
Transp Porous Med (2007) 70:279–292
DOI 10.1007/s11242-007-9099-2

O R I G I NA L PA P E R

A Lattice Boltzmann study of non-newtonian flow
in digitally reconstructed porous domains

J. Psihogios · M. E. Kainourgiakis · A. G. Yiotis ·
A. Th. Papaioannou · A. K. Stubos

Received: 12 September 2006 / Accepted: 7 January 2007 / Published online: 5 May 2007
© Springer Science+Business Media B.V. 2007

Abstract In the present study, the Lattice Boltzmann Method (LBM) is applied to
simulate the flow of non-Newtonian shear-thinning fluids in three-dimensional dig-
itally reconstructed porous domains. The non-Newtonian behavior is embedded in
the LBM through a dynamical change of the local relaxation time. The relaxation
time is related to the local shear rate in such a way that the power law rheology is
recovered. The proposed LBM is applied to the study of power-law fluids in ordered
sphere packings and stochastically reconstructed porous domains. A linear relation is
found between the logarithm of the average velocity and the logarithm of the body
force with a curve slope approximately equal to the inverse power-law index. The
validity of the LBM for the flow of shear thinning fluids in porous media is also tested
by comparing the average velocity with the well known semi-empirical Christopher–
Middleman correlation. Good agreement is observed between the numerical results
and the Christopher–Middleman correlation, indicating that the LBM combined with
digital reconstruction constitutes a powerful tool for the study of non-Newtonian flow
in porous media.

Keywords Non-Newtonian flow · Lattice-Boltzmann method · Stochastic recon-
struction · Porous media permeability

1 Introduction

Transport in disordered media is a topic related to many technological and environ-
mental applications. The accurate prediction of the transport coefficients in disordered
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media is a challenging problem due to the complexity of transport mechanisms in
fluid–solid systems and the difficulty in representing accurately the complicated and
tortuous nature of a porous medium. The Lattice Boltzmann method (LBM) con-
stitutes a very powerful tool for the study of the hydrodynamical problem of fluid
flow inside porous structures, mainly due to the simplified handling of the complicate
boundary conditions, as well as, due to the efficiency of the method with regard to
parallelization (Succi 2001; Sukop and Thorne 2006).

Aharonov and Rothman (1993) first used the LB method to simulate the flow of
non-Newtonian fluids. Their pioneering work addresses two dimensional pipes and
random media. They found that the flux is related to the driving force by a simple scal-
ing law. Similar results were reported by Boek et al. (2003). Recently, Gabbanelli et al.
(2005) studied the flow of truncated power-law fluids in reentrant flow geometries and
found a very good agreement between the results obtained by the LBM and those
obtained by standard finite element methods, while Sullivan et al. (2006) explored the
relationship between lattice resolution and simulation accuracy as a function of the
power-law index.

In the present study the LBM is applied to simulate the flow behavior of non-
Newtonian fluids in three-dimensional digitally reconstructed porous domains. The
digital reconstruction of the porous matrix is achieved by the use of stochastic recon-
struction, where the domain produced has the same statistical content with the actual
material. The results indicate that the combination of the LB technique with digital
reconstruction can be a very powerful tool for the study of those systems, which are of
great interest for a variety of technological fields such as oil recovery and underground
water contamination.

2 Lattice Boltzmann approach

2.1 General remarks

LBM is a numerical method for the solution of fluid mechanical problems especially
in systems where the fluid–solid interface is very complex (Succi 2001). Space, time
and momentum are discretized and the fluid behavior is described by the particle dis-
tribution function, fi(x,t), which represents the number density of particles on node x,
at time t, with velocity ei. The density ρ(x, t) and the velocity u(x, t) are recovered by:

ρ(x, t) =
q∑

i=0

fi(x, t) (1)

ρ(x, t)u(x, t) =
q∑

i=0

eifi(x, t) (2)

where, q is the number of the discrete directions of velocity (note that i = 0 corre-
sponds to the ‘rest particle’). In the present study the D3Q19 version is used, where
D3 indicates three dimensions and Q19 nineteen velocity vectors (including the null
vector). Denoting as δx the lattice spacing and as δt the time step, the corresponding
nineteen discrete velocity vectors are defined as follows:
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ei =
⎧
⎨

⎩

(0, 0, 0)c i = 0
(±1, 0, 0)c (0, ±1, 0)c (0, 0, ±1)c i = 1, 2, . . . , 6
(±1, ±1, 0)c (±1, 0, ±1)c (0, ±1, ±1)c i = 7, 8, . . . , 18

(3)

where c = δx/δt
The space-time evolution of fi(x, t) is assumed to obey the equation:

fi(x + eiδt, t + δt) − fi(x, t) = �i (4)

where �i, is the collision operator, which can be approximated as a constant rate, of
the approach of fi(x, t) to an appropriately chosen equilibrium distribution, f (eq)

i (x, t)
(Bhatnagar–Gross–Krook approximation). Thus:

�i = − 1
τ0

[
fi(x, t) − f (eq)

i (x, t)
]

(5)

where, τ0, is the non-dimensional relaxation time associated with the kinematic vis-
cosity, ν0, of the fluid by the relation:

ν0 = c2
s δt (τ0 − 0.5) (6)

The parameter cs corresponds to the lattice speed of sound. For the D3Q19 model
cs/c = 1/

√
3. Furthermore, the relaxation time may only take values τ0 > 0.5.

In order to recover isotropic hydrodynamic behavior the equilibrium distribution
is chosen to be:

f (eq)
i (x, t) = wiρ(x, t)

[
1 + ei · u(x, t)

c2
s

+ (ei · u(x, t))2

2c4
s

− u(x, t) · u(x, t)
2c2

s

]
(7)

where, wi is the appropriate weighting factor with values:

wi =
⎧
⎨

⎩

1/3 i = 0
1/18 i = 1, 2, . . . , 6
1/36 i = 7, 8, . . . , 18

(8)

In the presence of a body force density F = ρg, where g is the acceleration due to
F, Eq. (4) becomes:

fi(x + eiδt, t + δt) − fi(x, t) = �i + δtF̂i(x, t) (9)

where the momentum source term F̂i(x, t) obeys the relation (Guo et al. 2002):

F̂i(x, t) =
(

1 − 1
2τ0

)
wi

{
ei − u(x, t)

c2
s

+ [ei · u(x, t)]
c4

s
ei

}
· F (10)

The fluid density is still given by Eq. (1) while the fluid velocity satisfies:

ρ(x, t)u(x, t) =
q∑

i=1

eifi(x, t) + δt
2

F (11)

In the present study, no-slip boundary conditions were employed at the fluid-solid
boundaries using the bounce-back convention. If the lattice node x is in the fluid and
the adjacent node, x − eiδt is located inside the solid boundary, defining ei′ = −ei, the
distribution function at the next time step fi(x, t + δt) is determined by (Maier et al.
1998; Aidun et al. 1998):

fi(x, t + δt) = fi′(x, t) + �i + δtF̂i (12)
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The derivation of the macroscopic equations obeyed by Eqs. (1)–(12) is described
in detail in Guo et al. (2002) and Zou and He (1999). Briefly, a Taylor expansion in
time and space is performed and the long-wavelength and low-frequency limit of the
lattice-Boltzmann equation for the single-particle distribution is taken. The result is
a continuum form of the Boltzmann equation correct to second order in the lattice
spacing and the time step. A scaling expansion argument and the neglect of higher-
order terms lead to the following final form of the macroscopic equations obeyed by
the simulated system:

∂ρ

∂t
= ∇ · ρu (13)

∂(ρu)

∂t
+ ∇ · (ρuu) = −∇p + ν0∇ · {ρ[∇u + (∇u)T ]} + F (14)

where, p = c2
s ρ.

2.2 Non-Newtonian behavior

For certain simple types of non-Newtonian fluids the relation between the shear stress,
σ , and the rate of deformation tensor, γ̇ (x), where:

γ̇ (x) = ∇u(x) + (∇u(x))T (15)

is described by:

σ = µ(I2)γ̇ (16)

where µ(I2) is the scalar non-Newtonian viscosity and I2 the second invariant of the
rate of deformation tensor, defined by: I2 = γ̇ (x) : γ̇ (x).

The dependence of the non-Newtonian viscosity on I2 can be implemented in LBM
through the assumption that the constant relaxation time in Eq.(5) is replaced by the
function τ(I2) which obeys the relation:

τ(I2) = ν(I2)

c2
s δt

+ 1
2

(17)

where ν(I2) = µ(I2)/ρ.
In the present study the shear thinning Ostwald—de Waale fluids are considered.

For these fluids the apparent non-Newtonian viscosity µ(I2) is taken to be a power-law
function of I2, specifically:

µ(I2) = µ∗
(√

1
2

I2

)n−1

(18)

where µ∗ is the consistency index and n is the flow-behavior exponent index. Note
that for n = 1 the Newtonian behavior is recovered with viscosity µ = µ∗, for n < 1
the effective viscosity decreases with increasing shear stress (pseudoplastic or shear-
thinning fluid), while, for n > 1 the viscosity increases with increasing shear stress
(dilatant or shear-thickening fluid).

The consistency index can be linked with the relaxation time of the Newtonian
fluid by a relation similar to Eq. (5), since it can be regarded as the viscosity of the
fluid when n = 1:
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µ∗ = (τ0 − 0.5)δtnρ c2
s (19)

Combining Eqs. (17), (18), (19) the relaxation time becomes:

τ(I2) =
(

τ0 − 1
2

) (
δt

√
1
2

I2

)n−1

+ 1
2

(20)

3 Representation and characterization of the porous domains

3.1 General remarks

The spatial distribution of matter in a porous medium can be typically represented by
the phase function Z(x), defined as follows:

Z (x) =
{

1 if x belongs to pore space
0 otherwise

(21)

where x is the position vector from an arbitrary origin. Due to the disordered nature
of porous media, Z(x) can be considered as a stochastic process, characterized by its
statistical properties. The porosity, ε, and the auto-correlation function RZ(r) can be
defined by the statistical averages (Adler 1992; Berryman 1985):

ε = 〈Z(x)〉 (22)

RZ (r) = 〈(Z(x) − ε) · (Z(x + r) − ε)〉
ε − ε2 (23)

Note that 〈·〉 indicates spatial average. For an isotropic medium, RZ(r) becomes one-
dimensional as it is only a function of r = |r| (Adler 1992; Berryman 1985).

3.2 Stochastic reconstruction

The purpose of the stochastic reconstruction procedure is the generation of a digi-
tized three-dimensional snapshot of Z(x) with the same statistical behavior as those
measured on a single two-dimensional section of the material. The statistical con-
tent expressed properly by the various moments of the phase function. In practice,
matching of the first-two moments, that is, porosity and auto-correlation function, has
been customarily pursued, although this simplification is not generally valid as one
can find examples of porous media exhibiting quite different morphological proper-
ties while sharing the same RZ(r) (Kainourgiakis et al. 2000; Roberts 1997; Talukdar
2002). In this case one should try to match multi-point correlation functions (Yeong
and Torquato 1998).

The reconstructed porous domains are generated by the convolution of a random
and spatially uncorrelated field with a kernel, which contains information about the
actual porous structure. The space is discretized in N3 cubic elements, the position
of which is characterized by the vector x = (i, j, k) where i, j, k integers with values
1, 2, . . ., N and a random spatially uncorrelated value X(x) is assigned to any element.
A smooth, spatially correlated field Y(x) with a correlation function RY(r), can be
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deduced from the X(x) field by the convolution:

Y(i, j, k) =
+∞∑

k′=−∞

+∞∑

j′=−∞

+∞∑

i′=−∞
RY(i − i′, j − j′, k − k′)X(i′, j′, k′) (24)

where, r = (i − i′, j − j′, k − k′).
The correlated field Y(x) is then binarized in order to produce the target phase

function Z(x) (i.e., the stochastically reconstructed sample). In general the discretiza-
tion occurs through a thresholding procedure:

Z(x) =
{

1 if Y(x) < Y0
0 elswhere

(25)

where Y0 is chosen in such a way that Eq. (23) is satisfied.
The correlation function RY(r) can be deduced by observation, as in Crossley et al.

(1991) or by a standard procedure which is described in detail in Adler (1992). Accord-
ing to the latter approach the kernel of a stationary and isotropic medium is computed
from the autocorrelation function RZ(r) that is obtained directly by microscopy or
indirectly by small angle scattering techniques, by:

RZ(r) =
∞∑

m=0

c2
mRm

Y (r) (26)

The coefficients cm are given by

cm = (2πm)1/2

+∞∫

−∞
C(y) exp(−y2/2)Hm(y)dy (27)

where Hm(y) is the Hermite polynomial of mth order:

Hm(y) = (−1)m exp(y2/2)
dm

dym exp(−y2/2) (28)

and

C(y) =

⎧
⎪⎪⎨

⎪⎪⎩

ε − 1
[
ε(1 − ε)

]1/2
if P(y) ≤ ε

ε
[
ε(1 − ε)

]1/2
if P(y) > ε

(29)

with

P(y) = (2π)1/2
∫ y

−∞
exp(−t2/2)dt (30)

Furthermore the initial field X(x) corresponds to random values obeying normal
distribution with zero mean and unit variance, a property that is inherited to Y(x).
Therefore the extraction of the binary phase function Z(x) from the real array Y can
be accomplished by the condition:

Z(x) =
{

1 if P[Y(x)] ≤ ε

0 otherwise
(31)

which is equivalent with Eq. (25).
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Fig. 1 Schematic of domain decomposition in our algorithm. The computational domain for each
processor is shown in white color. At the boundaries of the computational subdomains the data cal-
culated at the previous time step is stored in dummy subdomains (where no calculations take place)
shown in gray color. The dummy subdomains serve as boundary conditions for the local calculations
at the current time step. The computational domain (three-dimensional arrays) is decomposed in the
z-direction in order to take advantage of Fortran’s column-major storage of multi-dimensional array
elements

4 Results and discussion

4.1 General remarks

The Lattice Boltzmann model described in the previous sections is parallelized
for implementation on distributed memory computers using the Message Passing
Interface (MPI) libraries. The computational domain (three-dimensional arrays) is
decomposed in the z-direction in order to take advantage of Fortran’s column-major
storage of multi-dimensional array elements. This scheme ensures that array elements
exchanged across processors with MPI are located in continuous memory blocks
(Fig. 1).

The numerical simulations were performed on a cluster with 4 Intel Xeon proces-
sors (two dual-processor blades) operating at 3.6 GHz. The total memory of the blades
is 4 GB (2 GB per blade). The blades are interconnected through a Gigabit Ethernet
Network. The computer cluster is operated using the Clustermatic 5 set of software
tools developed at Cluster Research Lab of the Los Alamos National Laboratory
www.clustermatic.org. Our typical production runs were performed on all 4 CPUs
using a total of 8 code threads in order to take advantage of the Hyper-Threading
capabilities of the Xeon processors. A steady state velocity profile was reached in
less than 105 time-steps (approximately 38 hours on 4 CPUs or 152 CPU-hours per
simulation for the 1603 lattice).
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Fig. 2 Parallel speedup of the
LB algorithm used in the
present study

Table 1 Maximum velocity for the flow of power law fluids between parallel plates (W = 48δx, µ∗ =
0.0067δtnρ c2, |F| = 10−9ρδx/δt2)

Power law index (n) Maximum velocity Eq. (32) Maximum velocity LBM

0.6 7.61 × 10−9 c 7.48 × 10−9 c
1 4.32 × 10−5 c 4.25 × 10−5 c

The parallel speedup of our algorithm is shown in Fig. 2. The speedup is defined
as S(p) = t(serial)

t(p)
, where t(serial) is the execution time of the serial code and t(p) is

the execution time of the parallel code on p code threads (distributed evenly on the
available system CPU’s). The parallel efficiency E of our LB code is 0.74 for 4 code
threads (on 4 CPUs) and drops to 0.61 for 8 code threads (on 4 CPU’s). The parallel
efficiency is defined as E(p) = S(p)

p .

4.2 Flow between parallel planes

In order to validate the LB procedure, the flow of power-law fluids between two par-
allel planes is considered first. The velocity profile of power-law fluids in such a case
is described by:

u(y) = u0

[
1 −

(
2|y|
W

)1+ 1
n
]

(32)

where

u0 =
(

1
µ∗ |F|

)1/n (
W
2

)(
1+ 1

n

) (
n

n + 1

)
(33)

and W is the distance between the parallel plates.
The maximum velocity for each exponent (n = 0.6, 1) is shown in Table 1 while the

velocity profile is illustrated in Fig. 3.
Very good agreement with the analytical solution is shown. The body force (and

therefore the pressure gradient) is parallel to the plates, with magnitude
|F| = 10−9ρ δx

δt2
. The relaxation time is equal to 0.52 (and therefore, according to
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Fig. 3 The velocity profile obtained in a slit for a Newtonian and for a shear thinning fluid

Eq. (6), µ∗ = 0.0067δtnρ c2) and the distance between the parallel plates W = 48δx.
The density of the fluid is spatially and temporally uniform (incompressible flow).

4.3 Flow in arrays of spheres

The flow of a power-law fluid in an ordered (simple cubic) array of spheres is then
examined. In a cubic packing, the spheres are stacked directly next to and on top
of each other. The porosity of such a structure is 1 − π/6. Due to the periodicity of
the structure, the flow problem is solved in a very detailed unit cell of size 1603 that
contains only one sphere, illustrated in Fig. 4. The radius of the sphere is R = 80δx.
Four exponents that indicate the power-law behavior of shear-thinning fluids have
been considered, namely n = 0.5, 0.7, 0.8, 1. The applied body force is initially parallel
to one of the principal axes of the domain and the resulting superficial velocity < u >

is parallel to the body force due to the symmetry of the structure. The magnitude of
the superficial velocity is plotted against the body force and the results are presented
in Fig. 5. It is observed that the well-known scaling relation (Aharonov and Rothman
1993; Boek 2003; Sullivan et al. 2006; Shah and Yortsos 1995):

|〈u〉| ∝ |F|1/n (34)

is satisfied.
However, this result indicates only that the LB approach can reproduce qualita-

tively the fluid behavior and does not offer any information about the absolute value
of the velocity profile. In this work an additional comparison is made in order to
examine the quantitative accuracy of the technique in porous domains. The numerical
results are compared with the semi-empirical equation proposed by Christofer and
Middleman (1965) for the flow of non-Newtonian fluids in porous media.

For Newtonian fluids, the permeability tensor, K, is defined by the Darcy equation:

〈u〉 = − 1
µ

K · F (35)
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Fig. 4 The unit cell of an
ordered (simple cubic) packing
of spheres

Fig. 5 The superficial velocity of Newtonian and shear-thinning fluids in a cubic packing of spheres.
The consistency index is µ∗ = 0.0067δtnρ c2

Since the sphere pack domain exhibits cubic symmetry, the permeability tensor can
be expressed as:

K = kI (36)

where, k is the permeability coefficient and I the unit tensor. Therefore Eq. (35) is
reduced to:

〈u〉 = − 1
µ

k · F (37)

For the Newtonian case, the permeability coefficient of the sphere packing can be
calculated from Fig. 5. The relaxation time is τ0 = 0.52 resulting to a viscosity with
value µ = 0.0067δtρ c2. Thus, the permeability coefficient is k = 85δx2.
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According to Christofer and Middleman (1965), the superficial velocity of power-
law fluids in porous domains obeys the equation:

|〈u〉| =
(

k
H

|F|
)1/n

(38)

where, H is the bed factor defined by:

H = µ∗

12

(
9 + 3

n

)n

(150kε)(1−n)/2 (39)

Teeuw and Hessekink (Shah and Yortsos 1995) proposed a different expression for
the bed factor:

H = 2µ∗k(1−n)/2
(

3n + 1
εn

)n ( ε

8

)(1+n)/2
(40)

which gives similar results with those obtained by Eq. (39). Thus for the rest of the
paper the bed factor is evaluated using Eq. (39).

The superficial velocities obtained by the LB technique as well as those calculated
by Eq. (38) for exponents spanning from n = 0.5 to n = 1 are presented in Fig. 5. A
very good agreement is observed for n > 0.5, while for n = 0.5 the numerical results
begin to deviate from the empirical expression at relatively low body forces where the
shear rate tends to zero and therefore the viscosity tends to infinity. A similar behavior
is reported in (Sullivan 2006). It can be deduced that for porous media represented by
high-resolution binary domains, the LB technique produces relatively accurate results.
Lower values of the exponent n have also been used but the accuracy of the results
suddenly begins to fall and for very small exponents (n ≤ 0.3) the technique does
not converge. The use of the relaxation parameter described by Sullivan in order to
smooth the viscosity field during the simulation does not change the overall behavior.
Furthermore, no truncation of the viscosity is performed in order to have a system
that directly corresponds to Eq.(38).

The anisotropy that the non-Newtonian flow exhibits in certain structures
(Idris 2004) is also examined. Initially the flow of a Newtonian and a non-Newto-
nian fluid in a square array of cylinders similar to the one used in (Idris 2004) is
simulated. The porosity of the structure is 0.5 and the principal axis of each cylinder is
parallel to the z-direction. The power-law exponents used are 1 and 0.5. If the applied
body force is set parallel to x- or y-direction, the average velocity is also parallel to the
body force. On the other hand, when the body force is not parallel to x- or y-direction
and n = 0.5, the average velocity deviates slightly from the direction of the body force.
The angle, β, between them can be determined by:

β = arccos
〈u〉 · F
|〈u〉| |F| (41)

Specifically, if F =
(

1
2 ex +

√
3

2 ey + 0ez

)
10−10 ρδx

δt2
(where ex, ey, ez is the basis of the

3D system of coordinates) then β = 0 is found for the Newtonian fluid, while for
n = 0.5 a value of β ≈ 0.06 rad is observed, in agreement with (Idris 2004).

Next, the cubic sphere pack is considered. The body force is set equal to F =(
1√
14

ex + 2√
14

ey + 3√
14

ez

)
10−8 ρδx

δt2
. The angle between the velocity and the applied

body force is found β ≈ 0.076 rad, indicating that the slight anisotropy observed in
the pseudo-3D square array of cylinders is also present in the sphere pack.
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Fig. 6 Autocorrelation function and three-dimensional image of a digital domain obtained by sto-
chastic reconstruction of North Sea chalk. The domain has porosity equal to 0.383, pixel length 0.2 µm,
and size 1603

4.4 Flow in stochastically reconstructed media

The usefulness of the LB technique for the study of the flow of shear-thinning fluids
in porous media is further examined considering an amorphous reconstructed solid.
In the previous section the porous material is crystalline (in the sense that it can be
produced by the repetition of a certain unit cell) and therefore symmetric. Addition-
ally, as a consequence of the crystallinity, a detailed solution can be achieved since a
well-discretized unit cell (1603) can be representative of the whole structure. In this
section, we consider disordered but isotropic domain. This domain corresponds to a
piece of North Sea chalk and it is produced by digital reconstruction as described
above. The two-point autocorrelation function that is required as input for the
stochastic reconstruction algorithm is taken from (Bekri 2000). The resulting domains
are periodic and have porosity equal to 0.383, pixel length 0.2 µm, and size 1603. In
Fig. 6 a snapshot of the stochastically reconstructed sample and the corresponding
autocorrelation functions are presented. The matching of the autocorrelation func-
tions indicates that the reconstructed domain and the actual one exhibit disorder with
similar statistical content in terms of the first two moments of the phase function.

The superficial velocity for different values of the power-law index (0.8, 1.0) and
the pressure gradient is determined and the results are presented in Fig. 7. The con-
sistency index is µ∗ = 0.0067δtnρ c2. Since the binary domain is isotropic by construc-
tion, the permeability tensor can be again described by the permeability coefficient,
which is determined for the Newtonian case (n = 1) by linear regression it is found
to be k = 0.12δx2. Recalling that for the reconstructed domain the pixel length is
δx = 0.2µm, we conclude that k = 4.8 × 10−15m2, in very reasonable agreement with
the experimental value reported in (Bekri 2000).

In Fig. 7 the superficial velocity predicted by the correlation (38) is also presented
and a satisfactory agreement with that obtained by the LB method is observed. Again
the accuracy of the numerical results depends on the power-law index, small values
of which induce negligible share rate and therefore extreme viscosity. Additionally
the coarser discretization of the chalk domain compared to that of the sphere packing
results to difficulties in convergence. Thus, if the objective is the detailed velocity
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Fig. 7 The superficial velocity of a Newtonian and a shear thinning fluid in the digital domain obtained
by stochastic reconstruction of North Sea chalk. The consistency index is µ∗ = 0.0067δtnρ c2

field of a power-law fluid in the porous structure a high degree of discretization for
the representation of the porous domain is required and therefore the corresponding
computational resources are significant.

On the other hand, since Eq. (38) is valid (at least for power law indexes that are
not very low) the information contained in the permeability coefficient regarding the
geometry of the porous domain is sufficient to predict the average flow of a power-law
fluid. Thus, the superficial velocity of a power law fluid in a reconstructed domain can
be approximately evaluated using the data obtained from the Newtonian case. This
renders the combination of the digital reconstruction with the determination of the
Darcy permeability a powerful tool for the study of the non-Newtonian (power law)
behavior in disordered porous solids.

5 Conclusions

In the present article the flow of shear-thinning fluids in porous media is investigated.
Digitally reconstructed porous domains are considered, providing a detailed descrip-
tion of the actual pore space morphology. The velocity field of the fluid is determined
by the application of LBM, where the non-Newtonian behavior is recovered by the
appropriate dynamical change of the local relaxation time, which is considered as
function of the local shear rate. It is found that not only the standard scaling relation
between the average velocity and the overall force acting on the fluid is satisfied but
also the actual value of the superficial velocity satisfies well-known semiempirical
correlations (38) combined with (39) or (40). Furthermore, since LBM is accurate
enough for the Newtonian case, the superficial velocity of a shear-thinning fluid in
a reconstructed domain can be estimated by the Darcy permeability (obtained by
LBM) combined with standard semiempirical correlations. Finally in the sphere pack
domain it is found that the direction of the average velocity deviates slightly from the
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direction of the body force when the body force is not parallel to one of the principal
axes of the structure.
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