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Abstract The effects of hydrodynamic and thermal heterogeneity, for the case of
variation in both the horizontal and vertical directions, on the onset of convection in
a horizontal layer of a saturated porous medium uniformly heated from below, are
studied analytically using linear stability theory for the case of weak heterogeneity.
Attention is focused on the case of constant flux upper and lower boundaries, a case
for which the critical horizontal wavenumber is zero, and attention is also concen-
trated on the case of a shallow layer. It is found that the effect of such heterogeneity
on the critical value of the Rayleigh number Ra based on mean properties is of second
order if the properties vary in a piecewise constant or linear fashion. The effects of
horizontal heterogeneity and vertical heterogeneity are then comparable once the
aspect ratio is taken into account, and to a first approximation are independent. The
combination of permeability heterogeneity and conductivity heterogeneity can be
either stabilizing or destabilizing for the present case.
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Nomenclature
A Aspect ratio (height to width)
c Specific heat
H Height of the enclosure
k k∗/k0
k∗ Overall (effective) thermal conductivity
k0 Mean value of k∗(x∗, y∗)
K K∗/K0
K∗ Permeability
K0 Mean value of K∗(x∗, y∗)
L Width of the enclosure
P Dimensionless pressure, (ρc)fK0

µk0
P∗

P∗ Pressure
Ra Rayleigh number, (ρc)fρ0gβK0L(T1−T0)

µk0
t∗ Time
t Dimensionless time, k0

(ρc)mL2 t∗

T∗ Temperature
T0 Temperature at the upper boundary
T1 Temperature at the lower boundary
u Dimensionless horizontal velocity, (ρc)mL

k0
u∗

u∗ Vector of Darcy velocity, (u∗, v∗)
v Dimensionless vertical velocity, (ρc)mL

k0
v∗

x Dimensionless horizontal coordinate, x∗/L
x∗ Horizontal coordinate
y Dimensionless upward vertical coordinate, y∗/H
y∗ Upward vertical coordinate

Greek symbols
β Fluid volumetric expansion coefficient
θ Dimensionless temperature, T∗−T0

T1−T0
µ Fluid viscosity
ρ Density
ρ0 Fluid density at temperature T0

σ Heat capacity ratio, (ρc)m
(ρc)f

ψ Streamfunction defined by Eqs. (10a,b)

Subscripts
f Fluid
m Overall porous medium

Superscripts
* Dimensional variable

1 Introduction

The problem of the onset of convection in a horizontal layer of fluid heated uni-
formly from below is commonly called the Rayleigh–Bénard problem in the case of
a fluid clear of solid material and the Horton–Rogers–Lapwood (HRL) problem for
the case of a fluid-saturated porous medium. A feature of such convection is that
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it generally appears in the form of cells whose horizontal dimension is of the same
order as their vertical dimension. (The critical dimensionless wavenumber ac in the
linear stability analysis turns out to have a value of about 3. In the HRL problem
with conducting impervious boundaries ac = π , a value that corresponds to rolls of
square cross-section.) An exception occurs in the case of “insulating” (with respect to
perturbation heat flux) boundaries. For this case ac = 0, so that the convection occurs
as a single cell. This exceptional result appeared as a limiting case in the results of
Sparrow et al. (1964) and Hurle et al. (1967), but we believe that the earliest published
explicit discussion of convection at zero wavenumber is that in an appendix of Nield
(1968a). It was there pointed out that ac = 0 applies if the layer extends to infinity
in the horizontal direction, but in a practical situation the fluid will be bounded by
lateral walls and the position of these will determine a small non-zero value of ac.

Nield (1968a) provided the following physical explanation of this phenomenon.
When the total heat flow across each boundary is kept constant, the perturbation heat
flow out of each layer is zero. While surplus heat can still diffuse back into the body
of the fluid, it cannot diffuse out across the boundary. A possible thermal stabilizing
effect is thus absent and viscosity is then the dominant stabilizing factor. The favored
configuration for convection is then that for which the viscous dissipation is least. This
is a single cell.

Convection at zero wavenumber is also of mathematical interest, because one can
then perform a perturbation analysis for small wavenumbers and thereby obtain a
relatively simple analytical result. This situation was exploited by Nield (1975, 1977,
1987) and other workers.

Our renewed interest in convection at zero wavenumber is a result of recent discus-
sions about the effect of heterogeneity (of either permeability or thermal conductivity
or both) on convection in a porous medium. In the case of strong heterogeneity, there
can be dramatic effects (Simmons et al. 2001; Prasad and Simmons 2003; Nield and
Simmons 2006). Even in the case of weak heterogeneity, it is of interest to investi-
gate the combined effects of vertical heterogeneity (property variation in the vertical
direction) and horizontal heterogeneity. This is the subject of the analysis of Nield and
Kuznetsov (2006). The survey of the effects of heterogeneity in Nield and Bejan (2006,
Sect. 6.13) indicates that this topic had not been considered previously. In their ana-
lytical study, Nield and Kuznetsov (2006) found that the effect of such heterogeneity
on the critical value of the Rayleigh number Ra based on mean properties is of second
order if the properties vary in a piecewise constant or linear fashion. The effects of
horizontal heterogeneity and vertical heterogeneity are then comparable and to a
first approximation are independent. For the case of conducting impermeable top and
bottom boundaries and a square box, the effects of permeability heterogeneity and
conductivity permeability each cause a reduction in the critical value of Ra, while for
the case of a tall box there can be either a reduction or an increase.

The question that then arises is whether these results are generic or whether they
apply only to square or tall boxes with conducting top and bottom boundaries, the
case previously studied. The present paper is a contribution to the answer of that
question. The analysis of Nield and Kuznetsov (2006) is modified to treat a shallow
box with constant-flux top and bottom boundaries.
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2 Analysis

Single-phase flow in a saturated porous medium is considered. Asterisks are used to
denote dimensional variables. We consider a rectangular box 0 ≤ x∗ ≤ L, 0 ≤ y∗ ≤ H,
where the y∗ axis is in the upward vertical direction. The side walls are taken as insu-
lated, and constant uniform heat flux is imposed at the upper and lower boundaries,
where the temperatures are denoted by T0 and T1, respectively. (It should be noted
that T0 and T1 are regarded as constants for the purpose of specifying the basic tem-
perature gradient and the reference temperature, but they are not constants in the
context of perturbation quantities. It is the perturbation temperature gradients, and
not the perturbation temperatures, that are assumed to be zero on the upper and
lower boundaries.)

Within this box the permeability is K∗(x∗, y∗) and the overall (effective) thermal
conductivity is k∗(x∗, y∗). The Darcy velocity is denoted by u∗ = (u∗, v∗). The Ober-
beck–Boussinesq approximation is invoked. The equations representing the conser-
vation of mass, thermal energy, and Darcy’s law take the form

∂u∗

∂x∗ + ∂v∗

∂y∗ = 0, (1)

(ρc)m
∂T∗

∂t∗
+ (ρc)f

[
u∗ ∂T∗

∂x∗ + v∗ ∂T∗

∂y∗

]
= k∗(x∗, y∗)

[
∂2T∗

∂x∗2 + ∂2T∗

∂y∗2

]
, (2)

u∗ = −K∗(x∗, y∗)
µ

∂P∗

∂x∗ , v∗ = K∗(x∗, y∗)
µ

[
−∂P∗

∂y∗ + ρ0βg(T∗ − T0)

]
. (3a,b)

Here, (ρc)m and (ρc)f are the heat capacities of the overall porous medium and the
fluid, respectively, µ is the fluid viscosity, ρ0 is the fluid density at temperature T0, and
β is the volumetric expansion coefficient.

In writing Eq. (2), we have made the assumption that the derivatives of k∗(x∗, y∗)
with respect to x∗ and y∗ are small compared with k∗(x∗, y∗) itself. This is part and
parcel of what we mean by weak heterogeneity of conductivity. The omitted terms are
in fact identically zero for the piecewise constant distribution in the test case treated
in detail below.

In this pioneering paper and in Nield and Kuznetsov (2006), the Darcy model has
been employed for the sake of simplicity. A Forchheimer term does not affect the
value of the critical Rayleigh number. A Brinkman term has a small effect of the
value of the critical Rayleigh number if the Darcy number Da (defined as K/H2 for a
mean value of K) is small. (This is essentially because the Brinkman term is physically
significant only within a thin boundary layer whose thickness is of order Da1/2 H
near a rigid boundary.) The channelling effect is likewise small if Da is small. Also
for simplicity, local thermal equilibrium is assumed here. The effects of local thermal
non-equilibrium and a Brinkman term will be considered in a later paper.

We introduce dimensionless variables by defining

(x̂, ŷ) = 1
H
(x∗, y∗), (u, v) = (ρc)mH

k0
(u∗, v∗), t = k0

(ρc)mH2 t∗,

θ = T∗ − T0

T1 − T0
, P = (ρc)fK0

µk0
P∗, (4a,b,c,d,e)
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where k0 is the mean value of k∗(x∗, y∗) and K0 is the mean value of K∗(x∗, y∗). We
also define a Rayleigh number Ra by

Ra = (ρc)fρ0gβK0H(T1 − T0)

µk0
(5)

and the heat capacity ratio

σ = (ρc)m
(ρc)f

. (6)

The governing equations then take the form

∂u
∂ x̂

+ ∂v
∂ ŷ

= 0, (7)

∂θ

∂τ
+ 1
σ

[
u
∂θ

∂ x̂
+ v

∂θ

∂ ŷ

]
= k(x̂, ŷ)

[
∂2θ

∂ x̂2 + ∂2θ

∂ ŷ2

]
, (8)

u = −K(x̂, ŷ)
∂P
∂ x̂

, v = K(x̂, ŷ)
[
−∂P
∂ ŷ

+ σRaθ
]

, (9)

where k(x̂, ŷ) = k∗(x∗, y∗)/k0 and K(x̂, ŷ) = K∗(x∗, y∗)/K0.
We introduce a streamfunction ψ so that

u = σRa
∂ψ

∂ ŷ
, v = −σRa

∂ψ

∂ x̂
. (10a,b)

We also eliminate P. In doing this we assume that, in accordance with the assumption
of weak heterogeneity, that the maximum variation of K over the domain is small com-
pared with the mean value of K, so we can approximate ∂(u/K)/∂ x̂ by (1/K)∂u/∂ x̂,
etc. The result is

∂2ψ

∂ x̂2 + ∂2ψ

∂ ŷ2 = −K(x̂, ŷ)
∂θ

∂ x̂
, (11)

∂θ

∂τ
+ Ra

[
∂ψ

∂ ŷ
∂θ

∂ x̂
− ∂ψ

∂ x̂
∂θ

∂ ŷ

]
= k(x̂, ŷ)

[
∂2θ

∂ x̂2 + ∂2θ

∂ ŷ2

]
. (12)

We introduce the aspect ratio A defined by

A = H/L, (13)

and rescale the spatial coordinates by the transformation

x = Ax̂, y = ŷ, (14)

and write K(x, y) = K̂(x̂, ŷ) and k(x, y) = k̂(x̂, ŷ). This is done so that in the new
coordinates the domain of interest is a square, and this simplifies the subsequent
algebra.

We then have

A2 ∂
2ψ

∂x2 + ∂2ψ

∂y2 = −K(x, y)A
∂θ

∂x
, (15)

∂θ

∂τ
+ RaA

[
∂ψ

∂y
∂θ

∂x
− ∂ψ

∂x
∂θ

∂y

]
= k(x, y)

[
A2 ∂

2θ

∂x2 + ∂2θ

∂y2

]
. (16)
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The conduction solution is given by

ψ = 0, θ = 1 − y. (17a,b)

The perturbed solution is given by

ψ = εψ ′, θ = 1 − y + εθ ′. (18a,b)

To first order in the small constant ε, we get

A2 ∂
2ψ ′

∂x2 + ∂2ψ ′

∂y2 + K(x, y)A
∂θ ′

∂x
= 0, (19)

∂θ ′

∂τ
+ RaA

∂ψ ′

∂x
− k(x, y)

[
A2 ∂

2θ ′

∂x2 + ∂2θ ′

∂y2

]
= 0. (20)

Since there is a single agent causing the instability, for the onset of convection we can
invoke the “principal of exchange of stabilities” and hence take the time derivative
in Eq. (16) to be zero.

The boundary conditions are

ψ ′ = 0 and ∂θ ′/∂y = 0 on y = 0, (21a,b)

ψ ′ = 0 and ∂θ ′/∂y = 0 on y = 1, (22a,b)

ψ ′ = 0 and ∂θ ′/∂x = 0 on x = 0, (23a,b)

ψ ′ = 0 and ∂θ ′/∂x = 0 on x = 1. (24a,b)

We now drop the primes and let

ψT = A11ψ11 + A12ψ12 + A21ψ21 + A22ψ22, (25)

θT = B11θ11 + B12θ12 + B21θ21 + B22θ22. (26)

We take as trial functions (satisfying the boundary conditions and having appropriate
symmetry with respect to the midlines of the square, and hence satisfying desirable
orthogonality properties) for the set

ψ11 = (x − x2)(y − y2),
ψ12 = (x − x2)(y − 3y2 + 2y3),
ψ21 = (x − 3x2 + 2x3)(y − y2),
ψ22 = (x − 3x2 + 2x3)(y − 3y2 + 2y3).

(27)

θ11 = 1 − 6x2 + 4x3,
θ12 = (1 − 6x2 + 4x3)(1 − 6y2 + 4y3),
θ21 = x2 − 2x3 + x4,
θ22 = (x2 − 2x3 + x4)(1 − 6y2 + 4y3).

(28)

(Note that θ ′ = 1 satisfies the boundary conditions (21b)–(24b) but we have rejected
this as a trial function because it does not contribute to the residual. If one tries to use
unity as a trial function one faces a mathematical singularity. It is plausible that one
can eliminate consideration of this type of perturbation on physical grounds because
a uniform jump in temperature leads to a zero net buoyancy effect in the domain
occupied by fluid and so does not produce a convective circulation.)

In the Galerkin method, the expression (25) is substituted into the left-hand side of
Eq. (19) and the resulting residual is made orthogonal to the separate trial functions
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ψ11,ψ12,ψ21,ψ22 in turn. Likewise the residual on the substitution of the expression
(26) into Eq. (20) is made orthogonal to θ11, θ12, θ21, θ22 in turn. We use the notation

〈f (x, y)〉 =
∫ 1

0

∫ 1

0
f (x, y)dx dy, (29)

We write

L1 ≡ A2 ∂2

∂x2 + ∂2

∂y2 , L2 = K(x, y)A ∂
∂x ,

L3 = RaA ∂
∂x , L4 = −k(x, y)

[
A2 ∂2

∂x2 + ∂2

∂y2

]
,

(30a,b,c,d)

We define the residuals

R1 = L1ψT + L2θT = A11L1ψ11 + A12L1ψ12 + A21L1ψ21 + A12L1ψ22
+ B11L2θ11 + B12L2θ12 + B21L2θ21 + B22L2θ22,

R2 = L3ψT + L4θT = A11L3ψ11 + A12L3ψ12 + A21L3ψ21 + A22L3ψ22
+ B11L4θ11 + B12L4θ12 + B21L4θ21 + B22L4θ22.

(31a,b)

We set 〈R1ψmn〉 = 0, 〈R2θmn〉 = 0 for m, n = 1, 2.
We note that 〈k(x, y)〉 = 1 and 〈K(x, y)〉 = 1.
The output of the Galerkin procedure is a set of 8 homogeneous linear equations

in the 8 unknown constants A11, A12, A21, A22, B11, B12, B21, B22. Eliminating these
constants, we get

det M = 0, (32)

where the matrix M takes the form

M =
[

M11 M12
M21 M22

]
(33)

where

M11 =

⎡
⎢⎢⎣

〈ψ11L1ψ11〉 〈ψ11L1ψ12〉 〈ψ11L1ψ21〉 〈ψ11L1ψ22〉
〈ψ12L1ψ11〉 〈ψ12L1ψ12〉 〈ψ12L1ψ21〉 〈ψ12L1ψ22〉
〈ψ21L1ψ11〉 〈ψ21L1ψ12〉 〈ψ21L1ψ21〉 〈ψ21L1ψ22〉
〈ψ22L1ψ11〉 〈ψ22L1ψ12〉 〈ψ22L1ψ21〉 〈ψ22L1ψ22〉

⎤
⎥⎥⎦ , (34)

M12 =

⎡
⎢⎢⎣

〈ψ11L2θ11〉 〈ψ11L2θ12〉 〈ψ11L2θ21〉 〈ψ11L2θ22〉
〈ψ12L2θ11〉 〈ψ12L2θ12〉 〈ψ12L2θ21〉 〈ψ12L2θ22〉
〈ψ21L2θ11〉 〈ψ21L2θ12〉 〈ψ21L2θ21〉 〈ψ21L2θ22〉
〈ψ22L2θ11〉 〈ψ22L2θ12〉 〈ψ22L2θ21〉 〈ψ22L2θ22〉

⎤
⎥⎥⎦ , (35)

M21 =

⎡
⎢⎢⎣

〈θ11L3ψ11〉 〈θ11L3ψ12〉 〈θ11L3ψ21〉 〈θ11L3ψ22〉
〈θ12L3ψ11〉 〈θ12L3ψ12〉 〈θ12L3ψ21〉 〈θ12L3ψ22〉
〈θ21L3ψ11〉 〈θ21L3ψ12〉 〈θ21L3ψ21〉 〈θ21L3ψ22〉
〈θ22L3ψ11〉 〈θ22L3ψ12〉 〈θ22L3ψ21〉 〈θ22L3ψ22〉

⎤
⎥⎥⎦ , (36)

M22 =

⎡
⎢⎢⎣

〈θ11L4θ11〉 〈θ11L4θ12〉 〈θ11L4θ21〉 〈θ11L4θ22〉
〈θ12L4θ11〉 〈θ12L4θ12〉 〈θ12L4θ21〉 〈θ12L4θ22〉
〈θ21L4θ11〉 〈θ21L4θ12〉 〈θ21L4θ21〉 〈θ21L4θ22〉
〈θ22L4θ11〉 〈θ22L4θ12〉 〈θ22L4θ21〉 〈θ22L4θ22〉

⎤
⎥⎥⎦ . (37)

In the general case, the integrals in Eqs. (34) – (37) can be obtained by quadrature.
The eigenvalue equation, Eq. (32) can then be solved to give the critical Rayleigh
number.
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3 Results and discussion

3.1 First order results

As a test case, we consider a quartered rectangle with a piecewise constant distribution
of property values. We consider the case (a quartered square in the scaled domain)
with

K(x, y) = 1 − δH − δV , k(x, y) = 1 − εH − εV , for 0 < x < 1/2, 0 < y < 1/2;

K(x, y) = 1 + δH − δV , k(x, y) = 1 + εH − εV , for 1/2 < x < 1, 0 < y < 1/2;

K(x, y) = 1 − δH + δV , k(x, y) = 1 − εH + εV , for 0 < x < 1/2, 1/2 < y < 1;

K(x, y) = 1 + δH + δV , k(x, y) = 1 + εH + εV , for 1/2 < x < 1, 1/2 < y < 1.

(38a,b,c,d)

This case approximates a general case in which each slowly varying quantity is approx-
imated by a piecewise-constant distribution. The mean value of the quantity is approx-
imated by its value at center of the main square:

f̄ = f (0.5, 0.5).

In each quarter, the function is approximated by its value at the center of that quarter,
and a truncated Taylor series expansion is used to approximate this factor. For exam-
ple, in the region 1/2 < x < 1, 1/2 < y < 1, f (x, y) is approximated by f (0.75,0.75) and
then by f (0.5, 0.5)+ 0.25fx(0.5, 0.5)+ 0.25fy(0.5, 0.5).

Thus,

δH = 1
4

[
1
K
∂K
∂x

]
(1/2,1/2)

, δV = 1
4

[
1
K
∂K
∂y

]
(1/2,1/2)

,

εH = 1
4

[
1
k
∂k
∂x

]
(1/2,1/2)

, εV = 1
4

[
1
k
∂k
∂y

]
(1/2,1/2)

.
(39)

A criterion for weak heterogeneity is that the magnitude of each of these four quan-
tities is less than unity.

The order-one Galerkin method (using a single trial function for each of ψ and θ)
yields the eigenvalue equation

det
[ 〈ψ11L1ψ11〉 〈ψ11L2θ11〉

〈θ11L3ψ11〉 〈θ11L4θ11〉
]

= det

[ −(1+A2)
90 − A

15
ARa

15
24A2

5

]
= 0, (40)

which gives

Ra = 12(1 + A2). (41)

From Eq. (41), we can conclude that to the present order of approximation the value
of the critical Rayleigh number is not affected by any heterogeneity provided that Ra
is defined in terms of mean properties. We also conclude that as the height-to-width
aspect number A tends to zero, Ra tends to 12 from above. The critical Rayleigh num-
ber value 12 was shown by Nield (1968b) to be the exact value for the homogeneous
problem with an infinite layer. (A perturbation analysis for small wavenumber shows
that it arises as 4!/2!)
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3.2 Second order results

At the second-order Galerkin approximation and for the quartered square test case,
the eigenvalue equation takes the form, after some elementary row and column
manipulations (multiplication of rows 1,2,3,4,7,8 and columns 7,8 by −1),

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1+A2)
90 0 0 0 A

15
−AδV

30
−AδH

288 0

0 (21+5A2)
3150 0 0 −AδV

40
3A
175 0 −AδH

1120

0 0 (5+21A2)
3150 0 −AδH

48 0 A
630

−AδV
1260

0 0 0 (1+A2)
1050 0 −3AδH

560
−AδV
1680

A
2450

ARa
15 0 0 0 24A2

5
−(102+105A2)εV

35
−A2εH

4 0

0 3ARa
175 0 0 −3A2εV

408(1+A2)
175 0 (77−136A2)εH

1120

0 0 ARa
630 0 −A2εH

8 0 2A2

105
−(4+5A2)εV

420

0 0 0 ARa
2450 0 (77+68A2)εH

1120
−A2εV

420
28+34A2

3675

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0

(42)

This expands to give a quartic equation in Ra, and the smallest root (eigenvalue) is
sought. As we have noted, for the homogeneous case this smallest root is Ra = 12(1 +
A2). For the case where δH , δV , εH , εV are all small compared with unity, we anticipate
that

Ra = 12(1 + A2)(1 + S), (43)

where S is small compared with unity, and one might expect that one could simply
substitute the expression (43) into (42), linearize with respect to S, and solve for S.

However, on examination it is found that in the limit as A tends to zero the two
smallest eigenvalues of Eq. (42) coalesce.

It appears that the coalescence is a result of the fact that the eigenvector corre-
sponding to the pair (ψ21, θ21) and that corresponding to the pair (ψ11, θ11) differ by
functions of x only and the terms involving the x- derivatives in the operators L1, L2,
L3, L4 vanish in the limit as A tends to zero. In the limit, the quartic equation for Ra
factorizes into linear factors, each of which gives Ra as a fraction with the product
of two double integrals in the numerator and two in the denominator. In two of the
fractions, the double integrals factorize into x-integrals that cancel and y-integrals that
are the same in the two fractions.

As a result of this coalescence of the eigenvalues, there is a singularity in the limit
as A tends to zero. One can get around the singularity by substituting Ra = 12(1 +
A2)(1 + S) in M(5,1) and M(7,3) and Ra = 12(1 + A2) in M(6,2) and M(8,4), and then
expanding the determinant as a quadratic in S, solving the quadratic equation using
the usual formula and taking the mean of the two roots. The reason for the last step
is that the individual roots each contain a term proportion to 1/A2 but this singular
term cancels when the sum is taken. In this way, one obtains the expression

S = 1
7168

[
1225(4δ2

H − δHεH)+ 160(9δVεV − 35ε2
V)

]
. (44)
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This leads to the critical value

Ra = 12(1 + A2)

{
1 + 1

7168

[
1225(4δ2

H − δHεH)+ 160(9δVεV − 35ε2
V)

]}
.

≈ 12(1 + A2)
{

1 + 0.684δ2
H − 0.171δHεH + 0.201δVεV − 0.781ε2

V

}
. (45)

A number of conclusions can be drawn. The effects of weak horizontal heterogeneity
and vertical heterogeneity are each of second order in the property deviations. Their
combined contribution is of the order of the variances of the distributions for perme-
ability and conductivity (which are here equal to δ2

H + δ2
V and ε2

H + ε2
V , respectively.)

The vertical heterogeneity and horizontal heterogeneity act independently at this
order of approximation. (Product terms like δHδV are absent in the last expression.)
The effects of the horizontal and vertical contributions are immediately comparable if
one uses the total amount of variation across the box as a the measure of heterogene-
ity. If one uses the rate of variation with distance as the criterion, one has to consider
the fact that the x- and y-coordinates have been differently scaled, by a factor A. For
example, in terms of quantities evaluated at the center of the box,

δV

δH
= ∂K/∂y
∂K/∂x

= H
L
∂K∗/∂y∗

∂K∗/∂x∗ = A
∂K∗/∂y∗

∂K∗/∂x∗ . (46)

Thus, if A is small then the horizontal heterogeneity has a greater impact than the
vertical permeability, other things being equal.

The heterogeneities of permeability and conductivity interact with each other even
when treated as separate parameters. (In a practical situation, of course, a hetero-
geneity of porosity leads to a heterogeneity of both permeability and conductivity.)
The sensitivities of the critical Rayleigh number to conductivity heterogeneity and
permeability heterogeneity are much the same.)

The above conclusions were also obtained by Nield and Kuznetsov (2006) for the
conducting boundaries problem.

The following conclusions are specific to the insulating boundaries problem. In
the absence of conductivity heterogeneity, the effect of permeability heterogeneity is
stabilizing (to increase the critical Rayleigh number) and comes from the horizontal
variation only. In the absence of permeability heterogeneity, the effect of conductivity
permeability is destabilizing and comes from the vertical variation only. The combi-
nation of conductivity heterogeneity and permeability heterogeneity can be either
stabilizing of destabilizing, whether due to horizontal variation or vertical variation
or both.

The move from the first-order Galerkin approximation to a second order one was
an important step because it broke the symmetry, with respect to the vertical and hor-
izontal midlines of the enclosure, of the overall trial functions. We would not expect a
move from a second-order approximation to a third-order one to introduce anything
dramatically new. Rather, we would expect it to lead to a refinement of the values of
the various coefficients that appear in Eq. (45).

4 Conclusions

We have continued a linear stability study begun by Nield and Kuznetsov (2006) of
the relationships between the effects of horizontal and vertical heterogeneities on the
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onset of convection in a porous medium. In the previous study, we considered con-
ducting boundaries. In that case the favored convection pattern is in rolls of square
cross-section, and it was not clear to what extent our results would generalize to the
case where the convection pattern was substantially different. In the present study, we
have treated the contrasting case of insulating boundaries, a case for which the critical
wavenumber is small for an infinite layer. This means that the convection pattern is
in then in the form of very wide cells.

In the previous study, we employed an approximate analysis to reach some general
conclusions of the case of weak heterogeneity. It was shown that a Rayleigh number
based on mean properties is a good basis for the prediction of the onset of instability.
It was shown that piecewise-constant variation leads to effects that enter at second
order in small variations. It was also shown that the effects of horizontal heterogene-
ity and vertical heterogeneity were comparable once account of the aspect ratio was
taken into account, and to a first approximation are independent.

Our basic conclusion from the present study is that the change of convection pattern
does not greatly change the effect of the heterogeneity, once account has been made
of the change in aspect ratio. Some minor differences showed up. For the case of
conducting boundaries, we found that the heterogeneities lead to a reduction in the
critical value of Ra for all combinations of horizontal and vertical heterogeneities
and all combinations of permeability and conductivity heterogeneities. In the present
case, that of constant flux boundaries, the situation is more complicated. Now the
combination of vertical heterogeneity and horizontal heterogeneity can be either sta-
bilizing or destabilizing, and there are differences between the effects of permeability
heterogeneity and conductivity heterogeneity.

The cases of moderate or strong heterogeneity remain as challenges for future work.
We believe that it is likely that moderate heterogeneity can be treated by numerical
methods along roughly the same lines as the present work. Strong heterogeneity may
require a more radical treatment.
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