

defines an eigenvalue problem of Sturm-Liouville type with eigenvalues λn and correspond-
ing eigenfunctions Rn(y) for n = 1, 2, 3, . . . . In particular,

R′′
n + (1/r)R′

n + λ2
nû Rn = 0. (74)

The general solution of Eqs. 62 and 63 is the series

θ+ = C0 +
∞∑

n=1

Cn Rn(y) exp(−λ2
n x̃) (75)

where the constants C0, C1, C2, . . . are determined by the condition (69) and the requirement
that the contribution from the perturbation θ+ to the wall heat flux is zero.
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Since the eigenfunctions satisfy the orthogonality condition

∫ 1

0
û Rm Rnrdr = 0 if m �= n (76)

it follows that

Cn = − ∫ 1
0 û Rnr f (r)dr∫ 1

0 û R2
nrdr

for n = 1, 2, 3, . . . (77)

For example, in the Darcy limit one has

û = 1, NuFD = 8, θFD = 1
4

(
1 − r2

)
, f (r) = 1

4

(
2r2 − 1

)
,

R(r) = J0(λnr),
(78)

where the λn are the roots of J1(λ) = 0. This leads to

Cn = 2J2(λn)

λ2
n [J0(λn)]2 for n = 1, 2, 3, . . . (79)

At the wall,

T ∗
w − T ∗

IN

r0q ′′/km
= 2x̃ + f (1) + C0 +

∞∑
n=1

Cn Rn(1) exp(−λ2
n x̃). (80)

It follows from Eqs. 51, 61, 64 and 80 that

Nu = 2

f (1) + C0 + ∑∞
n=1 Cn Rn(1) exp(−λ2

n x̃)
. (81)

The constant C0 is determined by the requirement that Nu → NuFD as x̃ → ∞. When that
constant (which has the value β) is eliminated one has

Nu =
{

1

NuFD
+ 1

2

∞∑
n=1

Cn Rn(1) exp(−λ2
n x̃)

}−1

. (82)

6 Results and Discussion: Circular Tube

The results for the circular tube are presented in Figs. 4–6. On the whole, the patterns in
this set are similar to those in the set presented in Figs. 1–3 for the parallel plate channel.
However, there are some differences, particularly for the case MDa = 1, approximating the
clear fluid limit. In the case of the circular tube, Nu does not increase monotonically as α

increases; rather, it decreases to a minimum value before increasing. For the case of small
MDa, Nu does increase monotonically as α increases.

Also for the case of small MDa, the effect of a change of geometry from parallel plate to
circular tube is not large.
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Fig. 4 Plots of local Nusselt
number versus longitudinal
coordinate for the circular tube
problem, for the case MDa = 1
(S = 1), for various values (0, 0.1,
1.0) of the velocity slip
coefficient α and the temperature
slip coefficient β; (a) β = 0, (b)
β = 0.1, (c) β = 1.0
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7 Conclusions

We have obtained an analytic solution for the velocity profile, temperature profile and Nusselt
number for thermally developing forced convection in either a parallel plates channel or a
circular duct occupied by a hyperporous medium saturated by a rarefied gas, appropriate for
the Knudsen slip-flow regime, for the case of uniform heat flux on the boundary walls. The
results are presented in terms of a velocity slip coefficient α and a temperature slip coefficient
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Fig. 5 As for Fig. 4, but now for
MDa = 10−2 (S = 10)
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β, each of which is proportional to the Knudsen number. It has been shown that the Nusselt
number decreases as β increases. This trend was expected. For the parallel plates channel,
the Nusselt number increases as α increases. For the circular duct, the variation with α is
more complex in the case of large Darcy number. The complexity was not anticipated.

The corresponding problem, with walls at constant uniform temperature rather than at
constant heat flux, has not yet been investigated.
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Fig. 6 As for Fig. 4, but now for
MDa = 10−4 (S = 100)
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