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Abstract Flow instability due to oscillatory modes of disturbances in a horizontal
dendrite layer during alloy solidification is investigated under an external constraint
of rotation. The flow in the dendrite layer, which is modeled as flow in a porous layer
and with the inertial effects included, is assumed to rotate about the vertical axis at a
constant angular velocity. The investigation is an extension of the work in Riahi (On
stationary and oscillatory modes of flow instablity in a rotating porous layer during
alloy solidification. J. Porous Media, 6, 177–187, 2003), which was for the case in the
absence of the inertial effects. Results of the stability analyses indicate, in particular,
that the Coriolis effect can enhance the physical domain for the oscillatory flow, while
the inertial effect tends to reduce such domain. Sufficiently strong inertial effect can
eliminate presence of the oscillatory mode only for the rotation rate beyond some
value. The effect of interaction between the local volume fraction of solid and the
flow associated with the Coriolis term was found to be stabilizing.

Keywords Rotating convection · Dendrite layer · Solidification · Oscillatory
convection · Oscillatory instability · Inertial flow · Mushy layers · Stability analysis

Nomenclature
Latin symbols
a Horizontal wave number a Horizontal wave number vector
a1 x-Component of a a2 y-Component of a
ac Critical a C Scaled concentration ratio
C̃ Dimensional composition C0 Far field composition
Ce Eutectic composition Cl Specific heat per unit volume
Cr A concentration ratio Cs Composition of dendrites
d Dendrite layer thickness g Acceleration due to gravity
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G 1 + S/C Gt (G − 1)/(CG2)

i Pure imaginary number K A permeability reciprocal
K1 A permeability parameter k Thermal diffusivity
ks Solute diffusivity L An inertial parameter
La Latent heat of solidification L̃ An inertial parameter
M Liquidus slope P Scaled modified pressure
P̃ Modified pressure P0 A constant
PB Modified basic pressure Q Rotation rate
R Scaled Rayleigh number R̃ Rayleigh number
Rc Critical R S Scaled Stefan number
St Stefan number t Scaled time variable
T Coriolis parameter t̃ Time variable
Te Eutectic temperature TL Liquidus temperature
T∞ Far field temperature u Scaled Darcy’s velocity vector
U Velocity vector ũ Darcy’s velocity vector
ũ x-Component of u W Poloidal function for u
V Solidification speed
ṽ y-Component of u w̃ z-Component of u
x A scaled horizontal variable x Unit vector along x-axis
x̃ A horizontal variable y A scaled horizontal variable
y Unit vector along y-axis ỹ Another horizontal variable
z Scaled vertical variable z Unit vector along z-axis
z̃ Vertical variable

Greek symbols
α∗ Themal expansion coefficient β∗ Solute expansion coefficient
β β∗ − Mα∗ �C C0–Ce
�T TL(C0)− Te � Horizontal Laplacian operator
δ Dimensionless depth

of the porous layer ∇ Gradient operator
θ̃ Temperature θB Basic temperature
θ Perturbation Temperature θ∞ T∞/�T
ν Kinematic viscosity � Permeability
�(0) A reference permeability φ Perturbation to solid fraction
φB Basic solid fraction φ̃ Local volume fraction of solid
ρ0 A reference density σ Complex growth rate of disturbance
σi Disturbance frequency σr Real growth rate of disturbance
ψ Toroidal function for u

1 Introduction

The problem studied in this paper and in Riahi (2003), which is hereafter referred to
as R03, is based on the conditions considered by Anderson and Worster (1996) who
studied the problem of the solidification of a binary alloy in a mushy layer, which
was treated as a porous layer, and analyzed the linear stability of a motionless state
to identify an oscillatory convective mode of instability. Their system was under no
rotational constraint, and their investigation was based on the earlier mushy-layer
model of Amberg and Homsy (1993). A near-eutectic approximation was employed
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and the limit of large far-field temperature was considered. Such asymptotic limits
allowed them to examine the dynamics of the mushy layer in the form of small devi-
ation from the classical system of convection in a horizontal porous layer of constant
permeability. They also considered the limit of large Stefan number, which enabled
them to reach a domain for the existence of the oscillatory instability.

Recently R03 extended the linear model treated by Anderson and Worster (1996)
by taking into account the effect of rotation due to the Coriolis-force term in the
momentum-Darcy equation and examined presence of oscillatory mode versus the
stationary mode, and he obtained some new results. Similar to the work in Anderson
and Worster (1996), it was assumed that inertial terms in the momentum-Darcy equa-
tion were negligibly small and, thus, the effects of such terms were totally discarded.
The expressions for various quantities were found to be affected by the presence of
rotation and certain new qualitative results due to the rotational effect were reported.
For example, in the presence of rotation it was found that, in contrast to the stationary
mode, the most critical oscillatory mode may be able to reduce the tendency for the
chimney formation in the mushy layer. Information about chimney formation can be
important in the industrial crystal growth processes where it is of interest to find ways
to reduce the undesirable effects of the chimney convection during the alloy solidi-
fication since presence of chimney convection is known to lead to imperfections in
the final produced crystals, which can significantly reduce the quality of the solidified
materials.

The only other studies on oscillatory convection in a rotating dendrite layer are
those due to Guba and Boda (1998) and Govender and Vadasz (2002). Guba and
Boda (1998) studied the effect of rotation on the linear problem of convection in the
absence of inertia effects in a dendrite layer during the directional solidification of
a binary alloy, where such layer often is referred to in this area as a mushy layer,
and their investigation also did not take into account the interaction between the
local volume fraction of solid and the flow associated with the Coriolis term. Their
main result was that depending on the values of the parameters, the oscillatory mode
could be more critical than the stationary mode or vice versa. Govender and Vadasz
(2002) considered the problem of two-dimensional oscillatory convection in a rotating
mushy layer. The momentum-Darcy equation was extended only to include the time
derivative and the Coriolis terms. The authors did not take into account the presence
of the interactions between the local solid fraction and the flow associated with the
Coriolis term, and their weakly nonlinear analysis was based on the zero-order limit
of the mushy-layer thickness. The main result of the study was that two-dimensional
oscillatory flow was supercritical.

In the present paper we consider the linear problem for the dendrite system again
under the external constraint of rotation, and we examine the properties of the oscil-
latory mode further by including the interaction between the local solid fraction and
the flow associated with the Coriolis term and following Vadasz (1998) to include the
time-derivative inertial term in the momentum-Darcy equation. Due to the linearity
and the zero-basic volume flux of the present problem (R03), the nonlinear inertial
term has no contribution in the momentum-Darcy equation even if the nonlinear
inertial terms have not been discarded in the full non-linear system. We find some
interesting results about the effects of inertial and Coriolis terms on the oscillatory
mode. In particular, we find that the presence of the inertial term can have signifi-
cant effects on the existence of the oscillatory mode or on the value of the period
of oscillation of such mode, and rotation effect can enhance such effects. However,
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rotational effect can also have an opposing effect in the sense that it enhances the
domain of the oscillatory mode, while the inertial effect reduces such domain. The
effect of interaction between the local solid fraction and the flow associated with
the Coriolis term was found to be stabilizing.

In regard to the motivation of the present study and the applicability of the present
results, understanding the rotational effects on the convective flow instabilities in the
dendrite layer, which can be formed adjacent to the crystal interface in an alloy sys-
tem where the inertial effects are not negligible (Vadasz 1998), are of interest in both
geophysical and engineering areas. Understanding the roles and effects of the Coriolis
force on the dynamics of a porous layer adjacent to the earth’s inner core interface is
important in geophysics and for understanding the geodynamo. In industrial crystal
growth processes it has been desirable to impose certain external constraints such
as rotation, in an optimized manner upon the system, in order to reduce the effects
of such instabilities, which can lead to micro-defect density in the crystal and, thus,
reduce the quality of the produced crystal.

It should be noted that the model considered in R03 as well as the present one,
which takes into account the rotational effects through the presence of the Coriolis
force only, is relevant both in the geophysical applications where the centrifugal mode
of convection is insignificant and in the engineering areas where the neglect of the
centrifugal effect can be justified under the present assumption that the gravitational
buoyancy is much larger than the centrifugal force.

2 Formulation and analysis

The formulation and analysis are presented briefly here since, apart from the inertial
contributions, they are basically of the same types presented in R03, and, thus, the
reader is referred to R03 for details.

We consider a binary alloy melt that is cooled from below and is solidified at a
constant speed V. The solidifying system is assumed to be rotating at a constant speed
Q about the vertical direction, anti-parallel to the gravity vector (Fig. 1). Following
Amberg and Homsy (1993) and Anderson and Worster (1996), we consider the den-
drite layer of thickness d adjacent and above the solidification front to be physically
isolated from the overlying liquid and the underlying solid zones. The overlying liquid
is assumed to have a composition C0 > Ce and a temperature T∞ > TL(C0) far above
the mushy layer, where Ce is the eutectic composition, TL(C̃) is the liquidus temper-
ature of the alloy and C̃ is the composition. Thus, it is assumed that the horizontal
mushy layer, which is treated as a porous layer, is bounded from above and below by

Fig. 1 A diagram representing the physical system under consideration. A dendrite layer is solidified
from below at a constant speed V and is rotating at a constant rate Q about the vertical direction,
anti-parallel to the gravity vector
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rigid and isothermal boundaries. We consider the solidification system in a moving
frame of reference ox̃ỹz̃, whose origin lies on the solidification front, translating at
the speed V with the solidification front in the positive z̃-direction and rotating with
the speed Q about the z̃-axis.

Next, we consider the equations for extended Darcy-momentum to include the
time derivative and Coriolis terms, continuity, heat, and solute for the flow in the
mushy layer in the moving frame. The equations are non-dimensionalized by using
V, k/V, k/V2, β�Cρ0gk/V,�C, and�T as scaled for velocity, length, time, pressure,
solute, and temperature, respectively. Here k is the thermal diffusivity, ρ0 is a ref-
erence (constant) density, β = β∗ − M∗, α∗, and β∗ are the expansion coefficients
for the heat and solute respectively and the slope of liquidus M is assumed to be
constant, �C = C0 − Ce, �T = TL(C0) − Te, and Te is the eutectic temperature.
The non-dimensional form of the equations for extended Darcy-momentum, conti-
nuity, temperature and solute concentration, under the Boussinesq approximation
(Chandrasekhar 1961), in the mushy layer are

{[L̃/(1 − φ̃)](∂/∂ t̃ − ∂/∂ z̃)+ K(φ̃)}ũ = −∇P̃ − R̃θ̃z + Tũ × z/(1 − φ̃), (1a)

∇.ũ = 0, (1b)

(∂/∂ t̃ − ∂/∂ z̃)(θ̃ − Stφ̃)+ ũ · ∇ θ̃ = ∇2θ̃ , (1c)

(∂/∂ t̃ − ∂/∂ z̃)[(1 − φ̃)θ̃ + Crφ̃] + ũ · ∇ θ̃ = 0, (1d)

where no change of volume upon change of phase is assumed (Worster 1991). Here
ũ = ũx + ṽy + w̃z = (1 − φ̃)U is the volume flux vector per unit area (Worster 1992),
which is also known as Darcy’s velocity vector, U is velocity vector, ũ and ṽ are the
horizontal components of ũ along the x̃- and ỹ-directions, respectively, x and y are
unit vectors along the positive x̃- and ỹ-directions, w̃ is the vertical component of ũ
along the z̃-direction, z is a unit vector along the positive z̃-direction, P̃ is the mod-
ified pressure, θ̃ is the non-dimensional composition (or equivalently temperature),
θ̃ = [T̃ − TL(C0)]/�T = (C̃ − C0)/�C, t̃ is the time variable, φ̃ is the local solid
fraction, R̃ = β�Cg�(0)/(Vν) is the Rayleigh number, �(0) is reference value at
φ̃ = 0 of the permeability �(φ̃) of the porous medium, ν is the kinematic viscosity, g
is acceleration due to gravity, K(φ̃) ≡ �(0)/�(φ̃), St = La/(Cl�T) is the Stefan num-
ber, Cl is the specific heat per unit volume, La is the latent heat of solidification per
unit volume, Cr = (Cs − C0)/�C is a concentration ratio, Cs is the composition of the
solid-phase forming the dendrites, L̃ = V2�(0)/(kν) is an Inertial type of parameter
and T = 2Q�(0)/ν is the Coriolis parameter.

The boundary conditions are

θ̃ + 1 = w̃ = 0 at z = 0, (2a)

θ̃ = w̃ = φ̃ = 0 at z = δ, (2b)

where δ = dV0/k is the dimensionless depth of the layer.
We now assume the following rescaling in the limit of sufficiently small δ:

Cr = C/δ, St = S/δ, L = L̃/δ2, δ � 1, (3a)

(x̃, ỹ, z̃) = δ(x, y, z), t̃ = δ2t, R2 = δR̃, (3b)
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ũ = Ru/δ, P̃ = RP, (3c)

where C and S are order one quantities as δ → 0.
The rescaling (3a)–(3c) are then used in (1a)–(1d) and (2a)–(2b). The resulting

system of equations and boundary conditions admits a motionless basic state, which
is steady and horizontally uniform. The basic state solution, denoted by subscript ‘B’
is the same as the one given in R03 and will not be repeated here. Since φB � 1 (R03)
and, thus, φ̃ is expected to be small, the following expansion for K(φ̃) is implemented
in the governing system:

K(φ̃) = 1 + K1φ̃ + K2φ̃
2 + . . . . ., (4)

where the coefficients K1 and K2 are constants.
For the analysis to be described briefly next, it was found convenient to use the

representation

u = ∇ × (∇ × zW)+ ∇ × zψ (5)

for the vector field u (Chandrasekhar 1961) of the infinitesimal disturbances super-
imposed on the motionless basic state, where W and ψ are the poloidal and toroidal
functions for the disturbance vector u, respectively, and W = 0 at the top and bottom
boundaries of the layer. Taking the vertical components of the curl and the double-curl
of the Darcy-momentum equation (1a) and using the basic state solution and (3)–(5)
in (1)–(2), we find the leading order system for the dependent variables W, ψ , θ , and
φ of the infinitesimal disturbances, where (θ ,φ) = (θ̃ − θB, φ̃ − φB).

We now seek normal mode type solution of the form

(W,ψ , θ ,φ) = [W′(z),ψ ′(z), θ ′(z),φ′(z)] exp(σ t + ia.r), (6)

where σ = σr + iσi is the complex growth rate, i is the pure imaginary number (
√−1),

σr is the real growth rate, σi is the frequency of the disturbances, r = (x, y) is the
horizontal position vector and a = (a1, a2) is the horizontal wave number vector of
the disturbances. Here a1 and a2 are the x and y components of a, respectively. Using
(6) in the governing system, we find a system of ordinary differential equations and
boundary conditions for the z-dependent coefficients W′, ψ ′, θ ′, and φ′.

Next, presence of small parameter δ in the system for the z-dependent coeffi-
cients suggests the following expansions of the dependent variables and parameters
in powers of δ:

(W′,ψ ′, θ ′,φ′, R, σr, σi)=(w0,ψ0, θ0,φ0, R0, σr0, σi0)+δ(w1,ψ1, θ1,φ1, R1, σr1, σi1)+ . . .

(7)

Using (7) in the system for the z-dependent coefficients, we solve the resulting
systems in the orders 1 /δ, δ0, and δ1 to determine the main stability results.

At order 1/δ we find

σr0 = σi0 = 0 (8)

At order δ0 we find the leading order eigensolutions to be the same as those given
in R03 and will not be repeated here. In addition, we find

R2
0 = (π2 + a2)[(π2 + a2)+ π2T2]/(a2G), (9)

where a = |a|.
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If we restrict ourselves to the solutions up to and including order δ0, then R0 is
minimized with respect to a to yield

R0c = π [1 + (1 + T2)1/2]/√G, (10a)

a0c = π(1 + T2)1/4, (10b)

where G = S/C+1 and R0c is the minimum value of R0 achieved at a = a0c.
At order δ we find the simplified system for w1 and θ1 after eliminating ψ1 and φ1

between all the four equations. We then multiply the equation for w1 by Ga2w0 and
the equation for θ1 by θ0, add the resulting equations, integrate over the fluid layer
and make use of the boundary conditions. The result is a complex equation whose
real and imaginary parts for the neutrally stable flow case, where σr1 = 0, yield

(R1/R0) = [K1/(4C)][(π2 + a2 − π2T2)/(π2 + a2 + π2T2)]
+π2T2/[2C(π2 + a2 + π2T2)] + GGt{1/4 + π2[1 + cos(σi1)]/(π2 − σ 2

i1)
2},

(11a)

σi1{1 + Gt[(π2 + a2)/(π2 − σ 2
i1)][1 − 2π2sinσi1/(σi1π

2 − σ 3
i1)] +

L(π2 + a2)2[π2(1 − T2)+ a2]/(R0Ga)2} = 0, (11b)

where Gt = (G − 1)/(CG2). The expressions for w1, ψ1, θ1, and φ1 are generally
lengthy and will not be given here.

3 Results and discussion

It can be seen from the Eq. (11b) that zero value of the frequency is always a solution
of this equation, so that stationary mode of neutrally stable state is always a solution
to the present problem. However, stationary solution does not carry the effect of
the inertial term in the present problem since such inertial term is due to the time
derivative term in the momentum-Darcy equation and vanishes for any stationary
mode of the problem. To investigate the possibility for oscillatory instability, we need
to look for solutions with non-zero frequency of (11b). In most of our presentation
of the results in the present problem, we consider the dependence of the solutions
based on the physical parameters S and C rather than on the composite parameters
G and Gt. Figure 2 presents the magnitude of the frequency of the critical oscillatory
mode versus S in the neutrally stable regime, which corresponds to the lowest value
of R, for C = S. Here the solid line, dotted line, dashed line, and dash-dot-dot line
correspond, respectively, to T = L = 0, T = L − 0.04 = 0, T − 2 = L = 0, and
T − 2 = L − 0.04 = 0. The values of the magnitude of the frequency are independent
with respect to G as can be seen from (11b). It can be seen from this figure that for
T = 0 the value of the magnitude of the frequency is smaller for L = 0.04 as compared
with the one for L = 0, while for T = 2 the value of such magnitude is larger for
L = 0.04 as compared with the one for L = 0. The results of our more generated
data for the frequency indicate that the higher value of the period of oscillation of
the solution corresponds to the case with non-zero inertial effect if the rotation rate
is sufficiently small, while the smaller period of oscillation corresponds to the case
with non-zero inertial effect if the rotation rate is sufficiently large. In addition, we
find that non-zero frequency is possible for all values of L only if T is sufficiently
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Fig. 2 Frequency versus S for
C = S. Here solid line, dashed
line, dotted line, and
dash-dot-dot line present,
respectively, the cases
of T = L = 0, T − 2 = L = 0,
T = L − 0.04 = 0, and
T − 2 = L − 0.04 = 0

small. However, if, for example, L ≥ 0.1, then no non-zero value of the frequency is
possible for T ≥ 4. Rotation was found to enhance the domain in (S, C)-plane for the
oscillatory mode, while inertial effect reduces such domain. It should be noted that
throughout this paper by the oscillatory mode we mean one that was detected first by
Anderson and Worster (1996) in the absence of rotation and inertial effects.

As can be seen from (11b), both +σi1 and −σi1 are two solutions to the equation
(11b) which correspond to the same value for R1 as can be found from (11a). These
two modes are neutrally stable at the critical value Rc of the Rayleigh number. To
determine further the properties of the oscillatory mode at the onset of convection,
we need to examine the expression for Rc given by

Rc = R0c + δR1c + O(δ2), (12)

where R0c is given by (10a), and R1c is given by (11a), provided R0, a and σi1 are
replaced, respectively, by R0c, given by (10a), a0c, given by (10b), and σi1 correspond-
ing to the value R = Rc. It should be noted that in the expression (11a) for R1, the
second term in the right-hand-side, which contains the factor (T2/C), is due to the
interaction between the leading term in the basic state of the local solid fraction and
the Coriolis term in the momentum-Darcy equation. If this interaction term is not
taken into account, then we found that the value of R is reduced for the non-zero
rotation case. Hence, presence of such interaction is stabilizing for the oscillatory flow
in the linear regime.

It can be seen from (10a), (11a), and (12) that the dependence of Rc on L is only
indirectly through the dependence of the frequency on L. Figures 3a and 3b present
Rc versus S for T = 0 and T = 2, respectively, and for C = S, K1 = 1.0 and two
different values of L. In each figure solid line corresponds to the case L = 0 and the
dashed line corresponds to L = 0.04. Both figures are drawn for the same values of
the frequency in the range 0.1 ≤ σi1 ≤ 9.90. It can be seen from both figures that
rotation is stabilizing, while the flow destabilizes as S increases. Since S represents a
measure of the latent heat relative to the heat content and C represents a measure of
the difference in the characteristic composition of the solid-dendrite and liquid phases
to the compositional variation of the liquid, the system is expected to destabilize as
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S increases or as C decreases. However, for the present case where C = S, it should
be concluded that the destabilizing effect of S dominates over the stabilizing effect of
C in the present problem. Although it cannot be seen much difference between cases
L = 0 and L = 0.004 for T = 0 and 2 from the Fig. 3a, b, the numerical values of
the corresponding data indicated the following features. For T = 0, the inertial effect
is slightly stabilizing especially for larger values of S, and it also tends to reduce the
domain for the oscillatory mode. For T = 2, the stabilizing effect of the inertial force
is neutralized by the effect of rotation, while reduction of the oscillatory domain is
increased further by the inertial force in the presence of rotation.

The results (10a) and (10b) for R0c and a0c and the fact that the critical values Rc
and ac for R and a can be in a small neighborhood about R0c and a0c, respectively, due
to small deviation of R0 from R, indicate that the critical values Rc and ac increase with
T. Hence, presence of the rotational constraint exerts stabilizing effect on the oscilla-
tory mode at the onset of convection since R0c increases with T. Also, the rotational

Fig. 3 (a) Rc versus S for
C = S, K1 = 1, and T = 0.
Here solid and dashed lines
present, respectively, the cases
of L = 0 and 0.04. (b) The
same as in the (a) but for T=2
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constraint through the Coriolis force reduces the wavelength of the preferred flow
since ac increases with T.

We also examined the vertical distribution of the perturbation to the solid fraction
φ = [φ0 + δφ1 + O(δ2)] for the oscillatory mode at C = S. Some results are presented
in Fig. 4 for the vertical distribution of the perturbation to the solid fraction, which can
provide information for the tendency for chimney formation in the mushy zone if the
value of φ is negative, while tendency for the enhancement of the solid structure in the
porous medium follows if the value of φ is positive. For this figure, δ = 0.2, K1 = 1.0
and the value of 0.01 for the amplitude of the perturbation quantities is chosen. The
Fig. 4 presents the results for φ versus z for x = y = t = 0. Solid line corresponds to
T = L = 0 and C = 0.357. Dotted line corresponds to T = 2, L = 0, and C = 0.343.
Dashed line corresponds to T = 0, L = 0.04, and C = 0.356. Dash-dot-dot line corre-
sponds to T = 2, L = 0.04, and C = 0.368. It can be seen from this figure that for the
inertial and rotating case φ is less negative as compared with the other cases, and its
magnitude is smaller than that for the non-rotating counterpart over the lower-half of
the layer. In addition, average value of |φ| over the vertical depth of the layer for the
inertial and rotating case is smaller than the one for its non-rotating counterpart. In
addition, our generated data for the oscillatory mode at a later time t = 3π/(2|σi1|)
indicated that φ is positive everywhere, and its vertical-average value for the rotat-
ing case is larger than the one for the non-rotating counterpart. An important result
uncovered by our calculated data for φ, such as the one presented in the Fig. 4, is that
the vertical average of the perturbation to the solid fraction for the oscillatory mode
is less negative for the rotating and inertial cases. Hence, industrial crystal growers
may find such result useful in growing higher quality alloy crystals.

We now present some linear results for both L = 0 and L �= 0 cases that for
L = 0 can also serve as some corrections to the corresponding results in R03. In
R03 some errors occurred only in the numerical calculation of the frequency where
an approximate value of 3.14 and not a sufficiently exact value was used for π . The
approximate value like 3.14 for π was found to be unsatisfactory only for cases, where
the value of the frequency was sufficiently close to that of π corresponding to values
of the composite parameter Gt less than about 0.61 in the absence of rotation. If the
value of 3.14 is used for π in the numerical evaluation of the frequency, then more
than one oscillatory mode may also be generated as was found in R03. One graph

Fig. 4 Perturbation to solid
fraction versus z for
x = y = t = 0.0, and S = C.
Here solid, dotted, dashed, and
dash-dot-dot lines present,
respectively, the cases
of T = L = C − 0.357 = 0,
T − 2 = L = C − 0.343 = 0,
T = L − 0.04 = C − 0.356 = 0,
and T − 2 = L − 0.04 =
C − 0.368 = 0
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Fig. 5 Rc versus T for G = 2,
Gt = 0.672, and K1 = 1. Here
solid and dashed lines present,
respectively, the cases of L = 0
and 0.04

in the Fig. 1 in R03, which was for the case Gt = 0.2, then need to be redrawn (see
the solid line in Fig. 5 of the present paper) since it is not expected to be accurate
at least for T = 0, even though the qualitative results presented in R03 for this fig-
ure remain unchanged. Figure 5 in the present paper shows frequency versus T for
G = 2 and Gt = 0.672, where the solid and dashed lines correspond, respectively,
to L = 0 and 0.04. Frequency calculations in the present paper are done based on
the sufficiently exact value of π (π = 3.141592654). We have chosen the value of
0.672 for Gt since it corresponds to value of 3.18 for the frequency in the absence
of rotation, which is the same value for the frequency for T = 0 used in the graph
in the Fig. 1 of R03. Figure 5 in the present paper also shows the dashed-line graph
for the frequency versus T for L = 0.04. It can be seen from this graph that for the
inertial case the period of the flow oscillation can be quite different from the one
in the absence of the inertial effect. This figure also shows that for the given values
of the parameters G and Gt, the period of the flow oscillation for L=0.04 is larger
(smaller) than that for L = 0 if T < (>)T1, where T1 is a value between 1.5 and 2.
The graph for L = 0.04 has apparently an asymptote for T = T2, where T2 is a value
between 6 and 6.5. For T > T2, there is no non-zero frequency for L = 0.04, G = 2,
and Gt = 0.672. Finally it should be noted that in the non-inertial work presented in
R03 the main qualitative results about the critical oscillatory mode, where G >1 and
[Gt(π

2 + a2)/(2π2)] > 0.61, remain unchanged. This later condition on Gt is derived
easily from a simple analogy between the rotating and non-rotating versions of (11b)
and our finding that in the non-rotating case, where a = π , the value of π = 3.14 used
in the calculation is satisfactory if Gt > 0.61.

4 Conclusion

We investigated the problem of effect of inertial force on linear oscillatory flow insta-
bilities in a horizontal dendrite layer during the alloy solidification and uniformly
rotating about the vertical axis. The interaction between the local solid fraction and
the flow associated with the Coriolis term in the extended momentum-Darcy equation
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is fully taken into account to determine the results. Over an extensive range of the
parameter values, the inertial effect was found to reduce the domain for the presence
of the oscillatory flow, while rotational effect enhances such domain. For sufficiently
large rate of rotation and for given values of the other parameters no oscillatory flow
is possible if inertial effect is present. Depending on the parameter values, there is a
critical value of the rate of rotation below which the period of oscillation for the flow
in the presence of the inertial effect is higher than that in the absence of the inertial
force, while for the rate of rotation above its critical value the period of oscillation in
the presence of inertial effect is smaller than that in the absence of the inertial effect.
The oscillatory mode was found to be able to reduce the tendency for the chimney
formation in the rotating dendrite layer. The effect of interaction between the local
volume fraction of solid and the flow associated with the Coriolis term was found to
be stabilizing.
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