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Abstract In systems of coupled transport processes the question of the appropriate driving
potentials is a point of discussion. In this article, three different approaches to derive models
for transport currents are systematically compared. According to a general linear approach,
an arbitrary full set of independent state variables and material properties is sufficient to
describe any transport current. This approach is derived here from a symmetry principle.
Thermodynamic and micromechanical approaches are more complex and even less general,
but they allow additional statements about the transport coefficients and they reduce the
number of transport processes. In the thermodynamic approach the additional information
stems from the calculation of the entropy production rate; the micromechanical approach
involves a microphysical model of the considered porous system. As a practical example,
the three derivation schemes are applied to the often-encountered case of non-hysteretic heat
and moisture transport in homogeneous building materials. It is shown, how the general state
variables of a porous system are reduced to only two. Then from the general linear approach it
can be seen, that all equations for the moisture transport current using a main driving potential
(e.g. moisture content, vapour pressure, chemical potential) and an independent secondary
driving potential (e.g. temperature, liquid pressure) are equivalent, without recurrence to the
thermodynamic or micromechanical approach. However, the transport coefficients are arbi-
trary phenomenological functions depending on the two state variables. Based on a literature
survey it is shown, which additional statements can be made in the thermodynamic and in the
micromechanical approach. The latter yields the pressure-driven model (vapour and liquid
pressure as the two driving potentials). Finally it is shown, what is to be expected, if in more
complex systems the number of state variables increases.
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1 Introduction

1.1 General Introduction

Transport processes in porous building materials have always been the subject of intensive
investigations, since it is of fundamental importance to improve the energetic and hygric
behaviour of building constructions, in order to ensure a comfortable indoor climate, to save
energy and to avoid damages induced by moisture, salt efflorescence and freezing.

Different models for the coupled heat, air, moisture and salt transport have been developed
and incorporated into various software programs used in the field of porous building materials
and in the closely related field of wetting and drying of soils. Regarding the heat and moisture
transport in building materials there are WUFI, based on Kuenzel (1994), Delphin4 (Grune-
wald 1997), CHAMPS/Delphin 5 (Nicolai et al. 2007), (Grunewald et al. 2006), MATCH
(Pedersen 1992), finally a MATLAB implemetation (Sasic Kalagasidis 2004) based on Ha-
gentoft et al. (2004). In the field of soil science there are Hydrus3D (Simunek et al. 2003)
and MACRO (Jarvis 1994). Finally, there is the program package FEMLAB (COMSOL
2005), incorporating various models for saturated and unsaturated moisture flow in its “Earth
science module”, including the Richard’s equation system (unsaturated Darcy law), and the
Brinkman equations (saturated Darcy and Navier-Stokes).

The history of models for the mass currents starting with the famous Darcy Model (Darcy
1856) has been reviewed by Lage (Ingham 1998). The models for saturated and unsatu-
rated moisture transport as well as coupled heat and moisture transport have been further
investigated e.g. by Whitaker (1986a), Hassanizadeh (1990), Gray (1991), and Grunewald
(1997).

To a major part, the complexity of a system can be characterised by its independent state
variables. In the introductory part of the article, it will be shown schematically, which state
Variables arise in a complex multi-phase and multi-domain porous system and under which
assumptions these can be reduced step by step to arrive at the case of two variables only
(energy and mass content), which describe the simple, but commonly described case of non-
hysteretic heat and moisture transport in homogeneous materials. Our study will begin with
an introductory overview of models for the moisture current describing this situation.

In the main part of the article, first a general linear approach will be derived, which will be
applied to the example models subsequently. In the following, the properties of more com-
plex derivation schemes found in literature, the thermodynamic and the micromechanical
approach, will be reviewed. This will be done also first in general, then applied to the exam-
ple case. The additional information content given by these approaches will be determined.
Finally, the generalisation to systems with more than two state variables will be discussed.

1.2 Models for Moisture Currents in the Non-hysteretic Heat and Moisture Transport

The moisture current j Mw+v penetrating a porous building material is in linear approximation
given by a sum of products of conductivities and gradients:

j Mw+v = −�i K
��

i · d�i

dx
(1)

Mw and Mv are liquid water mass and water vapour mass, respectively which combine to
the total moisture mass given by Mw + Mv ≡ Mw+v .

123



Driving Potentials of Heat and Mass Transport 275

�� = (�1, . . . , �i , . . . , �n) is the vector of driving potentials used to describe the coupled
transport. K ��

i is the moisture conductivity corresponding to the gradient of �i and to the
chosen set of driving potentials ��. Note, that a general conductivity coefficient K depends
first on the transported quantity, second on the chosen gradient d�i/dx (abbreviated by ∂�i ,
or just “i”) and third on the whole set of driving potentials ��, because in Eq. 1 it is stated,
that the part of the current, which stems from d�i/dx , has to be distinguished from the other
parts, which stem from d� j/dx, j �= i . This becomes clear from the explicit expression
for K which is given below, Eq. 19. It is also shown in Eq. 30. To simplify the notation,
the dependence of the transported quantity has been omitted, since in the text below only
moisture transport will be considered in the practical example.

If liquid water and water vapour transport are treated separately (the so-called “phase-
divided transport”), different driving sets of driving potentials can be used for the liquid and
water vapour transport, respectively, and (1) is replaced by:

j Mw = −�i K
��w

i · d�w
i

dx
; j Mv = −�i K

��v

i · d�v
i

dx
j Mw+v = j Mw + j Mv (2)

The pressure-driven model (grad pv , grad pc): The moisture transport process according
to the pressure-driven model is defined in various sources, e.g. Grunewald (1997), Hagentoft
et al. (2004) and prEN15026 (2006). In the general notation of (2) and omitting air and salt
transport, it reads:

j Mw+v = j Mw + j Mv = K
��w, pressure

pc
· dpc

dx
+ K

��v, pressure

pv
· dpv

dx
��w,pressure = (pc) ; ��v, pressure = (pv) (3)

pv is the water vapour pressure in the gaseous phase and pc is the capillary pressure given
by the difference of liquid and gaseous pressure:

pc ≡ p� − pg (4)

In case of constant gas pressure (pg = const), the liquid pressure and capillary pressure differ
only by a constant, hence their gradients are identical. There is only one driving potential for
each phase (pc and pv , respectively).

The liquid diffusivity/vapour pressure model (grad pv , grad mw+v): This moisture trans-
port equation uses the vapour pressure gradient as driving potential for the vapour phase and
the moisture content gradient for the liquid phase. With respect to the liquid current, it is a
diffusion model. With respect to the vapour current it is a pressure model. It is documented
in (Kuenzel 1995), Eqs. 11, 13, 35, also in (Holm 2001), Eq. 7. In the notation of (2) it reads

j Mw+v = j Mw + j Mv = −K
��w, diffusion

mw+v
· dmw+v

dx
− K

��v, pressure

pv
· dpv

dx
��w, diffusion = (mw+v) ; ��v, pressure = (pv) (5)

mw+v = Mw+v/VREV is the water mass per volume of porous medium. Again, there is only
one driving potential for each phase.

The diffusivity model (grad mw , grad T): In the pure diffusivity moisture transport equa-
tion, particles flow from high moisture to low moisture regions. No phase-divided transport
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is considered. According to Eq. (1), the moisture current will read:

j Mw+v = −K
��diffusion

mw+v
· dmw+v

dx
− K

��diffusion

T · dT

dx
��diffusion = (mw, T ) (6)

In this case, we have two driving potentials and no distinction between the phases, since they
are in equilibrium. The main driving force is the moisture content mw+v = Mw+v/VREV .
The temperature T accounts for the effect of thermodiffusion.

The Glaser model (grad pv): The Glaser approach (EN ISO 13788 2001) describes the
total moisture transport in terms of the vapour pressure gradient.

j Mw+v = −K
��Glaser
pv

· dpv

dx
; ��Glaser = (pv) (7)

An expression for the moisture current having only one gradient though there are two inde-
pendent state variables has a limited validity; in this case it must be restricted to cases of low
relative humidity where the gaseous transport dominates. Note, that also in another respect
the Glaser model is a simplification, since it does not solve the space- and time-dependent
transport equation (8) below.

1.3 System State Variables and Transport Equations

The well-known transport equation for a conserved extensive quantity W (e.g. inner energy,
moisture) or its volume-specific form w (�x, t) can be written in differential form:

∂

∂t
(W/VREV) = ∂

∂t
w (�x, t) = −

∑

k∈{x,y,z}

∂

∂xk

(
j W
k (�x, t)

)
+ σ W (�x, t) (8)

VREV is the volume of the so-called “representative volume element” (REV). It has been
described by Bear (1991) and Whitaker (1986a). �j W denotes the transport current. σ W is the
source/sink term defined by:

σ W ≡ δWsource/ (VREV · δt) (9)

It includes inflow from adjacent phases, from long range sources and from boundary effects.
Each region α, representing a great canonical ensemble, can be described by its inner energy
uα , the masses mα,i of all constituents i , the momentum�iα ≡ �Iα/VREV and the partial volume
θα ≡ Vα/VREV as state variables.

For a heat, air, moisture and salt transport model including multiple salt ions and non-
equilibrium salt crystallisation according to Grunewald (1997) and Funk et al. (2006) the
independent state variables become

�w = (
u, ma, mw+v, ms1 , . . . , msmax , mc1 , . . . , mcmax

)
. (10)

ma , mw+v , msi , and mci are the masses of dry air, moisture, dissolved and crystallised salts,
respectively. The salt masses appear twice, since crystallised phase (c) and dissolved phase
(s) are not assumed to be in mass exchange equilibrium.

The model of Hassanizadeh and Gray (1990, 1991) does not take component mixtures into
account. Instead, it contains in addition the state variables of interfaces αβ between the bulk
phases, as well as of the contact line lgm, where liquid (l), gaseous (g) and solid material
phase (m) are in contact with each other. From (Gray 1991), Eq. 5, it is possible to identify
the vector of conserved extensive quantities (in the nomenclature used here):
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Fig. 1 State variables in the general model and reduction to the heat and moisture transport

�w =
(

uα, θ�, θg, ma, m�, mm,�il ,�ig, �Fm, uαβ, aαβ, mαβ,�iαβ

)
(11)

The partial volumes θα ,the specific interface areas aαβ = Aαβ/Vαβ and the specific momen-
tums �iα,�iαβ are included as independent variables. In the solid phase (m), the momentum
vector has been replaced by the displacement vector �Fm , which denotes the displacement of
the solid molecules from an assumed equilibrium position.

Combining the models (10) and (11), a very general expression for a full set of indepen-
dent conserved extensive quantities of a REV can be found and subsequently be simplified
down to the case of non-hysteretic heat and moisture transport. This is schematically shown
in Fig. 1.

2 The General Linear Approach

2.1 Derivation and Properties of the General Linear Approach

In this section, it will be shown that the current j W of an arbitrary quantity W depends only
on a full set of independent state variables and space-dependent material properties and their
gradients. If the gradients can assumed to be small of first order, then for an arbitrary choice
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1 ,1, matY Y 2 ,2, matY Y

Wj

Fig. 2 Scalar flows between two reference volume elements

of state variables �Y the current is always given as a linear combination of conductivities and
the state variable gradients (See below, Eq. 20).

The derivation is as follows: Assume two reference volume elements VREV with a scalar
flow of W in between as shown in Fig. 2. The �Y1, �Y2 vectors denote the state variables of the
left and right volume elements, respectively. All other variable properties, e.g. inhomoge-
neous material properties, gravity potential etc. are denoted by �Ymat,1, �Ymat,2. If all properties
would be identical, i.e. �Y1 = �Y2, �Ymat,1 = �Ymat,2, then there would be no preferred direction
of a flow j W . According to this symmetry principle, the flow j W must be zero. This property
will be used in the derivation below. Generally, the current can be written as a function

j W = j W
( �Y1, �Y2

)
(12)

The dependency on �Ymat has been omitted here to simplify the notation. It will be rein-
troduced at the end of the derivation. The problem can be generalised to the continuous
three-dimensional case: In this case the current j W at location �x may depend on the state
�Y as well as on the states �Y2 at all locations �x2 in a region sufficiently close to location �x .
Then the system states �Y2 in distance 
�x = �x2 − �x from the point �x under consideration are
given by

�Y2 ≈ �Y + ∂ �Y/∂x · 
x + ∂ �Y/∂y · 
y + ∂ �Y/∂z · 
z

= �Y + grad
( �Y

)
· 
�x (13)

where the components of the gradient matrix are given in common nomenclatures by

(
grad

( �Y
))

ik
≡

(
D �Y/D�x

)

ik
≡

( �∇ �Y
)

ik
≡ ∂Yi/∂xk ≡ ∂kYi . (14)

If the system state in a small region around point �x depends only on the state variables �Y
at the centre of the region and their gradients, then also the current depends only on these
variables:

�j W = �j W
( �Y , grad �Y

)
(15)

If the gradients grad(Yi ) are all equal zero, this leads to identical states between the loca-
tion under consideration and the neighbouring region and according to the above mentioned
symmetry principle the currents must vanish:

�j W
( �Y , grad �Y = 0

)
= 0 (16)
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Treating the gradients in the system as small deviations from equilibrium, the current �j W

can be Taylor expanded with respect to the gradients grad( �Y ):

�j W
( �Y , grad( �Y )

)
= D �j W

D(grad( �Y ))

∣∣∣∣∣
grad �Y=0

· grad( �Y )

= �i,k
∂ j W

k

∂ (∂Yi/∂xk)
· ∂Yi/∂xk (17)

In case of isotropic transport this simplifies to:

j W
k

( �Y , gradk
�Y
)

= −�i K
�Y

Y i (
�Y ) · ∂Yi/∂xk

k ∈ {x, y, z} (18)

where

K
�Y

Yi

( �Y
)

≡ − ∂ j W
k

∂
(
gradkYi

) = ∂ j W
k

∂ (∂Yi/∂xk)
(19)

The result is in short form the general transport equation (1) for the flow of W with conductiv-
ities K (Y ) and using the gradients of arbitrary state variables gradkYi = ∂Yi/∂xk as driving
forces. The generalisation to the case of additional space-dependent properties �Ymat (�x) is
straightforward, as they can be treated in the same way as the state variables. Equation 18
becomes finally:

j W
k = −�i K

�Y , �Ymat
Y i · ∂Yi/∂xk − � j K

�Y , �Ymat
Ymat, j

· ∂Ymat, j/∂xk

k ∈ {x, y, z} (20)

Note, that the term containing the gradient of the material properties gradkYmat leads to
important restrictions of the general linear approach: The external boundaries of the system
and the internal boundaries between different materials can be considered as transition zones
with steep gradients of the material properties. This explains the well-known fact, that in equi-
librium arbitrary state variables (like water content) have also steep gradients at the internal
boundaries and they are usually not chosen to describe transitions at the external boundaries.
Also, in inhomogeneous materials with e.g. porosity as space-dependent material property,
additional transport processes arise, for which the corresponding transport coefficients KY mat

would be difficult to determine.

2.2 Application to the Example Models for the Moisture Currents

Assume that the state of the whole system is given by two independent state variables. The
full local equilibrium assumption (i.e. no hysteresis) claims, that the heat and moisture dis-
tributes inside the REV in such a way, that the temperature and the chemical potential of
the water molecules are the same everywhere. I.e. for each pair (u, mw), there is exactly
one well-defined local equilibrium system state. On the other hand, for each well-defined
equilibrium state a non-ambiguous characterisation via (u, mw) can be done. Therefore, the
heat and moisture content is a valid set of independent state variables. Assuming invertible,
strictly monotonous and differentiable relationships between energy and water content on the
one hand and temperatures, pressures and chemical potentials on the other hand (i.e. between
extensive variables Xi and their associated thermodynamic potentials Pi = ∂U/∂ Xi ), other
sets of independent state variables may be constructed, containing pressures, temperatures and
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chemical potentials. The monotony of the functions Pi (X j ) follows from thermodynamic sta-
bility conditions in combination with the assumption of no hysteresis; cf. e.g. Callen (1985),
Chap. 8.2. However, whether these functions are strictly monotonous and differentiable and
whether hysteresis occurs (especially in the high moisture region) must be examined carefully
and will not be considered here.

As a first possibility, one may choose vapour pressure and temperature: (pv, T ) as inde-
pendent state variables and the water vapour mass Mv as transported quantity. According to
the general linear approach (20) the water vapour current is:

��v
pressure = (pv, T )

j Mv = −K
��v

pressure
pv

· dpv

dx
− K

��v
pressure

T · dT

dx
(21)

A second possibility is to choose capillary pressure and temperature (pc, T ) as independent
state variables and the liquid water mass Mw as transported quantity. According to (20) the
liquid water current is:

��w
pressure = (pc, T )

j Mw = −K
��w

pressure
pc · dpc

dx
− K

��w
pressure

T · dT

dx
(22)

A third possibility is to choose water content and temperature (mw, T ) as independent state
variables and the liquid water mass Mw as transported quantity. Once more, according to
(20), an alternative formulation for the liquid water current is:

��w
diffusion = (mw, T )

j Mw = −K
��w

diffusion
mw

· dmw

dx
− K

��w
diffusion

T · dT

dx
(23)

Taking the sum of the currents (21) and (22) leads to the total current in the pressure-driven
model, cf. Sect. 1.2, Eq. 3, plus thermodiffusion:

j Mw+v = −K
��w

pressure
pc · dpc

dx
− K

��v
pressure

pv
· dpv

dx
−

(
K

��v
pressure

T + K
��w

pressure
T

)
· dT

dx
. (24)

The sum of the currents (21) and (23) leads to the total current in the liquid diffusion/vapour
pressure model, cf. Sect. 1.2, Eq. 5, plus thermodiffusion:

j Mw+v = −K
��w

diffusion
mw

· dmw

dx
− K

��v
pressure

pv
· dpv

dx
−

(
K

��v
pressure

T + K
��w

diffusion
T

)
· dT

dx
(25)

The models described by (24) and (25) are equivalent according to their derivation. They
should even be equivalent to any other model derived from the state-variable approach with
two independent state variables.

A fourth possibility is to choose moisture content and temperature (mw+v, T ) as state vari-
ables and total moisture mass Mw+v as transported quantity. According to (20) the moisture
current reads:

��diffusion = (mw+v, T )

j Mw+v = −K
��diffusion

mw+v
· dmw+v

dx
− K

��diffusion
T · dT

dx
(26)

This equation corresponds to the diffusivity model, cf. Sect. 1.2, Eq. 6.
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There arises the question, why the model in (26) has two independent gradients and not
three, as in (24) and (25). According to the general linear approach any model based on two
state variables can have at most two independent gradients. The third gradient in the latter
models stems from the fact, that the liquid and vapour currents were determined separately.
However, in the assumption of two independent state variables, the evaporation equilibrium
between water and vapour is assumed implicitly. This fact can be used to eliminate one of
the three gradients. Choose as independent state variables (mw, T ). Then an evaporation
equilibrium must exist in the form pv (mw, T ). The vapour pressure gradient becomes

dpv (x)

dx
= ∂pv (mw, T )

∂mw

dmw

dx
+ ∂pv (mw, T )

∂T

dT

dx
(27)

Inserted into Eq. 25, the diffusion model (26) is obtained:

j Mw+v = −
(

K
��w

diffusion
mw

+ K
��v

pressure
pv

∂pv (mw, T )

∂mw

)

︸ ︷︷ ︸
K ��diffusion

mw

·dmw

dx

−
(

K
��v

pressure
T + K

��w
diffusion

T + K
��v

pressure
pv

∂pv (mw, T )

∂T

)

︸ ︷︷ ︸
K ��diffusion

T

·dT

dx
(28)

In analogy, the pressure-driven model (24) can be transformed using the evaporation equilib-
rium in the form pc (pv, T ). Then, the Glaser model including thermodiffusion is obtained:

j Mw+v = −
(

K
��w

pressure
pc

∂pc (pv, T )

∂pv

+ K
��v

pressure
pv

)

︸ ︷︷ ︸
K ��Glaser

pv

·dpv

dx

−
(

K
��v

pressure
T + K

��w
pressure

T + K
��v

pressure
pv

∂pv (pc, T )

∂T

)

︸ ︷︷ ︸
K ��Glaser

T

·dT

dx
(29)

As can be seen, all moisture current equations derived from the general linear approach
are equivalent, if the transport coefficients are considered to be arbitrary phenomenological
coefficients. All equations have two independent driving potentials and two independent con-
ductivities to account for the same total moisture current j Mw+v . However in the case of the
phase-divided models there are two additional independent conductivities, which describe
the relationship between liquid and vapour transport.

It is only model specific, how the currents are subdivided into partial currents, which are
e.g. pressure-driven, moisture-content driven or temperature-driven. Even for the same gra-
dient, (e.g. dT/dx in case of the thermodiffusion) the partial currents may vary in different
models, depending on the other variable (e.g. moisture content or liquid pressure). As can be
calculated, the difference of liquid thermodiffusion becomes in the models (24) and (25):

j Mw

diffusion,T − j Mw

pressure,T =
(

K
��w

pressure
T − K

��w
diffusion

T

)
· dT

dx

= K
��w

diffusion
mw

· ∂mw (pc, T )

∂T

dT

dx
(30)
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3 The Thermodynamic and the Micromechanical Approach

The derivations of transport currents in the literature can be classified into two types: Either
they are based on thermodynamics and investigate the entropy production, or they con-
sider explicitly the transport processes on a microscopic scale. The former will be called
the “thermodynamic approach”, the latter the “micromechanical approach” throughout this
publication.

The general linear approach gives no information about the order of magnitude of the
different transport coefficients K . Especially there is no argument for the neglect of some
of the independent transport processes (like thermodiffusion in the non-hysteretic heat and
moisture transport).

3.1 Derivation and Properties of the Thermodynamic Approach

In the thermodynamic approach, the currents j W and their respective driving forces are
obtained from the entropy production. The transport equation (8) for the entropy S (De
Groot and Mazur 1962) is given by:

∂

∂t
s (�x, t) = −

∑

k

∂

∂xk
j S
k (�x, t) + σ S (�x, t) . (31)

The entropy current and the entropy content are stated as �j S (�x, t) and s (�x, t), respectively.
The entropy production rate per volume is given by σ S (�x, t).

The elaborate derivation of σ S (�x, t) for a heat, air moisture and salt transport model
including diffusion has been done by Grunewald (1997, 2000) and for a heat, air and liquid
water transport model including surface effects by Hassanizadeh (1990) and Gray (1991).
The derivations for the moisture flows are summarised in the appendix, sections A.1–A.2.
Grunewald (2000) obtained the temperature-constant gradient of the chemical potential as
the thermodynamic driving force for the diffusive water vapour flow. It can be shown that
this corresponds to the vapour pressure gradient. Gray and Hassanizadeh obtained the force
exerted by the solid-liquid interface on the liquid phase as the driving force of the liquid
water flow. They showed that this force in turn could be identified with the liquid or capillary
pressure gradient.

To derive the general pros and contras of the thermodynamic approach, it is necessary
to investigate the derivation of this approach in more detail. A review is given by Jaynes
(1980), whose results will be applied to our problem of spatial transport in a porous system.
Important assumptions and properties of the system are in this case:

• The time-dependent local system state can be described by a full set of extensive conserved
properties �w (energy, masses, …) in different regions of the REV, cf. Fig. 1. If some of
these properties are in exchange equilibrium with other regions, (e.g. vapour mass and
liquid water mass) only the total amount will be accounted for.

• Any change of the system state �w corresponds to a flow, either inside the reference volume
itself (e.g. due to a phase change) or to the surrounding (i.e. the transport currents).

• The entropy production of each independent transport process has to be greater or equal
zero according to the second law of thermodynamics. Inside the REV all flows causing a
change of �w must be irreversible, according to the above definition. The transport currents
over the system boundaries are considered as non-equilibrium flows (i.e. irreversible, not
quasistatic, friction). Therefore, in the case considered here, the entropy production will
be greater zero, if the system is not in equilibrium.
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• Assuming that flows inside the REV’s do not interact with the spatial flows, cf. e.g. Grune-
wald (1997), and there are no interactions between spatial flow components in different
directions (x, y, z), it is sufficient to consider only spatial flows in a 1-dimensional system.

• To derive the transport currents, the system can be considered as closed containing two
identical neighbouring volume elements cf. Fig. 2. A set of independent state variables of
the combined system is given by the average and the difference of �W1, �W2:

�W ≡ 1/2 · (W1 + W2) ,


 �W ≡ 1/2 · (W2 − W1) − 
W0

(

 �Ymat

)
, (32)

where the time-independent quantity 
 �W0

(

 �Ymat

)
is chosen in such a manner, that in the

equilibrium state of the system 
 �W becomes zero, even if there are differences 
Ymat,i in
the material properties of the two volumes. According to conservation laws, �W is a conserved
parameter, whereas 
 �W is not. The current through the common boundary of the volumes
becomes

j
�W = d/dt

(

 �W

)
. (33)

From this point, the description of Jaynes (1980) can be adapted.
The state of a general closed system is assumed to be near equilibrium. The deviations

hereof are described by non-conserved parameters ai . In the above-described case, these
deviations are given by the differences 
 �Wi :


 �Wi
∧= �ai (34)

Then the entropy can be Taylor-expanded (Jaynes 1980), Eq. 4:

S = S0 − (1/2) �i j Gi j · ai · a j

Gi j ≡ −∂2S/∂ai∂a j (35)

S0 is the maximum of the entropy function S (�a) and Gi j is a symmetric matrix, which
describes the near equilibrium behaviour of the system. S has an absolute maximum for
�a = 0. Therefore, G̃ must be positive definite, i.e. for arbitrary �a �= 0 it holds

�aT · G̃ · �a > 0. (36)

The entropy production due to a time-dependent change of the system can be written in the
well-known form:

dS/dt = �i ∂S/∂ai · dai/dt = �i Fi · J Wi (37)

where Fi are defined by

Fi ≡ ∂S/∂ai = −� j Gi j a j (38)

Because the Fi give by definition the entropy production (37), they represent as “driving
forces” the tendency of the system to reach equilibrium via the currents J Wi in the thermo-
dynamic approach.

These forces can also be related to the arbitrary gradients of the general linear approach: If
the state variables and material properties of the two volume elements are equal, the system
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is in equilibrium and the forces Fi must vanish. Taylor expansion of the forces with respect
to the gradients �∇ �Y , �∇ �Ymat of state variables �Y and material properties �Ymat, cf. (13), yields

Fi

( �Y , �Ymat, �∇ �Y , �∇ �Ymat

)
= � j ∂ Fi/∂ �∇Y j · �∇Y j + � j ′ ∂ Fi/∂ �∇Ymat, j ′ · �∇Ymat, j ′

≡ � j, j ′ Ai j · �∇Y j + Ai j ′ · �∇Ymat, j ′ (39)

This is the general relationship between the thermodynamic approach and the general linear
approach. The thermodynamic driving forces can be written as linear combinations of state
variable gradients.

However, the forces can also be identified by the gradient, of a thermodynamic potential
�i , defined by

Fi
!= −�∇�i (40)

From definition (40) and from

�∇�i

( �Y , �Ymat

)
= � j ∂�i/∂Y j · �∇Y j + � j ′ ∂�i/∂Ymat, j ′ · �∇Ymat, j ′ (41)

it follows

∂�i/∂Y j = −Ai j (42)

Therefore, the potential �
( �Y

)
can be obtained via integration over the Ai j , provided the

coefficients Ai j are integrable.
If every spontaneous change of the system is due to an entropy increase, then from (37)

follows:

j W
( �F = 0

)
= 0. (43)

This corresponds to Eq. 16 of the general linear approach. In the case here, the currents
vanish for zero driving forces according to the entropy production principle. In the general
linear approach, Eq. 16, the currents vanished for zero state variable gradients according to
the symmetry principle. In the same manner as in the general linear approach, Eq. 17, the
currents can be derived via linear Taylor expansion, cf. also (Callen 1985), chapter 14-3:

j Wi
( �F

)
= dai

dt

( �F
)

= � j ∂ j Wi
( �F

)
/∂ Fj · Fj ≡ � j Li j Fj (44)

If the coefficients Li j are identified with the conductivities Ki j and the forces Fj with the
state variable gradients �∇Yi , this equation corresponds to (20) in the general linear approach.

Now the question is, whether additional statements can be made for the Li j , as compared
to the Ki j due to the entropy production principle. First, as compared to (20), the space
dependent material property gradients �∇Ymat have disappeared. Second, the famous Onsager
theorem (Jaynes 1980), Eq. 14, follows from the reversibility of microscopic system changes:

L̃ = L̃T or Li j = L ji (45)

By this the number of off-diagonal transport coefficients is reduced. Third, the above rela-
tionships dS/dt = �i Ji · Fi and Ji = � j Li j Fj suggest, that the main contribution of the
entropy production due to the current Ji stems from the force Fi (and not from forces Fj �=i ).
Therefore the current Ji should be mainly due to the force Fj and therefore the diagonal
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elements of the matrix Li j should be larger than the off-diagonal ones. More precisely, the
combination of (37) and (44) gives

dS/dt = �FT L̃ �F ≥ 0 (46)

Since the entropy production must be greater or equal zero for arbitrary forces �F , Eq. 46
states, that the matrix L̃ is positive semi-definite. However, this does not lead to the desired
conclusion, that the matrix L̃ is diagonally dominant. The relationship would hold only in the
inverse direction: If L̃ is strong diagonally dominant, i.e. |Lii | > � j �=i

∣∣Li j
∣∣ and all diagonal

entries are greater zero, then L̃ is also positive definite.
As G̃ and L̃ are both symmetric or self-adjoint, they can be orthogonally transformed by a

matrices ÕL , ÕG into diagonal forms L̃ D, G̃ D (Jaynes 1980), p. 588. Additionally, because
G̃ and L̃ are positive (semi)definite, Eqs. 36 and 46, the values of G̃ D are greater zero and
the values of L̃ D are greater or equal zero. This leads to a reformulation of (44):

�J = L̃ · �F
ÕL · �J = ÕL · L̃ · Õ−1

L · ÕL · �F
�J ′ = L̃ D · �F ′ (47)

Therefore, in an appropriately chosen system, the coefficient matrix L̃ becomes diagonal. The
choice of the system corresponds to the choice of the transported currents, i.e. to the choice
of �J ′, from which the driving forces �F ′ can be derived and afterwards the coefficient matrix
L̃ becomes diagonal. Unfortunately, it is necessary to know the full matrix L̃ in advance.
Then the orthogonal transformation �OL can be determined and finally the system of currents
�J ′ = ÕL · �J can be determined.

This would, once more, require the determination of the non-diagonal coefficients by
microphysical modelling or by experiment. Therefore, it is suggested (Jaynes 1980) p. 588,
that the transformation ÕL could be identical with the transformation ÕG which makes the
matrix G̃ diagonal. In case of a diagonal G̃ D , all corresponding deviations a′

i from equilib-
rium lead independently to an entropy increase, since from (35) the deviation of S from the
equilibrium S0 is

S − S0 = −�i G D
ii · (

ai
′)2

. (48)

There are no mixed terms containing ai
′ · a j

′ in (48). The determination of G̃ can be done,
if from the thermodynamic model the entropy of a volume element containing a gradient

S (�a) = S
(

 �W

)
= S (grad �w)

is known. However, according to the theorem of simultaneous diagonalisability (Jaynes
1980), p. 588, the diagonal form for G̃ and L̃ is only achieved by the same transforma-
tion O , if the additional requirement is made, that L̃ and G̃ commute, i.e.

L̃ · G̃ = G̃ · L̃ (49)

Jaynes suggests, that this theorem should be checked for systems in which L and G are
determined independently.

The independent determination of the non-diagonal coefficients of L̃ requires an exper-
iment or a numerical simulation. According to the Prigogine theorem, described in (Jaynes
1980), p. 581, if a potential difference (e.g. Temperature) is applied at the boundary of a sys-
tem, then the system turns into a stationary state at which the entropy production is minimal.
If one gradient is given fixed over the boundary and the other gradients are free, then the latter
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will take a form by which the entropy production is minimal. The description of Jaynes will
be demonstrated now for the case of non-hysteretic heat and moisture transport. The latent
heat current JQ and the particle current (Moisture current) JN are chosen as independent
currents Wi . An experimental setup corresponding to this situation would be a homogeneous
volume filled with particles and with impermeable walls to which a temperature gradient is
applied. The particle concentration gradient (i.e. the gradient of the chemical potential) can
freely respond to the given conditions.

�J =
( �j Q

�j N

)
⇒ �F ≡

( �F Q

�F N

)
=

(
grad (1/T )

grad (µ)T

)

σ S = L̃ · �F = L Q Q FQ
2 + 2L QN FQ FN + L N N F2

N

∂σ S/∂ FN = 2L N N FN + 2L QN FQ
!= 0 (Prigogine)

⇒ JN = � j L N j Fj = L N N FN + L N Q FQ = ∂σ S/∂ FN = 0 (50)

In this case, the Prigogine theorem yields just the vanishing particle current JN . The size
of non-diagonal effect can now be determined because the thermodiffusion coefficient L N Q

must obey the relation

L N Q/L N N = −FN /FQ . (51)

Thus, from the gradients of the chemical potential FN the size of the thermodiffusion L N Q

can be determined.
To summarise, in the thermodynamic approach there is no dependency of the transport

processes on material property gradients (other than in the general linear approach). The diag-
onal conductivity coefficients Lii can be estimated more or less larger than the non-diagonal
ones, due to the positive definiteness of L̃ . If an appropriate choice of the transport currents
�J is made, the non-diagonal coefficients can be eliminated. However, this would still require

a complete determination of all coefficients Li j . According to Jaynes (1980), the optimum
choice of transport currents could also be estimated from the explicit expression for S( �∇ �w)

from which the matrix G̃ can be determined according to (35) . He considers this as a central
point of the thermodynamic model (p. 589): “…the relation LG = GL . If his conjecture
should be confirmed, irreversible thermodynamics would become more useful…”

3.2 Derivation and Properties of the Micromechanical Approach

In principle, the heat and mass transport processes can also be calculated on the microscopic
scale. This requires a more detailed knowledge of the physical and chemical properties of
the transported masses, of the pore configuration and the properties of the pore surfaces. The
main feature of the micromechanical approach is that it provides explicit expressions for the
transport coefficients K . In the general case, a micromechanical modelling of the transport
currents can be done via simplified analytical models or via numerical investigations such as
Monte Carlo simulation, molecular dynamical simulation etc.

For the example of the non-hysteretic heat and moisture transport an analytic microme-
chanical investigation leads to the following results: The water vapour flow is obtained from
the theory of ideal gas mixtures (Bednar 2000). The corresponding driving potential is the
vapour pressure, however, with a small contribution of thermodiffusion, cf. Appendix A.3.
The liquid water flow and the liquid conductivity are obtained from the Navier-Stokes equa-
tions in the pore system (Whitaker 1986a), cf. Appendix A.4. The corresponding driving
potential is the liquid pressure. The effect of thermodiffusion can be considered negligible
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under the assumption of temperature-independent porosity, liquid water density, viscosity
and surface tension:

�por = const; ρ� = const; η� = const; γ�g = const (52)

3.3 Application to the Example Models

Application to the pressure-driven model: The pressure-driven model including thermodiffu-
sion had been obtained from the general linear approach, cf. Eq. 24. The driving potentials for
the phase separated transport were liquid pressure, water vapour pressure and temperature.
The thermodynamic and the micromechanical approach stated for this case a comparatively
small thermodiffusion:

{
thermodynamic approach
micromechanical approach

}
⇒ K

��v
pressure

T ≈ 0 and K
��w

pressure
T ≈ 0 (53)

This yields the pressure-driven model without thermodiffusion, Eq. 3, which could not be
obtained from the general linear approach alone.

Application on the liquid diffusivity/vapour pressure model: The liquid diffusivity/vapour
pressure model plus thermodiffusion had also been obtained from the general linear approach,
cf. Eq. 25. In this case the potentials were liquid water content, water vapour pressure and
temperature. A vanishing thermodiffusion can only be deduced from the pressure-driven
model. According to (30), this requires a temperature independent moisture retention:

∂mw (pc, T ) /∂T = 0. (54)

Equation (54) is an additional assumption. It holds for the simple well-known capillary con-
densation theory stating that with increasing moisture content water fills the smallest pores
first and then the larger ones. The capillary pressure becomes a function of the water content,
of the pore size distribution (the porosity) and the pore shape of the material and of the
liquid water surface tension and density. With the exception of the water content, all other
quantities are assumed to be invariant liquid or material properties. If all these quantities are
nearly temperature-independent as has also been assumed in the micromechanical approach,
Eq. 52, the moisture content becomes a function of capillary pressure alone:

mw

(
pc, fpore shape, γ�g, ρ�, fpore size

)
= mw (pc) (55)

This is consistent with Eq. 54.
According to Rouquerol et al. (1999) the theory of capillary condensation is fully valid

only in the mesopore region 2 nm< rmax <50 nm. At very small and at very large pores and
in organic materials, the moisture retention may become temperature dependent.

To summarize, from the thermodynamic and the micromechanical approaches it follows,
that the effect of thermodiffusion can be neglected in the pressure-driven model. For all other
models, the thermodiffusion must be deduced from the pressure-driven model. For the liquid
diffusivity / vapour pressure model the neglect of thermodiffusion can only be done, if the
moisture retention in the form mw (pc, T ) turns out to be independent of temperature.

Note, that the pressure-driven model has still two independent gradients, despite of the
neglect of thermodiffusion. Therefore, it can be derived from the general linear approach
alone. However, the neglect of the thermodiffusion in each phase (liquid and vapour) leads
to the additional information, that if the driving potentials pv, pc are chosen, these driving
potentials account for the vapour and liquid moisture transport separately. Also, the explicit
expressions for the corresponding vapour and liquid conductivity coefficients are obtained,
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cf. Appendix A.3 and A.4. The micromechanical model can be improved, if the interaction
of the vapour and the liquid transport is considered (Scheffler et al. 2005).

4 The Three Approaches Applied to More Complex Models

The same general considerations made for the non-hysteretic heat and moisture transport
apply to other systems with two state variables as well (e.g. isothermal moisture and air
transport). However, if the number of state variables increases linearly, the number of inde-
pendent transport processes increases quadratically. Consider the case of heat and moisture
transport with an additional conserved quantity, such as air or salt or a hysteretic water con-
tent. If this quantity is denoted by B, then an additional state variable YB will be needed to
describe the system and three independent currents j Q, j Mw+v , j B arise (heat, moisture and
B-current). If the arbitrary independent state variables are denoted �Y = (Y1, Y2, YB) then the
general linear approach leads to the equations for the independent currents according to (20):

⎛

⎜⎝
j Q

j Mw+v

j B

⎞

⎟⎠ =

⎛

⎜⎜⎝

K �Y
11 K �Y

12 K �Y
1B

K �Y
21 K �Y

22 K �Y
2B

K �Y
B1 K �Y

B2 K �Y
B B

⎞

⎟⎟⎠ ·
⎛

⎝
grad Y1

grad Y2

grad YB

⎞

⎠ (56)

The conductivity coefficients K11 and K22 denote the heat and moisture conductivity, the
coefficients K21 and K12 denote the Dufour effect and the Soret effect (thermodiffusion). In
addition, there are five independent transport coefficients describing the transport of quan-
tity B. To reduce the number of coefficients, the thermodynamic or the micromechanical
approach have to be employed. If the thermodynamic approach is used, the vector of the
three thermodynamic potentials corresponding to the three given independent currents has
to be used as vector of state variables: �Y ≡ ��T D . Then from the Onsager-Relations the
K -Matrix becomes symmetric:

K
��T D

i j = K
��T D

ji (57)

Thus, the number of independent transport coefficients for the whole system reduces to 6.
If the non-diagonal coefficients could be treated as small (as discussed above), then the
coefficients K21, K B1 and K B2 could be neglected.

5 Summary and Conclusions

In this work three different derivation schemes for spatial transport currents have been com-
pared in a systematic way. First, a general linear approach has been formally derived from
a symmetry principle. It turned out, that each model using a complete set of independent
state variable gradients with their associated conductivities is able to describe in a linear
approximation all transport processes in a homogeneous material, if the corresponding trans-
port coefficients are “phenomenological”, i.e. arbitrary functions of the given state variables.
Then the thermodynamic and the micromechanical approach often encountered in literature
have been investigated. The thermodynamic approach selects from the arbitrary set of state
variables a set of thermodynamic potentials corresponding to a set of independent transport
currents. If these potentials are used, the dependency on the material property gradients, caus-
ing problems in inhomogeneous materials and at material boundaries disappears. Also, the
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independent transport coefficient matrix L̃ = K̃ ( ��T D) contains less independent transport
coefficients due to the well-known symmetry given by the Onsager relations. The non-diag-
onal coefficients are only in tendency smaller than the diagonal ones, due to the positive
definiteness of L̃ , which follows from the principle of positive entropy production. There is
always an optimum choice for the transport currents J , for which the non-diagonal coeffi-
cients vanish, but as a rule the non-diagonal coefficients are non-zero.

Finally, the micromechanical approach gives the most detailed insight into the transport
processes. The transport processes are derived from the microscopic physical laws and the
order of magnitude of their transport coefficients can be estimated.

The above-considerations have been applied to the simple case of non-hysteretic heat and
moisture transport. The different expressions for the moisture transport currents, which are
known from literature, can be derived to a large part by the general linear approach. Sometimes
a term accounting for thermodiffusion must be added. As long as two independent gradients
are employed, all expressions depending on two independent driving potentials are equiva-
lent, if the transport coefficients are considered to be arbitrary functions. It is well-known, that
the driving potentials of moisture transport are the liquid and vapour pressure. These poten-
tials are obtained from the thermodynamic and micromechanical approach. If these driving
potentials are used, then the dependency of the material property gradients is eliminated.
Moreover, it can be expected from the thermodynamical approach, that the thermodiffusion
in the liquid and vapour phase becomes small for each phase in the pressure-driven model.
This can definitively be confirmed by the micromechanical approach. However, since the
pressure-driven model still contains two independent gradients, it could have been derived
by the general linear approach alone. The neglect of thermodiffusion results in the addi-
tional statement, that the vapour and liquid pressure are driving potentials for the vapour and
liquid transport separately. Also, different micromechanical models for the liquid and vapour
transport coefficients have been cited from literature.

For systems containing more than two state variables the number of independent transport
processes and coefficients increases rapidly; therefore the thermodynamic or the microme-
chanical approach have to be applied to reduce the number of transport coefficients. The
general linear approach however, gives immediately the maximum number of independent
transport processes, if no simplifications (except local equilibrium assumptions and linearity)
are made.

Appendix

A.1 Thermodynamic Approach for the Vapour Transport According to Grunewald

Grunewald (2000), Eq. 1.43 obtains the following expression for the entropy production
according to (31) for a system of separate phases α = {liquid, solid, gaseous}, each consist-
ing of several components i (dry air and water vapour, liquid water and dissolved salt):

σ Sα · Tα = − 1

Tα

· j Q
k · ∂Tα

∂xk
− �i j Mαi

k,diff ·
[(

∂µi

∂xk

)

Tα

− gk

]

−π jk,α · ∂v
Mα

j

∂xk
+ σ

Sα

scalar · Tα (58)
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The four summands contain the following transport currents: j Q
k is the heat conduction flow,

j Mαi
k,diff are the diffusion flows (water vapour diffusion i = v or the salt diffusion i = s). The

pressure tensor π jk,α represents the momentum flow and the last term containing σ
Sα

scalar is
due to phase change flows and heat inflow from external sources.

The driving forces are the following: The vapour mass diffusion is driven by the chem-
ical potential gradient in the gaseous phase α = g at constant temperature, denoted by
(∂µv/∂x)T . The gravity force gk will be neglected hereafter. The chemical potential is
assumed to depend on temperature, total gas pressure pg and water vapour mass concentra-
tion cv ≡ Mv/ (Ma + Mv). This leads to the following precise definition:

(
∂µv

(
pg, cv, T

)

∂xk

)

T

≡ ∂µv

∂xk
− ∂µv

∂T

∂T

∂xk
= ∂µv

∂pg

∂pg

∂xk
+ ∂µv

∂cv

∂cv

∂xk
(59)

Additionally it has to be considered that (58) gives two independent diffusive currents for
dry air and for vapour transport, respectively. In fact, these two currents are not independent,
but equal and of opposite sign so that the diffusion result into a zero net current. Taking
the vapour diffusion current as independent and the air diffusion current as dependent, the
entropy production due to vapour diffusion arises from the two currents together. This can
be calculated from (58):

σ S
diffusion = − j Mv

k,diff · 1

T
·
[(

∂µv

∂xk

)

T
−

(
∂µa

∂xk

)

T

]
(60)

According to Callen (1985), Eq. 13.8, the chemical potential of the water vapour component
in an ideal gas consisting of dry air and water vapour is given by:

µv

(
pg, cv, T

) = RT
(

fv (T ) + ln
(

pg
) + ln (cv)

)
(61)

where pg is the total gas pressure, R is the universal gas constant, cv the vapour mass or
particle concentration and fv(T ) is a function depending only on temperature. An analogous
relationship holds for the chemical potential of dry air µa

(
pg, ca, T

)
. Inserting (61) into

(60) yields after some calculation:

σ S
vapour diffusion = − j Mv

k,diff · R

pv

· ∂pv

∂xk
(62)

Thus, in the case of water vapour the gradient of the chemical potential (60) is proportional
to the vapour pressure gradient, i.e. the vapour pressure gradient is the driving potential of
the water vapour current.

A.2 Thermodynamic Approach for the Liquid Transport According to Gray
and Hassanizadeh

Hassanizadeh and Gray (1990, 1991) obtain the driving potentials taking the phase and
interface interactions into account. After making all simplifications to get at the non-hys-
teretic heat, air and liquid water flow, the expression for the entropy production becomes
(Hassanizadeh 1990), Eq. 71:

T · σ S =
∑

k

(
−�vMw

k · τ̂ �
k − �vMg

k · τ̂
g
k − �αβ �vMαβ

k · τ̂
αβ
k

)

+
∑

k

(
j Q
k · 1

T
· grad (T )

)
− �por · ∂t s

w · (
pg − p� − pc

)
(63)
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The driving potentials of the liquid water flow and the gaseous air flow are τ̂ � and τ̂ g ,
respectively. The driving potential for the heat flow �j Q is the temperature gradient grad(T).
Additionally, there is a third term in the entropy production, which becomes non-zero in
case of pressure non-equilibrium between liquid and gaseous phases. The driving potential
for this equilibrium is the pressure difference between capillary, gaseous and liquid pres-
sures pc, p�, pg . The associated “flow”, i.e. the system state change expressed in extensive
variables, is the change in water saturation sw = V�/V�+g .

The expression for τ̂ � can be taken from the following formula for the production of
entropy due to liquid water flow according to (Hassanizadeh 1990), Eq. 58:

σ S
liquid flow =

∑
k
v

Mw

k · 1

T
·
[

p� · ∂θ�

∂xk
− ρ�θ� · ∂ A�

∂sw

∂sw

∂xk
− T̂ �

�m − T̂ �
�g

]

≡ −v
Mw

k · 1

T
· τ̂ �

k (64)

T is the temperature of the REV, p�, θ�, ρ� are pressure, volumetric content and density of
the liquid water phase, respectively. sw is the water saturation and A� the free energy density.

The most important term of (64) is the momentum transfer, i.e. the force exerted from the
solid material (m) on the liquid phase (l). It is denoted by T̂ �

�m . In other words, if the liquid

flows with a velocity v
Mw

k , mechanical work is done against the friction force of the pore
walls, which is dissipated into heat (entropy production).

Hassanizadeh (1990) argues that at very low currents v
Mw

k the term in brackets in (64)
vanishes. This is because there is force equilibrium between the liquid and the pore walls. For
very slow velocities, i.e. quasistatic processes, no entropy is produced. Therefore the force
τ̂ � can be interpreted as the non-equilibrium part of T̂ �

�m + T̂ �
�g . Because the non-equilibrium

(=friction) forces arise only at non-zero velocities of liquid and gaseous phases, a linear
approach can be made for τ̂ (Hassanizadeh 1990), Eq. 74:

τ̂� = R�
m · v

Mw

k + R�
g · v

Mg
k ≈ R�

m · v
Mw

k (65)

Using the momentum transport equation one obtains (Gray 1991), Eq. 36:

− ∂pc

∂xk
− ρ� · gk + ρ�

∂ A�

∂sw

· ∂sw

∂xk
= −R�

m · v
Mw

k = −τ̂ (66)

Provided, that the so-called “wettability potential”∂ A�/∂sw in (66) is neglected, Hassanizadeh
and Gray obtain the capillary pressure together with the gravity force gk as driving potential
for the liquid moisture flow.

A.3 Micromechanical Approach for the Vapour Transport According to Bednar

The standard micromechanical approach based on scattering of an ideal gas (Gerthsen 2006),
Sect. 5.2.6, is for the given system described by Bednar (2000), p. 43. It is assumed, that the
vapour molecules scatter with the air molecules. For free air, i.e. outside the material, the
total water vapour current is given as follows (Bednar 2000) Eq. 3.18:

j Mv

free air,k = −Mmolecule,v · 1

3
� · ∂

∂xk
· (

vmolecule,v · nv

)
(67)

In this equation, Mmolecule,v is the mass, � is the mean free path, vmolecule,v is the thermal
velocity and nmolecule,v is the density of the water vapour molecule.
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Using the ideal gas law, the Maxwell velocity distribution and the scattering theory with
a molecular cross section σmolecule, the vapour current in free air (without porous medium)
can be obtained:

j Mv

free air,k = − 2

3
√

π
·
√

Mmolecule,v · kB · T

pg · σ
· √

T · ∂

∂xk

(
pv√

T

)

≡ −δv,air
√

T
∂

∂xk
·
(

pv√
T

)
(68)

For the case of constant gaseous pressure pg , Bednar cites the “Stefan correction factor”
1/

(
1 − pv/pg

)
. Finally, inside the porous medium, the vapour current is decreased due to

several reasons as compared to free air: The free space for vapour diffusion in the porous
medium is reduced. The currents cannot go straight, but they have to follow the direction of
the pore tubes. The microscopic gradients will be different from the average currents of the
REV due to liquid water shortcuts in the pores.

These effects are included into a resistance factor µ (mw) depending on the given material
and on the water content. The microscopic water vapour transport is then given by

j Mv

k = − δv,air

µ (mw)
· 1

1 − pv/pg︸ ︷︷ ︸
δv

√
T

∂

∂xk
·
(

pv√
T

)

= −δv · ∂pv

∂xk
+ δv · pv

2T
· ∂T

∂xk
(69)

Thus, the microscopic theory yields the driving potentials and the transport coefficients of
the vapour transport. Additionally, the relation between thermodiffusion and the normal
pressure-driven diffusion can be determined from (69).

thermodiffusion

pressure driven diffusion
= pv

2T
· ∂T/∂xk

∂pv/∂xk
= 1

2
· δT/T

δpv/pv

(70)

T varies between 273 K and 300 K for building applications. Whereas the vapour pressure pv

varies between zero at 0% RH and psat at 100% RH. Therefore the relative variation of pv can
be considered much larger than the relative variation of T . That means, the pressure-driven
diffusion exceeds the thermodiffusion by an order of magnitude. This had been expected
from the thermodynamic approach.

A.4 Micromechanical Approach for the Liquid Transport According to Whitaker

Whitaker (1986a) gives a micromechanical approach for the liquid water transport. The Na-
vier Stokes equation system for the advective flow in a Newton liquid is given by Stöcker
(2004) p. 137:

ρ� · Dv
M�

k

Dt
= − ∂

∂xk
p� + ρ� · gk + η� · � j

∂2

∂x2
j

v
M�

k

D

Dt
≡ ∂

∂t
+ � j

(
v

M�

j
∂

∂x j

)
(71)

In case of high friction the mass acceleration given on the left of (71) by the time derivative

D/Dt
(
v

M�

k

)
vanishes. This is the starting point of Whitaker (1986a), Eq. 2.2. He makes the
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following assumptions: Incompressibility of the liquid, Eq. 2.3:

�∇ · �vM� = 0 (72)

Zero flow velocity at the boundary of the liquid phase, Eq. 2.4:

�vMw (�x ∈ {∂V�}) = 0 (73)

The length scale of the pores is much smaller than the REV and this in turn is smaller than
the macroscopic dimensions of the sample (Whitaker 1986a), Eq. 2.1:

rpore << �REV << LSample (74)

Additionally, Whitaker assumes throughout his article, that important micromechanical prop-
erties like material porosity, liquid water density, viscosity and surface tension are not depen-
dent on the system state, cf. (52).

From these assumptions, Darcy’s law is derived (Whitaker 1986a), Eq. 3.38:

�vM� = θ� · C−1

η�︸ ︷︷ ︸
K�

·
( �∇ p� − ρ� · �g

)
(75)

The only driving force for the liquid water flow is the gradient of the liquid pressure �∇ p�

enhanced by the gravity force �g. Especially due to the assumptions (52) there is no thermo-
diffusion, i.e. no term containing �∇T . The conductivity K� is proportional to the liquid water
content θ� and inverse proportional to the viscosity η�. The matrix C describes the influence
of the pore structure. It is given by (Whitaker 1986a), Eq. 3.30, 3.31, 3.35:

C = − 1

V�

∫

∂V�

�n∂V�
·
( �∇B − I�b

)

�vM�

micro = B · �vM� (76)

�pM�

micro = η� · �b · �vM�

This is an integral over the deviations of the microscopic velocities/pressures from the veloci-
ties/pressures averaged over the REV, i.e. it depends on the shape of the velocity and pressure
profiles due to the pore structure.

Whitaker extends his approach also to two-phase-flow (Whitaker 1986b) and to quadratic
terms, the so-called “Forchheimer” terms (Whitaker 1996).

The explicit determination of K according to (76) requires solving a differential equation
system in the microscopic material. In fact, it could be easier to solve the equation system
(71) directly. Quenard et al. (1998) and Bentz et al. (2000) tried to determine in this way the
liquid moisture conductivity of a brick. The microstructure was determined by the evaluation
of microscopic cross sections and by X-ray tomography. However, the procedure is quite
difficult and reproduces the measured moisture conductivity only by order of magnitude.
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