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Abstract Operator splitting is often used for solving advection-dispersion-reaction (ADR)
equations. Each operator can be solved separately using an algorithm appropriate to its
mathematical behavior. Although a lot of research has been done in operator splitting for
solving ADR equations, numerical approaches for the reaction operator are computationally
expensive. To meet the convergence criteria of ODE (ordinary differential equation) or DAE
(differential algebraic equation) solvers, a transport time step has to be subdivided into a
large number of reaction time steps. Additional computation effort is also required to reduce
the splitting error. In this paper, we develop exact solutions of various first-order reaction
networks for the reaction operator and couple those solutions with numerical solutions of the
transport operator. The reactions are treated as local phenomena and simulated using exact
solutions that we develop, while advection and dispersion are treated as global processes
and simulated numerically. The proposed method avoids the numerical error from the reac-
tion operator and requires a single-step calculation to solve the reaction operator. Compared
to conventional operator-splitting methods, the proposed method offers both computational
efficiency and simulation accuracy.

Keywords Reactive transport · First-order reaction · Operator splitting · Numerical
modeling · Analytical solution

1 Introduction

Equations of multispecies reactive transport in porous media are described as (Bear
1979)
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Ri
∂ci

∂t
= ∇ · (∇ · Dci − vci ) + Ri fi (c), ∀i = 1, 2, . . . , n (1)

where ci [ML−3] is the concentration of i th species; t is time [T]; v [LT−1] is the vector
of velocity; D [L2T−1] is the tensor of dispersion coefficients; fi is the gain or loss of i th
species due to reactions; Ri is the retardation factor of i th species; and n is the total number
of species. Divided by Ri , Eq. 1 can be written as

∂ci

∂t
= ∇ · (∇ · Di ci − vi ci ) + fi (c), ∀i = 1, 2, . . . , n (2)

where each species has its specific velocity vector and dispersion tensor,

vi = v
Ri

, Di = D
Ri

.

If all reactions are assumed to be first-order, Eq. 2 can be expressed in the matrix format:

∂c
∂t

= L + Ac, L =

⎡
⎢⎢⎢⎢⎢⎢⎣

∇ · (∇ · D1c1 − v1c1)

∇ · (∇ · D2c2 − v2c2)

· · ·
∇ · (∇ · Di ci − vi ci )

· · ·
∇ · (∇ · Dncn − vncn)

⎤
⎥⎥⎥⎥⎥⎥⎦

. (3)

In Eq. 3, A is the first-order reaction matrix.
Equation 3 can be solved either analytically or numerically according to the

complexity of the modeled system. Besides analytical approaches, three predominant ap-
proaches, including globally implicit (GIA), sequentially iterative (SIA), and sequentially
non-iterative (SNIA, also called operator splitting, OS) algorithms, are used to solve the cou-
pled reactive transport systems (Yeh and Tripathi 1989; Robinson et al. 2000; Prommer et al.
2003; Hammond et al. 2004; Chen and MacQuarrie 2005). The use of an implicit numerical
method for the time integration may lead to excessive algebraic manipulations because the
dimension of the system matrices is typically determined by the product of the number of
variables, the number of species, and the number of grid blocks. Operator-splitting methods
reduce the dimension of matrices. Advection, dispersion, source/sink mixing, and reactions
can be solved separately using various numerical algorithms (Zheng and Wang 1999; Miller
and Rabideau 1993; Steefel and MacQuarrie 1996; Clement et al. 1996, 1998; Yabusaki et al.
1998; Schäfer et al. 1998).

Although operator-splitting methods are easy to implement and require less computa-
tional capability, they introduce operator-splitting error into the simulated results (Valocchi
and Malmstead 1992; Lu et al. 1996; Barry et al. 1996a, 1996b, 2000; Cheng et al. 2003;
Hammond et al. 2004). Several investigators have analyzed the splitting error to advection-
dispersion-reaction simulations (Valocchi and Malmstead 1992; Kaluarachchi and Morshed
1995; Morshed and Kaluarachchi 1995; Barry et al. 1996a, 1996b, 2000; Lanser and Verwer
1999; Carrayrou et al. 2004). To avoid or reduce the splitting error, several techniques have
been developed (e.g., Lanser and Verwer 1999; Simpson et al. 2005), but they come with an
additional computation effort. There is always a tradeoff between computational efficiency
(both labor and resources) and the accuracy of simulated systems.

The reaction term, described by a set of ordinary differential equations, is usually simu-
lated by using ODE solvers, such as the fourth-order Runge–Kutta method (Clement et al.
1998). When the first-order reaction rates of neighboring species differ by a large magnitude,
the reaction system may require small time steps because the fast reacting species lead to a

123



Modeling reactive transport using exact solutions 219

stiff system. Consequently, the ODEs of the reaction system cannot be solved by using con-
ventional ODE solvers (Sportisse 2000). For large simulation times (for example, 106 years
for the Yucca Mountain Project), the simulation of reactive transport with stiff reactions
becomes computationally expensive and even prohibitive. Often, stiff ODE solvers must be
used.

Schulz and Reardon (1983) used an analytical solution of the transport operator for solving
ADR equations and Valocchi and Malmstead (1992) were the first to use an exact solution
of a single-species first-order reaction in their OS procedure to examine the OS error from
the transport operator. Geiser (2001) introduced an exact solution of sequential first-order
reactions (Sun et al. 1999a) into an operator-splitting procedure. The use of exact solutions
in OS procedures requires only a single-step calculation of a closed-form solution, eliminat-
ing the numerical error from ODE solvers. Thus, both the computational efficiency and the
accuracy of simulated results can be enhanced. However, the OS procedure of Geiser (2001)
is limited to a typical case of a sequential and unimolecular reaction chain.

In this paper, we propose a generalized OS scheme to cover more general and complex
reaction networks, such as sequential, parallel, convergent, and reversible reactions using pre-
viously published analytical solutions (e.g., Sun et al. 1999b; Lu et al. 2003; Sun et al. 2004).
Recently, singular-value decomposition (SVD) has been used for solving linear reaction sys-
tems (Clement 2001; Samper-Calvete and Yang 2006). Instead of using the typical transform
of Sun et al. (1999a) (Geiser 2001), we conducted singular-value decomposition analytically
for generalized reaction matrices and developed a solution library of a wide range of reaction
networks. The total system of reaction equations is analytically diagonalized (transformed)
into a new coordinate system in which there is no coupling between the different coordinate
directions (species concentrations) and the system is resolved into a set of n independent
scalar equations with the same mathematical format. Then, closed-form solutions of reaction
systems are obtained for these independent scalar equations. The application can be extended
from radionuclide decay to more general purposes, such as biodegradation reaction networks,
denitrification, etc.

2 Solution methodology

The advection-dispersion-reaction system (3) is separated as transport and reaction equations.
The transport equation is solved using numerical methods, such as finite difference and finite
element, and the reaction equation is solved using exact solutions. The mass balance equation,
Eq. 3, can be expressed by transport and reaction operators:

∂c
∂t

= L(c) + R(c), (4)

where

Li = −∇ · (vi ci − ∇ · Di ci ) , i = 1, 2, . . . , n (5)

R = Ac. (6)

In the transport operator, Eq. 5, advection and dispersion are species-independent and spa-
tially dependent. The velocity and dispersion coefficient are normalized by the retardation
factor of the species. Therefore, the transport operator for each species can be solved with-
out considering other species concentrations. The reaction operator is spatially independent;
however, it is a function of other species concentrations at a given node. Consequently,
reaction equations can be solved only by discretizing the time domain.

123



220 Y. Sun et al.

To use a finite difference method in order to solve the transport operator, Eq. 5, the spatial
and time domains need to be discretized. Peclet number and Courant number are used to
determine transport time steps and spatial intervals:

Pe = v�x

DL
≤ 1, Cr = v�t

�x
≤ 1

where DL [L2T−1] is the longitudinal dispersion coefficient. Then,

�t ≤ DL

v2 .

Each transport time step, ti ≤ t ≤ ti+1, is conventionally subdivided into a large number
of reaction time steps to meet the convergence criteria of ODE solvers. However, if the first-
order reaction matrix, A, is analytically diagonalizable, closed-form solutions can be used to
represent the reaction operator,

c = F(ct ,�t) (7)

where ct is the concentration vector at time, ti+1, calculated from the transport operator and
F denotes a closed-form solution.

The focus of this method is to use an analytical solution, F , to a given reaction matrix, A,
in the operator-splitting scheme. If A is diagonalizable either analytically or numerically,

A = SΛS−1, (8)

where Λ is an n ×n diagonal matrix containing the eigenvalues of A, and S is a matrix whose
columns are linearly independent eigenvectors of A. Substituting Eq. 8 into Eq. 6 yields

dc
dt

= SΛS−1c. (9)

Multiplying by S−1, Eq. 9 becomes

da
dt

= Λa, a = S−1c. (10)

Each ODE in Eq. 10 is independent of other PDEs. Thus, we can write,

dai

dt
= λi ai , i = 1, 2, . . . , n, (11)

and

ar
i = ao

i exp (λi t) , i = 1, 2, . . . , n. (12)

Then, the solution in terms of c is obtained:

cr = Sar (13)

with cr and ar denoting the concentration vectors calculated from the reaction operator.

3 Analytical solutions of reaction networks

Reaction networks can be decomposed and categorized as sequential, reversible, parallel,
and convergent subsystems as shown in Fig. 1. All reactions are assumed to be first order in
this work. Although the first-order reaction rates can be spatially and temporally dependent
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Fig. 1 Reaction patterns.
(a) basic reaction; (b) sequential
reactions; (c) reversible reactions;
(d) parallel reactions; and
(e) convergent reactions c2 c3 c4c1
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c2 c4
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c1 c2
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c4

c5

(a)
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at a given node and during a time interval, the study domain of the reaction operator is treated
as a batch reactor.

Among those reaction patterns, a single-species first-order reaction is the basic pattern.
The emphasis of this paper is to decompose those coupled reactions into the basic reaction, a
single-species first-order reaction, for which Eq. 12 can be used as its closed-form solution.
Complex reaction networks can be decomposed to those basic reaction patterns. Therefore,
a solution library of previously developed analytical solutions can be coupled by transport
codes for simulating the reaction operator. In addition to the method that Sun et al. (1999a)
used for deriving analytical solutions of sequential and unimolecular reaction chains, singu-
lar-value decomposition (SVD) is commonly used to derive closed-form solutions (Sun and
Clement 1999; Clement 2001; Samper-Calvete and Yang 2006). In this section, we demon-
strate how to apply SVD to derive analytical solutions for (but not limited to) the sequential
and parallel/convergent reaction patterns.

3.1 Sequential reactions

The sequential reactions can be expressed as

c1

k1

�⇒
y1

c2

k2

�⇒
y2

· · · ci

ki

�⇒
yi

· · · cn

kn

�⇒
yn

, (14)

where yi is the yield coefficient of i th reaction and y = 1 is for unimolecular reactions. The
yield coefficient is defined as the amount of a daughter species produced per unit of a reactant
(parent species) consumed. The reaction matrix is written as:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−k1 0 · · · · 0
R1
R2

y1k1 −k2 · · 0
...

...
. . .

...
...

0 · · · Ri−1
Ri

yi−1ki−1 −ki · · ·
...

...
. . .

...
...

· · · · · · · · · Rn−1
Rn

yn−1kn−1 −kn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (15)

The first decoupling method of n-species sequential reactions was developed for unimo-
lecular reactions (yi = 1, Ri = 1, i = 1, . . . , n, Sun et al. 1999a), in which one unit of
a reactant reacts to produce one unit of a product. The method was modified for sequential
reactions with yield coefficients (yi �= 1, Ri = 1, i = 1, . . . , n, Sun et al. 1999b). Geiser
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(2001) extended the method of Sun et al. (1999a) with distinct retardation factors in his oper-
ator-splitting approach (yi = 1, Ri �= 1, i = 1, . . . , n). Considering both yield coefficients
and retardation factors, the transform is derived as (see Appendix A)

ai = ci +
i−1∑
j=1

R j

Ri

i−1∏
l= j

ylkl

kl − ki
c j , (16)

ci = ai +
i−1∑
j=1

R j

Ri

i∏
l= j+1

yl−1kl−1

kl − k j
a j . (17)

The transform matrices can be expressed as (for example, when n = 5)

S =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0
R1
R2

y1k1
k2−k1

1 0 0 0
R1
R3

∏3
l=2

yl−1kl−1
kl−k1

R2
R3

y2k2
k3−k2

1 0 0
R1
R4

∏4
l=2

yl−1kl−1
kl−k1

R2
R4

∏4
l=3

yl−1kl−1
kl−k2

R3
R4

y3k3
k4−k3

1 0
R1
R5

∏5
l=2

yl−1kl−1
kl−k1

R2
R5

∏5
l=3

yl−1kl−1
kl−k2

R3
R5

∏5
l=4

yl−1kl−1
kl−k3

R4
R5

y4k4
k5−k4

1

⎤
⎥⎥⎥⎥⎥⎦

(18)

S−1 =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0
R1
R2

y1k1
k1−k2

1 0 0 0
R1
R3

∏2
l=1

yl kl
kl−k3

R2
R3

y2k2
k2−k3

1 0 0
R1
R4

∏3
l=1

yl kl
kl−k4

R2
R4

∏3
l=2

yl kl
kl−k4

R3
R4

y3k3
k3−k4

1 0
R1
R5

∏4
l=1

yl kl
kl−k5

R2
R5

∏4
l=2

yl kl
kl−k5

R3
R5

∏4
l=3

yl kl
kl−k5

R4
R5

y4k4
k4−k5

1

⎤
⎥⎥⎥⎥⎥⎦

(19)

Λ = diag(−k) = diag ([−k1 − k2 · · · − ki · · · − kn]) . (20)

The proof of Eq. 16 is provided in Appendix A. Therefore, using Eq. 12, species concentra-
tions are updated by the reaction operator as

cr
i = at

i exp (−ki�t) +
i−1∑
j=1

R j

Ri

i∏
l= j+1

yl−1kl−1

kl − k j
at

j exp
(−k j�t

)
. (21)

where

at
i = ct

i +
i−1∑
j=1

R j

Ri

i−1∏
l= j

yl kl

kl − ki
ct

j (22)

is the transformed concentration calculated by the transport operator. The superscripts t and
r represent concentrations calculated by transport and reaction operators, respectively.

Figure 2 shows both coupled and decoupled concentration profiles. In the decoupled
domain, the concentration of each species is independent of other species concentrations
and can be expressed as an exponential decaying function (12). Therefore, the transformed
concentration profiles can be calculated separately using species-specific first-order decay
rates.
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Fig. 2 Concentration profiles in both concentration domain and transformed domain

3.2 Parallel and convergent reaction networks

A typical parallel and convergent reaction network is given by biodegradation of chlorinated
solvents when cis-DCE, 1,1-DCE, and trans-DCE are considered as different species (Lu
et al. 2003). However, Lu et al. (2003) is limited to the same retardation assumption. In this
subsection, we extend their solution of convergent reactions to those reaction systems with
species-specific retardation factors. Shown in Fig. 3, three DCEs simultaneously react to pro-
duce the same daughter product, vinyl chloride (VC), and the reaction matrix is expressed
as:

A =

⎡
⎢⎢⎢⎢⎢⎣

−k1 0 0 0 0
R1
R2

α1 y1k1 −k2 0 0 0
R1
R3

α2 y1k1 0 −k3 0 0
R1
R4

α3 y1k1 0 0 −k4 0

0 R2
R5

y2k2
R3
R5

y2k3
R4
R5

y2k4 −k5

⎤
⎥⎥⎥⎥⎥⎦

, (23)

where αi , i = 1, 2, 3 are product distribution factors for the reduction of species 1. Con-
ducting singular-value decomposition analytically, the transform matrices are derived as

S =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
R1
R2

α1 y1k1
k2−k1

1 0 0 0
R1
R3

α2 y1k1
k3−k1

0 1 0 0
R1
R4

α3 y1k1
k4−k1

0 0 1 0
R1
R5

y1 y2k1
k5−k1

(
α1k2

k2−k1
+ α2k3

k3−k1
+ α3k4

k4−k1

)
R2
R5

y2k2
k5−k2

R3
R5

y2k3
k5−k3

R4
R5

y2k4
k5−k4

1

⎤
⎥⎥⎥⎥⎥⎥⎦

(24)

S−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
− R1

R2

α1 y1k1
k2−k1

1 0 0 0

− R1
R3

α2 y1k1
k3−k1

0 1 0 0

− R1
R4

α3 y1k1
k4−k1

0 0 1 0
R1
R5

y1 y2k1
k5−k1

(
α1k2

k5−k2
+ α2k3

k5−k3
+ α3k4

k5−k4

)
− R2

R5

y2k2
k5−k2

− R3
R5

y2k3
k5−k3

− R4
R5

y2k4
k5−k4

1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(25)
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Fig. 3 An example of parallel
and convergent reactions (Lu
et al. 2003)

k1

k 2

k3

k4

k5

α1

α2

α3

y1 y2

c1

c2

c3

c4

c5

when R1 = R2 = · · · = Rn , Eqs. 24 and 25 are identical to Eqs. 10 and 11 in Lu et al. (2003).
Correspondingly,

Λ = diag(−k) = diag ([−k1 − k2 − k3 − k4 − k5]) . (26)

Then, the closed-form solution of the reaction network (Fig. 3) is

cr = Sar (27)

where

ar
i = at

i exp (−ki�t) , i = 1, 2, . . . , 5.

and

at = S−1ct .

Note that S and S−1 differ from Eqs. 10 and 11 of Lu et al. (2003) by species-specific
retardation factors.

4 Implementation and applications

As a demonstration of the proposed method, we illustrate with simple examples that are
traceable analytically or numerically from previously published literature. Although we are
not limiting ourselves to a one-dimensional description, in order to simplify the presentation
of the mathematical model and the methodology, only a one-dimensional case is discussed.

4.1 Implementation

The basic concept of RT3D code (Clement et al. 1998) is implemented in the MATLAB
(MathWorks 2000) environment. Advection and dispersion are solved using the finite differ-
ence method with temporal and spatial weighting (Ataie-Ashtiani and Hosseini 2005). A
predefined flow field is implemented as input data. Therefore, this MATLAB version of
RT3D keeps the same assumption as the original version that reactions do not alter the flow
field. Instead of using LSODE (the Livermore Solver for Ordinary Differential Equations,
Radhakrishnan and Hindmarsh 1993) for solving the reaction ODEs, we list four methods
for solving the reaction operator as shown in Table 1.

In contrast to the transport operator, the reaction operator is often solved as a local batch-
reactor problem in an operator-splitting framework, conventionally solved using ODE and
DAE solvers, respectively, for kinetic and equilibrium systems. For the first-order kinetic
reaction networks, the explicit Runge–Kutta is often used (Clement et al. 1998). In order to
avoid the stiffness of first-order reactions, exact solutions are calculated in the transformed
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Table 1 Solution methods

Method Advection–dispersion Reaction Note

0 Finite difference Exact Exponential function
1 Finite difference ode45a Explicit Runge–Kutta
2 Finite difference ode23sa Implicit Runge–Kutta
3 Finite difference Numerical SVD LAPACKb

a MATLAB ODE solver (MathWorks 2000)
b Linear Algebra PACKage (Press et al. 1996)

Fig. 4 Solution flow chart for
analytical solutions of first-order
reaction systems

 ct

 cr
 ar

 at S

 S−

exp(− k∆ t)

Coupled System Decoupled System

domain. As shown in Fig. 4, for each transport time step, concentrations are first updated
by solving the transport operator (temporal and spatial weighting finite difference) and then
transformed into a decoupled system as the initial conditions for the reaction operator. The
transformed concentrations are modified using the exponentially decaying function (12).
Finally, the modified concentrations are transformed back into the concentration-domain
(13).

A closed-form library of S and S−1 matrices was developed for various reaction networks.
Once a reaction network is selected from the library list, the corresponding S and S−1 matri-
ces are loaded into the simulation for the concentration transformation between coupled and
decoupled systems. If the selected reaction network is not available in the library, method 3
(see Table 1) is used. In method 3, a numerical SVD (singular-value decomposition, Clement
2001) is activated instead of the analytical transformation for decoupling the reaction system.

4.2 Transport in a homogeneous domain

To verify the proposed method, a transport system with five-species sequential reactions was
simulated in a one-dimensional column of 50 m in length. The column was discretized into
50 evenly spaced elements. Transport and reaction parameters are summarized in Table 2.
Initial conditions for all species were assumed to be zero and a constant boundary condition
(co

1 = 1 and co
i = 0, i ≥ 2) was set at the inlet of the column.

Explicit Runge–Kutta methods are often used for non-stiff reaction systems. In order to
demonstrate the OS procedure with exact solutions for the reaction operator, let us select
ode45 of MATLAB (MathWorks 2000) as the reference ODE solver. The default relative
and absolute tolerances are 10−3 and 10−6, respectively. Concentration profiles calculated
by methods 0 and 1 (see Table 1) are compared in Fig. 5. Method 0 is 74.62 times faster than
method 1. It is expected that analytical solutions of the reaction operator requires only single
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226 Y. Sun et al.

Table 2 System parameters Parameter Value Parameter Value Parameter Value

v 0.2 m d−1 D 0.18 m2 d−1 t 200 d
y1 0.7927 k1 0.05 d−1 R1 1.0
y2 0.7385 k2 0.03 d−1 R2 1.5
y3 0.6458 k3 0.02 d−1 R3 2.0
y4 0.4516 k4 0.015 d−1 R4 2.5

k5 0.01 d−1 R5 3.0

Fig. 5 Comparison of
concentration profiles calculated
using MATLAB solver ode45
(solid lines) and exact solutions
(circles) for reactions. Reaction
and transport parameters in Table
2 are used
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snoitartnecno
C

c1

c
2

c
3
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c

5

time step while numerical ODE solvers which need multiple time steps to meet convergence
requirements.

When all retardation factors are assumed to be the same, the exact solution of the five-
species sequentially reactive transport is available in a semi-infinite domain with Dirichlet
boundary conditions (Sun et al. 1999a). This case is considered here to compare the operator
splitting (OS) solution that uses the exact solution of the reaction operator with the exact
solution of the entire reactive transport system. Concentration profiles after 200 days from
these three methods are compared in Fig. 6. Although the solutions using the analytical reac-
tion term and ODE solver are both reasonably close to the exact solution, the CPU time for
the OS solution using the exact solution of reactions is 59.79 faster than the OS solution
using the ode45 solver.

4.3 Transport in a heterogeneous domain

To demonstrate the application of the proposed method to more realistic cases, a synthetic
flow field is generated in a heterogeneous domain. As shown in Fig. 7, velocity is a function
of x-coordinate (dashed line). Dispersion coefficient is calculated as D = 0.9v. The mean
values of both velocity and dispersion coefficient are assigned the values shown in Table 2.
Other system parameters remain unchanged.

The concentration profiles of five-species sequential reactions (Fig. 1b) and of five-species
parallel/convergent reactions (Fig. 3), respectively, are provided in Figs. 7 and 8. The solu-
tion of concentration profiles of the sequentially reactive species, calculated using the exact
solutions of reactions, can be considered identical to those calculated using the MATLAB
solver ode45 (MathWorks 2000) although the method derived here requires 1.54% CPU time.
As shown in Fig. 3, the fifth species is coupled by three parent species. Geiser (2001) fails to
produce a solution because of the limitation of sequential reactions. The solution of Lu et al.
(2003) for the parallel/convergent reactions is limited to the same retardation assumption and
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Fig. 6 Concentration profiles calculated using the exact solution of Sun et al. (1999a), method 0 (see Table 1)
with an exact solution for the reaction operator, and method 1 using MATLAB ode45 (MathWorks 2000). Solid
lines, circles, dashed lines, represent the exact solution, OS solution with an exact solution of reaction operator,
and OS solution using MATLAB ode45. Note that the same retardation factors (Ri = 1, ∀i = 1, . . . , 5) are
applied in order to use the analytical solution of Sun et al. (1999a) for comparison

Fig. 7 Comparison of
concentration profiles calculated
using MATLAB solver ode45
(solid lines) and exact solutions
(circles) of reactions for the
sequential reactions (Fig. 1b)
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Fig. 8 Concentration profiles
after 200 days for the
parallel/convergent reactions
shown in Fig. 3.
α1 = 0.7, α2 = 0.2, and
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uniform flow conditions. Compared to both solutions of Geiser (2001) and Lu et al. (2003),
Fig. 8 demonstrates the applicability of the method developed here to complex reaction
networks in heterogeneous domains.

4.4 Stiff reactions

Incorporation of first-order reactions in a transport system can result in stiffness of the gov-
erning equations. As a consequence of stiffness, the explicit time integration of the reaction
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Table 3 Radionuclide transport example

Species 234Th→ 234U→ 230Th→ 226Ra→

Half-life (yr) 24.1/365.25 2.44 × 105 7.7 × 104 1.6 × 103

Reaction rate (d−1) 2.88 × 10−2 7.78 × 10−9 2.46 × 10−8 1.19 × 10−6

Source Geiser (2001) Harada et al. (1980) Harada Harada
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Fig. 9 Concentration profiles of 234Th, 234U, 230Th, and 226Ra after 200 days. The solid lines and circles
represent solutions using the stiff ODE solver (ode23s) and the analytical solutions of reactions, respectively

terms is severely restricted. The system is said to be stiff when two neighboring species have
widely varied reaction rates. Then, explicit time integration of the reaction operator fails to
yield a converged solution while fully implicit time integration of the reaction term together
with the implicit time scheme of transport equations requires much larger computer memory.
By avoiding use of the implicit integration, the OS procedure with an analytical reaction
operator provides considerable advantages.

A typical example of stiff reactions was given by Geiser (2001) who considered a two-
species decay chain from 234Th (Thorium) to 234U (Uranium). As shown in Table 3, 234Th
and 234U have very different reaction time scales. The stability condition requires reaction
time step �t < 10−6 while the influence of k2c2 can only be seen after 103 ∼ 109 time steps.
In this way, the explicit scheme will accumulate round-off errors and fails to provide an accu-
rate solution. For this reason, ode45 fails to get a converged result. Instead, we used ode23s
(method 2 in Table 1), an implicit Runge–Kutta technique, to solve the reaction operator.
Initial concentrations of all species were assumed to be zero. The boundary concentration for
234Th and the other species was set as one and zeros, respectively. The concentration profiles
of four radionuclides after 200 days are calculated and compared in Fig. 9. This example
indicates that the method proposed (method 0 in Table 1) can provide the same result as what
ode23s does with 1/82 CPU time.

5 Conclusions

A new solution method is proposed to solve reactive transport systems with first-order reaction
networks. Incorporation of exact solutions for the reaction operator can eliminate the error
from ODE solvers and significantly increase simulation speed. The new operator-splitting
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approach has been validated by comparison against an exact solution and a conventional OS
solution. The examples of reactive transport in this paper indicate that the proposed approach
offers both simulation accuracy and computational efficiency compared to conventional OS
methods. As a caveat, the approach developed in this paper is limited to the availability
of analytical solutions for reactions. Thus, additional development of analytical solutions
for more complex reactions in batch reactors will prove beneficial with modeling reactive
transport using this method. To obtain analytical or semi-analytical solutions for non-linear
reactions, a further effort of linearization techniques is needed.
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Appendix A: a proof of transformation of Eq. 16

Since the transformation is defined as

ai = ci +
i−1∑
j=1

R j

Ri

i−1∏
l= j

ylkl

kl − ki
c j , (28)

the first-order derivative of ai for the reaction terms can be expressed as follows:

∂t ai = ∂t ci +
i−1∑
j=1

R j

Ri

i−1∏
l= j

ylkl

kl − ki
∂t c j , (29)

where

∂t ci = Ri−1

Ri
yi−1ki−1ci−1 − ki ci . (30)

Then,

∂t ai = Ri−1

Ri
yi−1ki−1ci−1

︸ ︷︷ ︸
A1

−
A2︷︸︸︷

ki ci +
i−1∑
j=1

R j

Ri

i−1∏
l= j

ylkl

kl − ki

⎡
⎢⎢⎢⎣

A3︷ ︸︸ ︷
R j−1

R j
y j−1k j−1c j−1 − k j c j︸︷︷︸

A4

⎤
⎥⎥⎥⎦ .

(31)

Combining terms with common factor cs (term A3 when j = s +1 and term A4 when j = s),

Rs+1

Ri

i−1∏
l=s+1

ylkl

kl − ki

Rs

Rs+1
yskscs, j = s + 1 (32)

− Rs

Ri

i−1∏
l=s

ylkl

kl − ki
kscs, j = s, (33)

the sum is

Rs+1

Ri

i−1∏
l=s+1

ylkl

kl − ki

Rs

Rs+1
yskscs − Rs

Ri

i−1∏
l=s

ylkl

kl − ki
kscs
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= Rs

Ri
kscs

[
i−1∏
l=s

ylkl

kl − ki

](
ys

ks − ki

ysks
− 1

)
= −ki

Rs

Ri

i−1∏
l=s

ylkl

kl − ki
cs . (34)

Similarly, term A4 when j = i − 1 can be combined with term A1,

− Ri−1

Ri

yi−1ki−1

ki−1 − ki
ki−1ci−1 + Ri−1

Ri
yi−1ki−1ci−1 = −ki

Ri−1

Ri

yi−1ki−1

ki−1 − ki
ci−1. (35)

Therefore, Eq. 31 can be written as:

∂t ai = −ki

⎡
⎣ci +

i−1∑
j=1

R j

Ri

i−1∏
l= j

ylkl

kl − ki
c j

⎤
⎦ = −ki ai . (36)
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